
1/3

June 12, 2009

A concrete illustration of practical running time vs big-O
notation

devblogs.microsoft.com/oldnewthing/20090612-00

Raymond Chen

One of the
five things every Win32 programmer needs to know
is that memory latency
can

throw your big-O computations out the window.
Back in 2003, I ran into a concrete example

of this.

Somebody started with the algorithm presented in
Fast Algorithms for Sorting and

Searching Strings
by
Jon L. Bentley
and
Robert Sedgewick,
implemented it in C#, and

compared the performance
against a HashTable , TernaryTree
and SortedList .

Surprisingly, the hash table won on insertion and retrieval of
tens of thousands of randomly-

generated strings.
Why?

Remember, big-O notation hides the constants,
and those constants can get pretty big.

What’s more, the impact of those constants is critical
for normal-sized workloads.
The big-O

notation allows you to compare algorithms
when the data sets become extremely large,
but

you have to keep the constants in mind
to see when the balance tips.

The central point of my presentation at the PDC was
that complexity analysis typically

ignores memory bandwidth effects
and assumes that all memory accesses perform equally.

This is rarely true in practice.
As we saw, leaving L2 is a big hit on performance,
and

accessing the disk is an even greater hit.

The tree doesn’t rebalance,
so inserting strings in alphabetical order
will result in a bad

search tree.
(They do call this out in their paper.)
To locate a k-character string,
Bentley-

Sedgewick traverses at least k pointers, usually more.
(“How much more” depends on how

many prefixes are shared.
More shared prefixes = more pointers traversed.)
It also requires

k(4p) bytes of memory to store that string,
where p is the size of a pointer.
Remember those

pesky constants.
High constant factor overhead starts to kill you
when you have large

datasets.

More on those constants:
Complexity analysis assumes that
an add instruction executes in

the same amount of time as a memory access.
This is not true in practice,
but the difference is

a bounded constant factor,
so it can be ignored for big-O purposes.
Note, however, that that

https://devblogs.microsoft.com/oldnewthing/20090612-00/?p=17913
http://channel9.msdn.com/Showpost.aspx?postid=116704
http://www.cs.princeton.edu/~rs/strings/
http://www.cs.bell-labs.com/cm/cs/pearls/
http://www.cs.princeton.edu/~rs/

2/3

constant often exceeds
one million if you take a page fault.
One million is a big constant.

Going back to memory bandwidth effects:
At each node, you access one character and one

pointer.
So you use only 6 bytes out of a 64-byte cache line.
You’re wasting 90% of your bus

bandwidth and you will certainly fall out of L2.

Bentley-Sedgewick says that this is beaten out
by not traversing the entire string being

searched for in the case of a miss.
I.e., their algorithm is tuned for misses.
If you expect most

of your probes to be misses, this can be a win.
(The entire string is traversed on a hit,
of

course, so there is no gain for hits.)

Note also that this “cost” for traversing the string on a miss
is overstated due to memory

bandwidth effects.
The characters in a string are contiguous,
so traversing the string costs

you only L/64 cache lines,
where L is the length of the string,
and one potential page fault,

assuming your string is less than 4KB.
Traversing the tree structure costs you at least L cache

lines
and probably more depending on your branching factor,
as well as L potential page

faults.

Let’s look at the testing scenario again.
The testing was only on hits,
so the improved

performance on misses was overlooked entirely.
What’s more,
the algorithm takes advantage

of strings with common prefixes,
but the testing scenario used randomly-generated strings,

which generates a data set opposite from the one the algorithm
was designed for,
since

randomly-generated strings are spread out across the problem space
instead of being

clustered with common prefixes.

Those are some general remarks; here are some performance notes
specific to the CLR.

I don’t know whether it does or not, but
I would not be surprised if

System.String.GetHashCode
caches the hash value in the string,
which would mean that

the cost of computing the hash
is shared by everybody who uses it in a hashing operation.

(Therefore, if you count the cost incurred only by the algorithm,
hashing is free.)

Note also that Bentley-Sedgewick’s insert() function
stores the object back into the tree

in the recursive case.
Most of the time, the value being stored is the same
as the value that

was already there.
This dirties the cache line for no reason
(forcing memory bandwidth to be

wasted on a flush)
and—particularly
painful for the CLR—you hit
the
write barrier
and end

up dirting a whole boatload of
cards.
A very small change avoids this problem:
Change

 p->eqkid = insert(p->eqkid, ++s);

to

 Tptr newkid = insert(p->eqkid, ++s);

 if (p->eqkid != newkid) p->eqkid = newkid;

http://msdn2.microsoft.com/en-us/library/ms973837.aspx
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.54.1655
http://portal.acm.org/citation.cfm?doid=66068.66077

3/3

(and similarly in the other branches).
“This code is short but subtle, and worth careful study.”

How very true.

Note also that if you use their “sleazy hack” of
coercing a string to a Tptr ,
you had to have

changed the type of eqkid from
 Tptr to object .
This introduces a CLR type-check into

the inner loop.
Congratulations, you just tubed the inner loop performance.

Now go to the summary at the end of the article.

1. “Ternary trees do not incur extra overhead
for insertion or successful searches.”
I’m not

sure what “extra” means here,
but hash tables have the same behavior.

2. “Ternary trees are usually substantially faster
than hashing for unsuccessful searches.”

Notice that they are optimized for misses.

3. “Ternary trees gracefully grow and shrink;
hash tables need to be rebuilt after large size

changes.”
True, but the CLR hashtable does this so you
don’t have to. Somebody wrote

it for you.

4. “Ternary trees support advanced searches
such as partial-match and near-neighbor

search.”
These operations weren’t tested.

5. “Ternary trees support many other operations,
such as traversal to report items in

sorted order.”
These operations weren’t tested either.

Notice that the article doesn’t claim that ternary trees
are faster than hashing for successful

searches.
So if that’s all you’re testing, you’re testing the wrong thing.
One of the big benefits

of ternary trees
is the new operations available (4 and 5),
but if you’re not going to perform

those operations,
then you ended up paying for something you don’t use.

There are several morals of the story.

1. Constants are important.

2. Memory bandwith is important.

3. Performance optimizations for unmanged code
do not necessarily translate to managed

code.

4. What are you really testing?

Mind you, Bentley and Sedgewick are not morons. They know all this.

[Typo fixed 11am, thanks Nathan_works and Jachym Kouba.]

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

