
1/2

May 29, 2009

Alternatives to using the #error directive to check
whether the compiler even sees you

devblogs.microsoft.com/oldnewthing/20090529-00

Raymond Chen

In response to my description of how you can
use the #error directive to check
whether the

compiler even sees you,
some commenters proposed alternatives.
I never claimed that my

technique was the only one,
just that it was another option available to you.
Here are some

other options.

scott suggested merely typing asdasdasd into the header file
and seeing if you get an error.

This usually works, but it can be problematic if the code does not
already compile.
And of

course it doesn’t compile,
because the reason why you’re doing this investigation in the first

place is that
you can’t get your code to compile and you’re trying to figure out why.

Consequently, it’s not always clear whether any particular error
was due to your asdasdasd

or due to the fact that, well, your code doesn’t compile.
For example after adding your

asdadsads to line 41 of
file problem.h , you get the error
 Error: Semicolon expected

at line 412 of file unrelated.h .
Was that caused by your asdasdad ?
Doesn’t seem

that way, but it actually was,
because the preprocessed output looked like this:

asdasdasd

int GlobalVariable;

After your asdasdasd , all that was generated were a bunch
of #define s, #if s,

#endif s,
and #include s.
None of them generate output, so the compiler proper doesn’t

see anything;
the preprocessor ate it all.
Finally, at unrelated.h line 412, a header file

finally
tried to do something other than just define a macro,
and it’s only then that the error

is detected.

But if you can pick the new error out of the error spew, then go for it.
(There are also obscure

cases where an extra asdasdasd
doesn’t introduce a new error.)

Since the string #error is shorter than asdasdasd ,
and it works in more places, I just go

with #error .

https://devblogs.microsoft.com/oldnewthing/20090529-00/?p=18103
http://blogs.msdn.com/oldnewthing/archive/2008/04/09/8370479.aspx
http://blogs.msdn.com/oldnewthing/archive/2008/04/09/8370479.aspx#8372429

2/2

Another suggestion came from
Miguel Duarte who
suggested generating the preprocessed file

and studying it.
That helps, but the preprocessor output tends to be huge, and,
as I noted in

the base article,
 #define directives don’t show up, so it can be hard for you
to find your

place.
I also noted in the base article that
if you use Visual Studio’s
precompiled header files,

the contents of the preprocessed output may not match what the compiler sees.
In fact, that’s

the most common reason I’ve found for a line being ignored:
You put the #include

directive in a place that the
preprocessor sees but which the compiler doesn’t see
because you

violated one of the
precompiled header consistency rules,
usually the
source file consistency

rule.

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/archive/2008/04/09/8370479.aspx#8372768
http://msdn2.microsoft.com/en-us/library/syth7b6s.aspx
http://msdn2.microsoft.com/en-us/library/21khx4ke.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

