
1/3

May 18, 2009

How do I know whether a window message was
processed?

devblogs.microsoft.com/oldnewthing/20090518-00

Raymond Chen

Commenter Skeets Norquist asks how to tell whether the original window procedure

processed a message when you use CallWindowProc to call the original window procedure.

“CallWindowProc() always seems to return an LRESULT of 0.”

No, actually, CallWindowProc returns whatever the window procedure did. If the window

procedure returned zero, then CallWindowProc returns zero. If the window procedure

returned 5, then CallWindowProc returns 5.

Anyway, back to the original question. You actually know the answer, if you think about it the

right way, and there are many right ways of thinking about it.

Technique number 1: Reading the contract from the other side.

How do you know whether the original window procedure handled the message? Well, how

does the window manager know that you handled the message? When you subclass a

window, you are simultaneously implementing both sides of the message-handling contract.

The window manager calls your window procedure, which is the recipient side of the

contract. You, in turn, call the original window procedure, acting as the sending side of the

contract. Therefore, the way you know whether the message was handled by the original

window procedure is the same way the window manager knows that you handled the

message yourself. For example, if the message is WM_SETCURSOR , then the window

procedure returns TRUE to halt further processing or FALSE to continue. This statement

applies both to your window procedure as well as the original window procedure, since

they’re both window procedures!

Technique number 2: Use the golden rule.

This is a very common technique for answering questions like “How do I make «something

somebody else has written» «behave in some way»?” If you want to look for a way to

somebody else behave in some way, you mentally turn the tables: How would somebody else

make me behave in that way?

https://devblogs.microsoft.com/oldnewthing/20090518-00/?p=18233
http://blogs.msdn.com/oldnewthing/pages/407234.aspx#557106
http://blogs.msdn.com/oldnewthing/archive/2003/12/26/45979.aspx
http://en.wikipedia.org/wiki/Ethic_of_reciprocity

2/3

Here’s a specific example: “What message do I send a window to ask if it contains an unsaved

document?” Well, let’s turn it around: What message would somebody send to you to ask if

you contained an unsaved document?

“I don’t have a message for that. It’s just a boolean flag in my CDocument class. There’s no

message for retrieving it.”

Well, if you don’t have a message for retrieving the “dirty” flag from your own document,

then clearly there is no generic message for it. Because if there were, you’d have implemented

it!

Now let’s transfer this to the message handling case. You write a window procedure. How do

you indicate that you processed the message? Whatever method you use as a window

procedure to indicate that you processed the message is the same method you use as the

caller of CallWindowProc to tell whether the message was handled.

Technique number 3: How do you know whether the base class performed the operation

when you override a method in C++? (Or C# or Java or whatever object-oriented language

you prefer.)

Subclassing a window is like subclassing a C++ class: Method calls are given to your class

first, and you can decide whether to handle it entirely yourself, whether to pass it through to

the base class unchanged, or to combine the two (calling the base class and also performing

some operation on your own). So let’s take the message handling question and turn it into a

method override question: If you override a method and then call the base class, how do you

know whether the base class implemented the method?

That’s right, and that’s how you tell whether the original window procedure handled a

message.

(The misssing paragraph is, “Well, it depends on the method and what the specification is for

how classes should respond to the method.”)

Look at the problem three different ways, but it’s all the same answer: You tell whether a

window procedure processed a message by comparing the actual behavior against the

specification.

Now, in practice, window messages are almost all of the form “You must process the

message. If you don’t want to do anything special, then pass it to DefWindowProc and let it

do the default processing and return an appropriate value.” In those cases, the answer to the

question of how to tell whether the message was handled is much easier: The fact that it

returned means that the message was handled.

3/3

One might even say that the messages like WM_SETCURSOR fall into the same category of

“The fact that it returned means that the message was handled.” Because even if the original

window procedure returned FALSE to indicate that it wants processing to continue, that is

in a sense how it handled the message. It handled the message by saying, “I am handling this

message by telling you that I want you to continue processing.”

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

