
1/2

May 8, 2009

Writing a sort comparison function, redux
devblogs.microsoft.com/oldnewthing/20090508-00

Raymond Chen

Prerequisites: Experience with sort functions such as qsort .

Overqualifications: Familiarity with sort algorithms.

If you break
the rules for sort comparison functions,
then don’t expect the result of a sort call

to be meaningful.
In fact, if you really mess it up,
you can corrupt memory or go into an

infinite loop.

My program hangs when I used this sort comparison function
(pseudocode):

int compare(x, y)

{

return x >y ? +1 : -1;

}

What’s even more strange is that sometimes instead of hanging,
the program crashes.
It all
works correctly if I add one line:

int compare2(x, y)

{

if (x == y) return 0; // added

return x >y ? +1 : -1;

}

What’s going on?
The array I am sorting contains no duplicate elements,
so the two items x
and y
should never be equal.

First of all, your first comparison function clearly violates
the requirements for being a

comparison function:
It must return zero if the two items compare equal.
As a result, the

behavior is undefined, and hanging,
crashing, or returning an incorrect result are all

legitimate behavior.

But let’s dig a little deeper to see why hanging and crashing
are plausible responses to an

invalid sort comparison function.

https://devblogs.microsoft.com/oldnewthing/20090508-00/?p=18313
http://blogs.msdn.com/oldnewthing/archive/2003/10/23/55408.aspx

2/2

A common sorting algorithm is quicksort.
I’ll leave you to go off and learn on your own how

the
quicksort algorithm works.
Come back when you’re done.

Okay, welcome back.
The central step in quicksort is the partition,
and some variants of the

quicksort algorithm rely on the
partition element comparing equal to itself in order to

remove
a comparison from the inner loop.
For example, an index may walk through the array

looking for
an element greater than or equal to the partition,
fully expecting at least one such

element to be found
because in the worst case, it will find the partition itself.
But if your

comparison function fails to report the partition
as equal to itself,
this search may run off the

end of the array and eventually
crash with an access violation when it reaches invalid

memory.

That explains the crash, but what about the hang?
Well,
notice that the comparison function

is also inconsistent.
In particular,
the anti-symmetry rule is violated:
 compare(x, y) and

compare(y, x)
return the same value (as opposed to the opposite value)
if x==y .
The

function returns -1 both times,
saying
“ x is less than y”
and
“ y is less than x”

simultaneously.
This inconsistency can easily send a sort algorithm
running back and forth

trying to find the right place for
the partition.

The moral of the story is the same:
Your comparison function must meet the criteria for
a

proper comparison function.
If you fail to do this,
then the results you get will be very strange

indeed.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

