
1/3

May 7, 2009

When you subclass a window, it’s the original window
procedure of the window you subclass you have to call
when you want to call the original window procedure

devblogs.microsoft.com/oldnewthing/20090507-00

Raymond Chen

When you subclass a window, you set the window procedure
to a function of your choosing,

and you remember the original
window procedure so you can pass it to the

CallWindowProc
function when your subclass function wants to pass the message to the

original window procedure.
For example, if you subclass a window like this:

SubclassWidgetDialog(HWND hdlgWidget)

{

 HWND hwndButton = GetDlgItem(hdlgWidget, …);

 wndProcOrig = (WNDPROC)

 SetWindowLongPtr(hwndButton, GWLP_WNDPROC, (LONG_PTR)SubclassWndProc);

 // -or-

 // wndprocOrig = SubclassWindow(hwndButton, SubclassWndProc);

 …

}

then your subclass function should go something like this:

LRESULT CALLBACK SubclassWndProc(

 HWND hwnd, UINT wm, WPARAM wParam, LPARAM lParam)

{

 switch (wm) {

 …

 default:

 return CallWindowProc(wndprocOrig, hwnd, wm, wParam, lParam);

 }

}

The window procedure you pass to CallWindowProc
is the one which was the window

procedure of that window
before you subclassed it,
not the window procedure from some

other window.
In the same way that when you create a derived C++ class,
you pass method

calls along to your base class,
not to somebody else’s base class:

https://devblogs.microsoft.com/oldnewthing/20090507-00/?p=18333

2/3

class DerivedClass : public BaseClass {

…
// override base class: do some extra stuff

int Method(int param)

{
 ExtraDerivedStuff();

 return BaseClass::Method(param);

}
};

When you are finished with your customization in
 DerivedClass::Method , you let the

base class
do what normally would have happened if you hadn’t overridden
the method in the

first place by calling
 BaseClass::Method and not by calling
 SomeOtherClass:Method .

This sounds blatantly obvious, but you’d be surprised how often
people mess this up.
For

example,
if you subclass multiple widget dialogs,
you have to save the old window procedure

in a different place
for each one,
because each button may have had a different window

procedure
by the time you got around to subclassing it.
For example, one of them might be a

plain button, whereas another
of them was subclassed in order to provide a tooltip.
If you

make wndprocOrig a global or static variable,
then you’re assuming that every widget

button has the same
window procedure.
You are subclassing a window and forgetting to

handle the case
where the window is already subclassed!
You forgot that somebody else could

have done exactly what you’re doing.

There is a popular commercial program that comes preinstalled
on many computers which

creates a
common file open dialog box and subclasses both the file name combo box
and the

file type combo box,
and figures that, well, since they’re both combo boxes,
they must have

the same window procedure, right?
Unfortunately, there’s no guarantee that they do,
because

the common file dialog is free to subclass them in order to
provide custom behavior like

autocomplete.
It so happens that the program grabs the window procedure from
the

subclassed combo box window and uses it for all combo boxes.
(These are probably the same

folks who would have called the
BOZOSLIVEHERE function
if given the chance.)

This makes for very exciting crashes when they take the original
window procedure from the

subclassed combo box
and use it for the other, unsubclassed, combo box.
The subclass

window procedure
finds itself handed a window that it never subclassed.
As a result, it not

only can’t perform its own subclass behavior,
but can’t even just fall back and say “Well, I

can’t do my custom stuff,
so I’ll just forward to the original window procedure”
since it can’t

figure out what the original window procedure was either.
It’s the window manager version

of writing this strange C++ code:

http://blogs.msdn.com/oldnewthing/archive/2003/10/15/55296.aspx

3/3

class SiblingClass : public BaseClass { … };

class DerivedClass : public BaseClass {

…
// override base class: do some extra stuff

// then pass method to the WRONG base class

int Method(int param)

{
 ExtraDerivedStuff();

 return ((SiblingClass*)this)->Method(param);

}
};

When you subclass a window, and you want to call the original window
procedure, make sure

you call the correct original window procedure:
The one that was the window procedure of

that window
before you subclassed it.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

