
1/2

April 13, 2009

Why is there no support in the window manager for
mouse button chording?

devblogs.microsoft.com/oldnewthing/20090413-00

Raymond Chen

Commenter Nekto2 asks
why there is no mouse action associated with “click both
buttons at

the same time”.

The window manager doesn’t fire a special event for both mouse
buttons held down

simultaneously like it does for
double-clicks.
As with higher-order clicks,
mouse chording is

something that you have to put together yourself
from the basic mouse events that the

window manager generates.
Add these lines to our
scratch program:

void OnButtonDown(HWND hwnd, BOOL fDoubleClick,

 int x, int y, UINT keyFlags)

{

 if ((keyFlags & (MK_LBUTTON | MK_RBUTTON)) ==

 (MK_LBUTTON | MK_RBUTTON))

 {

 MessageBeep(IDOK);

 }

}

// Add to WndProc

 HANDLE_MSG(hwnd, WM_LBUTTONDOWN, OnButtonDown);

 HANDLE_MSG(hwnd, WM_RBUTTONDOWN, OnButtonDown);

When you run this program, it beeps when both the left and right
mouse buttons are pressed.

Note that the program does not require the two button presses take
place simultaneously.

Most people do not have the dexterity to push the two buttons at
precisely the same instant

in time.
(Especially since Einstein taught us that simultaneity is relative
anyway.)

Why don’t more programs use chording?

Recall that the semantics of double-clicking should be an extension
of the single-click so that

your program can perform the single-click
action immediately (providing positive feedback

to the user that
the click was recognized), and then continue to the double-click action
if a

https://devblogs.microsoft.com/oldnewthing/20090413-00/?p=18573
http://blogs.msdn.com/oldnewthing/pages/407234.aspx#550430
http://blogs.msdn.com/oldnewthing/archive/2003/07/23/54576.aspx

2/2

second click comes in.
For example, a common pattern is for
the single-click to select the

clicked-on item and the
double-click to launch it.
You can stop at the first click and the result

still makes sense.
For chords, you have to have two stopping points,
one if the user left-clicks

and stops, and another if the user
right-clicks and stops.
Coming up with a chord action that

is compatible with both
stopping points requires more effort.

Another reason why many people choose to avoid chords in their
user interface design is that

chording requires more dexterity,
and many users simply don’t have the fine motor control

necessary
to pull it off without accidentally invoking some other action
(such as a drag).

Chording is also cumbersome to emulate with MouseKeys,
so you run afoul of accessibility

issues.

Still, there’s nothing technically preventing you from using
chording in your program.
If you

want to code it up, then more power to you.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

