
1/4

April 8, 2009

Let GDI do your RLE compression for you
devblogs.microsoft.com/oldnewthing/20090408-00

Raymond Chen

This is another trick along the lines of
using DIB sections to perform bulk color mapping.

GDI will do it for you; you just have to know how to ask.
Today’s mission is to take a 4bpp

bitmap and compress it in
 BI_RLE4 format.
Now, sure, there are programs out there which

already do this conversion,
but the lesson is in the journey, not in the destination.

The secret is the GetDIBits function.
You give this function a bitmap and a bitmap format,

and out come the bits in the format you requested;
GDI will convert as necessary.

Note: I’m going to take a risk and write “sloppy” code.
This is code that is not production

quality but is enough to get
the point across,
so put your nitpicking notepads away.

https://devblogs.microsoft.com/oldnewthing/20090408-00/?p=18603
http://blogs.msdn.com/oldnewthing/archive/2006/11/16/1086835.aspx

2/4

void ConvertToRLE4(LPCTSTR pszSrc, LPCTSTR pszDst)

{

 // error checking elided for expository purposes

 HBITMAP hbm = (HBITMAP)LoadImage(NULL, pszSrc, IMAGE_BITMAP,

 0, 0,

 LR_LOADFROMFILE |

 LR_CREATEDIBSECTION);

 DIBSECTION ds;

 // error checking elided for expository purposes

 GetObject(hbm, sizeof(ds), &ds);

 if (ds.dsBmih.biBitCount != 4) {

 // error – source bitmap is not 4bpp

 }

 struct BITMAPINFO16COLOR {

 BITMAPINFOHEADER bmih;

 RGBQUAD rgrgb[16];

 } bmi16;

 bmi16.bmih = ds.dsBmih;

 bmi16.bmih.biCompression = BI_RLE4;

 BYTE *rgbPixels = new BYTE[bmi16.bmih.biSizeImage];

 HDC hdc = GetDC(NULL);

 if (GetDIBits(hdc, hbm, 0, bmi16.bmih.biHeight, rgbPixels,

 (LPBITMAPINFO)&bmi16, DIB_RGB_COLORS)

 != bmi16.bmih.biHeight) {

 // error – bitmap not compressible

 }

 ReleaseDC(NULL, hdc);

 BITMAPFILEHEADER bfh = { 0 };

 bfh.bfType = MAKEWORD(‘B’, ‘M’);

 bfh.bfOffBits = sizeof(BITMAPFILEHEADER) + sizeof(bmi16);

 bfh.bfSize = bfh.bfOffBits + bmi16.bmih.biSizeImage;

 // error checking elided for expository purposes

 HANDLE h = CreateFile(pszDst, GENERIC_WRITE, 0, NULL,

 CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);

 DWORD dwWritten;

 WriteFile(h, &bfh, sizeof(bfh), &dwWritten, NULL);

 WriteFile(h, &bmi16, sizeof(bmi16), &dwWritten, NULL);

3/4

 WriteFile(h, rgbPixels, bmi16.bmih.biSizeImage, &dwWritten, NULL);

 CloseHandle(h);

 delete[] rgbPixels;

}

Let’s start from the top.
After loading the bitmap and verifying that it is a 4bpp bitmap,
we

declare a BITMAPINFO16COLOR structure that is
just a BITMAPINFO structure that holds

16 colors
instead of just one.
We copy the BITMAPINFOHEADER from the
 DIBSECTION to

our structure for two reasons:

1. We want to make some changes, and

2. GDI expects the color table to come immediately after the
 BITMAPINFOHEADER .

The second reason is the more important one.
We can’t use the BITMAPINFOHEADER that is

part of the
 DIBSECTION structure because
the DIBSECTION structure puts dsBitfields

after the BITMAPINFOHEADER instead of a color table.

After copying the BITMAPINFOHEADER , we make the key change:
Changing the compression

type to BI_RLE4 .
We allocate a pixel buffer of a size equal to the uncompressed size
of the

original bitmap and use GetDIBits to fill it
with compressed data.
Key points:

Before calling the GetDIBits function,
we must set the biSizeImage member of the

BITMAPINFO structure to the size of
the buffer we passed as rgbPixels .
In our case,

this happened implicitly since we allocated
 rgbPixels based on the value of

bmi16.bmih.biSizeImage .

On successful exit from the GetDIBits function,
the GetDIBits function sets the

biSizeImage member of the
 BITMAPINFO structure to the number of bytes
actually

written to the buffer.

On successful exit from the GetDIBits function,
the GetDIBits function fills the

color table
if you’re using a bitmap format that requires a color table.
It’s important

that you allocate enough memory to hold
the color table; if you forget, then you have a

buffer overflow
bug.

Since the GetDIBits function returns the number of
scan lines successfully read,
if the

value is different from the value we requested, then
something went wrong.
In our case, the

most likely reason is that the bitmap
is not compressible according to the
 BI_RLE4

algorithm.

Now that we have the compressed bits, it’s just grunt work
to turn it into a BMP file.
The

BMP file format specifies that the file
begins with a BITMAPFILEHEADER ,
followed by the

BITMAPINFOHEADER ,
the color table, and the pixels.
So we write them out in that order.

Easy peasy.

Raymond Chen

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

Follow

