
1/4

April 6, 2009

There’s nothing wrong with making bold treeview items
devblogs.microsoft.com/oldnewthing/20090406-00

Raymond Chen

Commenter Frans Bouma asks,

Actually, bold treeview items work just fine.
Watch:

Start with our scratch program
and make these changes:

https://devblogs.microsoft.com/oldnewthing/20090406-00/?p=18623
http://blogs.msdn.com/oldnewthing/archive/2003/07/23/54576.aspx

2/4

BOOL

OnCreate(HWND hwnd, LPCREATESTRUCT lpcs)

{

 g_hwndChild = CreateWindow(

 WC_TREEVIEW, NULL, WS_CHILD | WS_VISIBLE | WS_TABSTOP |

 TVS_HASBUTTONS | TVS_HASLINES | TVS_LINESATROOT,

 0, 0, 0, 0, hwnd, (HMENU)1, g_hinst, 0);

 TVINSERTSTRUCT tvis;

 tvis.hParent = TVI_ROOT;

 tvis.hInsertAfter = TVI_LAST;

 tvis.item.mask = TVIF_TEXT | TVIF_STATE;

 tvis.item.stateMask = TVIS_BOLD;

 tvis.item.state = 0;

 tvis.item.pszText = TEXT(“First”);

 tvis.hParent = TreeView_InsertItem(g_hwndChild, &tvis);

 tvis.item.pszText = TEXT(“Second”);

 tvis.item.state = TVIS_BOLD;

 TreeView_InsertItem(g_hwndChild, &tvis);

 tvis.item.pszText = TEXT(“Third”);

 tvis.item.state = 0;

 TreeView_InsertItem(g_hwndChild, &tvis);

 return TRUE;

}

I elided error checking for expository purposes.

This code creates a tree view and populates it as follows:

First

Second

Third

When you run this program, you can see that the text for all
the items appears as expected;

nothing is truncated.

As for the backward compability remark,
it’s quite simple:
Every change, no matter how

seemingly insignificant,
has compatibility consequences.
The common controls are heavily

used in third party programs,
many of which make strange assumptions about how the

controls work,
relying on quirks of implementations in strange ways.
For example,
those who

3/4

have read
the first bonus chapter of my book
will know that even something as seemingly

harmless as
fixing a flicker bug in the status bar resulted in
a broken status bar in a program

from a major software publisher.
Every change is taken with great trepidation, and the bias is

to preserve bug-for-bug compatibility.

In this case, the issue was with the way the width of the treeview
item is calculated.
You can

easily imagine programs which worked around the existing behavior
by artificially padding

the item with spaces to compensate for
the miscalculation.
If the treeview suddenly fixed the

bug,
these treeview items would now be undesirably large,
possibly creating a horizontal

scroll bar where there previously
had been none, resulting in bugs like “After upgrading, the

last item in my treeview is
being covered by a scroll bar.”
We saw something like this before

when we looked at
the effects of the DS_SHELLFONT dialog style:
Fixing the bug described in

that article would result in property
sheet pages coming out undesirably large (because their

sizes were
artificially inflated to compensate for the erroneous calculation).

That doesn’t mean the bug can’t get fixed, however.
Just as the DS_SHELLFONT flag is a

signal to say
that your property sheet page wants to use the new calculations,
you can tell the

tree view
“Please give me the version of the treeview that fixes the
font bug” by sending it the

CCM_SETVERSION message
and specifying that you want version 5.
Similarly, you can opt

into version 6 of the common controls
by providing a manifest.

Update:
I slipped a subtlety into this article which
it appears people didn’t pick up on,
so I’ll

make it explicit.

The original question was about “switching the font from normal to bold”,
but there are

multiple ways of doing this.
My sample code used the recommended (declarative) method of

setting the
 TVIS_BOLD flag.
But if you click through the link, you’ll see that
the original

commenter was using the procedural method of
handling the NM_CUSTOMDRAW notification,

selecting a new font
(a boldface variation of the normal font),
and returning CRF_NEWFONT .

This is a technique I had illustrated previously with
list views
and
tool tips.

The compatibility behavior is for fonts customized via
 NM_CUSTOMDRAW .
The declarative

method was added specifically to address the bug
in item size calculations when people

change the font procedurally:
Older versions of the treeview control asked for the custom

font
only when painting; it didn’t ask for the custom font when measuring.
Adding the font

query to version 6 was actually quite risky,
since the only way to ask the application for the

procedurally-applied
font is to actually go through the motions of drawing it,
generating a

dummy NM_CUSTOMDRAW notification
with an empty paint rectangle.
If an application painted

outside the rectangle, you would have seen
seen random painting on the screen.

Raymond Chen

Follow

http://www.awprofessional.com/title/0321440307
http://blogs.msdn.com/oldnewthing/archive/2005/02/08/369090.aspx
http://blogs.msdn.com/oldnewthing/archive/2009/04/06/9532674.aspx#9533858
http://blogs.msdn.com/oldnewthing/archive/2005/09/16/468800.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/06/27/648493.aspx
http://blogs.msdn.com/oldnewthing/archive/2006/03/27/561924.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

