
1/3

February 13, 2009

The checkbox: The mating call of the loser
devblogs.microsoft.com/oldnewthing/20090213-00

Raymond Chen

(Cultural note: The phrase
the mating call of the loser
is a term of derision.
I used it here to

create a more provocative headline
even though it’s stronger than I really intended,
but
good

writing is bold.)

When given a choice between two architectures,
some people say that
you should give users a

checkbox to select which one should be used.
That is the ultimate cowardly answer.
You can’t

decide between two fundamentally different approaches,
and instead of picking one, you say

“Let’s do both!”,
thereby creating triple, perhaps quadruple the work compared
to just

choosing one or the other.

It’s like you’re remodeling a book library and somebody asks you,
“Should we use
Dewey

Decimal
or
Library of Congress?”
Your answer, “Let’s do both and let the user choose!”

Imagine if there were a checkbox somewhere in the Control Panel
that let you specify how

Windows XP-styled controls were implemented.
Your choices are either to require

applications to
link to a new UxCtrl.DLL (let’s call this Method A)
or to link to

COMCTL32.DLL with a custom manifest
(let’s call this Method B).
Well, it means that every

component that wanted styled common controls
would have to come in two versions,
one

that linked to UxCtrl and used the new class names
in its dialog boxes and calls to

CreateWindow ,
and one that used a manifest and continued to use the class names
under

their old names.

https://devblogs.microsoft.com/oldnewthing/20090213-00/?p=19153
http://www.deez.info/sengelha/2008/01/30/in-writing-precision-often-harms-readability/
http://blogs.msdn.com/oldnewthing/archive/2008/01/29/7294949.aspx#7324700
http://www.dilbert.com/strips/comic/1996-01-27/
http://www.oclc.org/dewey/
http://www.loc.gov/catdir/cpso/lcc.html

2/3

#ifdef USE_METHODA

hwnd = CreateWindow(TEXT(“UxButton”), …);

#else

hwnd = CreateWindow(TEXT(“Button”), …);

#endif

DLG_WHATEVER DIALOG 36, 44, 230, 94

STYLE WS_POPUP | WS_CAPTION | WS_SYSMENU |

 DS_MODALFRAME | DS_SHELLFONT

CAPTION “Whatever”

BEGIN

#ifdef USE_METHODA

 CONTROL “Whatever”,IDC_WHATEVER,”UxButton”,

 BS_AUTOCHECKBOX | WS_TABSTOP, 14,101,108,9

#else

 CONTROL “Whatever”,IDC_WHATEVER,”Button”,

 BS_AUTOCHECKBOX | WS_TABSTOP, 14,101,108,9

#endif

 …

At run time, every program would have to check this global setting
and spawn off either the

“Method A” binary or the “Method B” binary.

Now you might try to pack this all into a single binary with
something like this:

if (GetSystemMetrics(SM_USEMANIFESTFORSTYLEDCONTROLS)) {

hwnd = CreateWindow(TEXT(“Button”), …);

} else {

hwnd = CreateWindow(TEXT(“UxButton”), …);

}

…

if (GetSystemMetrics(SM_USEMANIFESTFORSTYLEDCONTROLS)) {

 DialogBox(hInstance,

 MAKEINTRESOURCE(DLG_TEMPLATE_WITH_OLDNAME_CONTROLS),

 …

} else {

 DialogBox(hInstance,

 MAKEINTRESOURCE(DLG_TEMPLATE_WITH_UXCONTROLS),

 …

}

But it’s not actually that simple because a lot of decisions take
place even before your

program starts running.
For example, if your program specifies a load-time link to

UXCTRL.DLL , then that DLL will get loaded before your
program even runs, even if the

3/3

system switch is set to use Method B.
A single-binary program that tries to choose between

the two methods
at runtime will have to do some activation context juggling
and delay-

loading.
Hardly a slam dunk.

Okay, so now you have two versions of every program.
And you also have to decide what

should happen if somebody
writes and ships a program that uses Method A exclusively,
even

when the system switch is set to Method B.
Does everything still work within that program as

if Method A
were the system setting, while the rest of the system uses Method B?
(If you go

this route, then you’ve completely undermined the point
of Method B.
The whole point of

Method B is to allow programs that
rely on specific class names to continue working,
but this

rogue Method A program is running around using the
wrong class names!)

Now the entire operating system and application compatibility work
needs to be done with

the checkbox set both to Method A and to
Method B,
because the compatibility impact of

each of the methods is quite different.
Okay, that’s double the work. Where is triple and

quadruple?

Well, the two different versions of the program need to be kept in sync,
since you want them

to behave identically.
This can of course be managed with judicious use of #ifdef s
or

runtime branches.
But you have to remember both ways of doing things
and be mindful of

the two method each time you modify the program.
Somebody else might come in and “fix a

little bug”
or “add a little feature” to your program,
unaware of how your program manages

the shuffle of Method A
versus Method B.
The mental effort necessary to remember two

different ways of doing
the same thing plus having to expend that effort to correct mistakes
in

the code, that’s the triple.

The quadruple?
I’m not sure, maybe the ongoing fragility of such a scheme,
especially one

that, at the end of the day, is a choice between
two things that have no real impact on the

typical end user.

Engineering is about making tradeoffs.
If you refuse to make the choice,
then you’re taking

the cowardly route
and ultimately are creating more work for your team.
Instead of solving

problems, you’re creating them.

All because you’re too chicken to make a hard decision.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

