
1/2

February 5, 2009

What the various registry data types mean is different
from how they are handled

devblogs.microsoft.com/oldnewthing/20090205-00

Raymond Chen

Although you can tag your registry data with any of a variety of types, such as REG_DWORD or

REG_BINARY or REG_EXPAND_SZ . What do these mean, really?

Well, that depends on what you mean by mean, specifically, who is doing the interpreting.

At the bottom, the data stored in the registry are opaque chunks of data. The registry itself

doesn’t care if you lie and write two bytes of data to something you tagged as REG_DWORD .

(Try it!) The type is just another user-defined piece of metadata. The registry dutifully

remembers the two bytes you stored, and when the next person comes by asking for the data,

those two bytes come out, along with the type REG_DWORD . Garbage in, garbage out. The

registry doesn’t care that what you wrote doesn’t many any sense any more than the NTFS

file system driver doesn’t care that you wrote an invalid XML document to the file

config.xml . Its job is just to remember what you wrote and produce it later upon request.

There is one place where the registry does pay attention to the type, and that’s when you use

one of the types that involve strings. If you use the RegQueryValueA function to read data

which is tagged with one of the string types (such as REG_SZ), then the registry code will

read the raw data from its database, and then call WideCharToMultiByte to convert it to

ANSI. But that’s the extent of its assistance.

Just as the registry doesn’t care whether you really wrote four bytes when you claimed to be

writing a REG_DWORD , is also doesn’t care whether the various string types actually are of the

form they claim to be. If you forget to include the null terminator in your byte count when

you write the data to the registry, then the null terminator will not be stored to the registry,

and the next person to read from it will not read back a null terminator.

This simplicity in design pushes the responsibility onto the code that uses the registry. If you

read a registry value and the data is tagged with the REG_EXPAND_SZ type, then it’s up to

you to expand it if that’s what you want to do. The REG_EXPAND_SZ value is just part of the

https://devblogs.microsoft.com/oldnewthing/20090205-00/?p=19243
http://blogs.msdn.com/oldnewthing/archive/2008/01/18/7145021.aspx#7152056

2/2

secret handshake between the code that wrote the data and the code that is reading it, a

secret handshake which is well-understood by convention. After all, if RegQueryValueEx

automatically expanded the value, then how could you read the original unexpanded value?

Windows Vista added a new function RegGetValue which tries to take care of most of the

cumbersome parts of reading registry values. You can tell it what data types you are

expecting (and it will fail if the data is of an incompatible type), and it coerces the data to

match its putative type. For example, it auto-expands REG_EXPAND_SZ data, and if a blob of

registry data marked REG_SZ is missing a null terminator, RegGetValue will add one for

you. Better late than never.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

