
1/4

January 29, 2009

A process shutdown puzzle
devblogs.microsoft.com/oldnewthing/20090129-00

Raymond Chen

In honor of National Puzzle Day,
I leave you today with a puzzle
based on an actual customer

problem.

Part One: The customer explains the problem.

https://devblogs.microsoft.com/oldnewthing/20090129-00/?p=19333

2/4

We have this DLL, and during its startup, it creates a thread
with the following thread
procedure:

DWORD CALLBACK ThreadFunction(void *)

{

 HANDLE HandleArray[2];

 HandleArray[0] = SetUpStuff();

 if (HandleArray[0]) {

 HandleArray[1] = ShutdownEvent;

 while (WaitForMultipleObjects(2, HandleArray,

 FALSE, INFINITE) == WAIT_OBJECT_0) {

 ProcessStuff();

 }

 CleanUpStuff(HandleArray[0]);

 }

 SetEvent(ThreadCompleteEvent);

 FreeLibraryAndExitThread(ThisLibrary, 0);

}

During process shutdown, the following function is called
as part of DLL_PROCESS_DETACH
handling:

void StopWorkerThread()

{

 // tell the thread to stop

 SetEvent(ShutdownEvent);

 // wait for it to stop

 WaitForSingleObject(ThreadCompleteEvent, INFINITE);

 // Clean up

 CloseHandle(ShutdownEvent);

 ShutdownEvent = NULL;

 CloseHandle(ThreadCompleteEvent);

 ThreadCompleteEvent = NULL;

}

The above function is hanging at the call to
 WaitForSingleObject .
If we break in, we see
that the thread that is supposed
to be running the ThreadFunction is gone.
I verified that the
thread was successfully created,
but by the time we get around to waiting for it, it’s already
gone.

I checked, and nobody sets the ThreadCompleteEvent
except the StopWorkerThread
function.
I stepped through SetUpStuff , and it succeeded.
However, a breakpoint on
CleanUpStuff was never hit.
No exceptions were thrown either.

3/4

I am completely stumped as to how this thread disappeared.

You already know enough to explain how the thread disappeared.

Part Two: After providing your explanation, the customer
came up with this solution.

Thank you for your explanation.
We’ve made the following changes to fix the problem.
Again,
thank you for your help.

DWORD CALLBACK ThreadFunction(void *)

{

 HANDLE HandleArray[2];

 HandleArray[0] = SetUpStuff();

 if (HandleArray[0]) {

 HandleArray[1] = ShutdownEvent;

 while (WaitForMultipleObjects(2, HandleArray,

 FALSE, INFINITE) == WAIT_OBJECT_0) {

 ProcessStuff();

 }

 CleanUpStuff(HandleArray[0]);

 }

 // SetEvent(ThreadCompleteEvent);

 FreeLibraryAndExitThread(ThisLibrary, 0);

}

void StopWorkerThread()

{

 // tell the thread to stop

 SetEvent(ShutdownEvent);

 // wait for the thread

 WaitForSingleObject(ThreadHandle, INFINITE);

 // Clean up

 CloseHandle(ShutdownEvent);

 ShutdownEvent = NULL;

}

Criticize this proposed solution.

Part Three:
Even though the proposed solution is flawed,
explain why it doesn’t cause a

problem in practice.
(I.e., explain why the customer is always lucky.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

