
1/2

January 21, 2009

If you have full trust, then you can do anything, so don’t
be surprised that you can do bad things, too

devblogs.microsoft.com/oldnewthing/20090121-00

Raymond Chen

This is another example of the dubious security vulnerability known as wrapping a simple

idea inside layers of obfuscation and then thinking that somehow the obfuscation is the

source of the problem.

First of all, consider this: Suppose a program calls one of its own functions but gets the

calling convention wrong and ends up corrupting its stack. Is that a security vulnerability in

the operating system? No, it’s a bug in the program. Now, maybe a bad guy can try to exploit

this bug in the program, but if such an exploit could be found, it’s naturally a vulnerability in

the program, not in the operating system.

Okay, now we add the layers of obfuscation.

First, instead of calling the function incorrectly, we filter it through another function that

takes a callback function. For example, let’s use EnumFonts , which is a function that takes a

callback function which is called once for each font. If you pass a callback function that has

the wrong calling convention, that’s your problem. The EnumFonts function doesn’t know

what calling convention your callback function uses; it’s your responsibility to pass a

correctly-formed function.

Okay, let’s add another layer of obfuscation. Instead of passing an incorrect callback function

from unmanaged code, let’s use DllImport to call the EnumFonts function from a

VB.NET program. We’re still passing an invalid callback function, but now it’s being done

from a VB.NET program instead of an unmanaged program.

At this point, you announce that you have found a security vulnerability in VB. And since a

lot of scripts are written in VB, you add that this vulnerability affects Word, Excel, Web

pages, anything that supports script.

But if you take away all the layers of obfuscation, you see that all that is really going on is that

the program called a function with the wrong calling convention. Hardly an earth-shattering

vulnerability.

https://devblogs.microsoft.com/oldnewthing/20090121-00/?p=19423
http://blogs.msdn.com/oldnewthing/archive/2008/05/16/8510192.aspx
http://blogs.msdn.com/larryosterman/archive/2007/09/26/what-s-wrong-with-this-code-part-21-a-psychic-debugging-example-the-answers.aspx

2/2

Now let’s look to see if the layers of obfuscation made the original problem broader in scope.

First of all, the caller and the crash take place in the same process, so we haven’t crossed a

security boundary from, say, one process to another, or from user mode to kernel mode.

Furthermore, in order to call a DllImported function, the program needs to have full trust, in

which case it already can do bad things to your computer without having to enlist the

assistance of the EnumFont function. It could just start passing totally bogus parameters to

Marshal.Copy and corrupt memory all it wants. The only interesting thing would be if a

trusted program could somehow be tricked into passing a bogus function pointer to

EnumFonts or otherwise be tricked into calling a bogus function, but even in that case, it

would be a bug in that trusted program, not in VB itself.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

