
1/4

January 5, 2009

Even if you have code to handle a message, you’re
allowed to call DefWindowProc, because you were doing
that anyway after all

devblogs.microsoft.com/oldnewthing/20090105-00

Raymond Chen

Just because you write case WM_SOMETHING: doesn’t mean
that you have to handle all

possible parameters for the
 WM_SOMETHING message.
You’re still allowed to call the

DefWindowProc function.
After all, that’s what you did when you didn’t have a
 case

WM_SOMETHING: statement in the first place.

switch (uMsg) {

case WM_CHAR:

 OnChar(…);

 return 0;

default:

 return DefWindowProc(…);

}

The above code fragment doesn’t handle the WM_SOMETHING
message at all.
Suppose the

WM_SOMETHING message uses the wParam
parameter to specify what type of something

occurred, and you
only want to override the default processing
in the case where wParam

has the value of 4.
What do you do with the other values?

https://devblogs.microsoft.com/oldnewthing/20090105-00/?p=19603

2/4

switch (uMsg) {

case WM_CHAR:

 OnChar(…);

 return 0;

case WM_SOMETHING:

 if (wParam == 4) { DoSomething4(…); }

 else … ????? …

 return 0;

default:

 return DefWindowProc(…);

}

If the value is 4, then you do your special “something 4” processing,
but what about all the

other values? How do you handle them?

Well, think about it: How did you handle them before?
The original code, before you added a

WM_SOMETHING
handler, was equivalent to this:

switch (uMsg) {

case WM_CHAR:

 OnChar(…);

 return 0;

case WM_SOMETHING:

 return DefWindowProc(…);

default:

 return DefWindowProc(…);

}

In the original code, since there was no explicit handler for
the WM_SOMETHING message,

control is transferred to
the default case handler, which just calls the
 DefWindowProc

function.
If you really want to, you can expand the case out a bit more:

3/4

switch (uMsg) {

case WM_CHAR:

 OnChar(…);

 return 0;

case WM_SOMETHING:

 if (wParam == 4) return DefWindowProc(…);

 else return DefWindowProc(…);

default:

 return DefWindowProc(…);

}

Because if the wParam is 4, the original code just
called DefWindowProc .
And if the

wParam was something other than 4,
the original code still just
called DefWindowProc .

Of course, I expanded the block in precisely this way so it matches
up with the case we

started writing when we decided to handle the
 WM_SOMETHING method.
Written out this

way, it becomes obvious
what to write for the question marks.

switch (uMsg) {

case WM_CHAR:

 OnChar(…);

 return 0;

case WM_SOMETHING:

 if (wParam == 4) { DoSomething4(…); }

 else return DefWindowProc(…);

 return 0;

default:

 return DefWindowProc(…);

}

Just because you have a case WM_SOMETHING statement
doesn’t mean you have to handle

all the cases;
you can still call DefWindowProc for the cases
you don’t want to handle.

Armed with this information, you can help
commenter Norman Diamond
handle the

VK_F10 key in his WM_SYSKEYDOWN
message handler without having to
“start handling a

bunch of keys that really are system keys,
that I didn’t want to bother with.”

Raymond Chen

Follow

http://blogs.msdn.com/oldnewthing/articles/407234.aspx#533895
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

