
1/2

March 15, 2005

Windows are not cheap objects
devblogs.microsoft.com/oldnewthing/20050315-00

Raymond Chen

Although Windows is centered around, well, windows, a window itself is not a cheap object.

What’s more, the tight memory constraints of systems of 1985 forced various design

decisions. Let’s take for example the design of the list box control. In a modern design, you

might design the list box control as accepting a list of child windows, each of which

represents an entry in the list. A list box with 20,000 items would have 20,000 child

windows. That would have been completely laughable in 1985. Recall that Windows was built

around a 16-bit processor. Window handles were 16-bit values and internally were just near

pointers into a 64K heap. A window object was 88 bytes (I counted), which means that you

could squeeze in a maximum of 700 or so before you ran out of memory. What’s more,

menus hung out in this same 64K heap, so the actual limit was much lower. Even if the

window manager internally used a heap larger than 64K (which Windows 95 did), 20,000

windows comes out to over 1.5MB. Since the 8086 had a maximum address space of 1MB,

even if you devoted every single byte of memory to window objects, you’d still not have

enough memory. Furthermore, making each list box item a window means that every list box

would be a variable-height list box, which carries with it the complexity of managing a

container with variable-height items. This goes against two general principles of API design:

(1) simple things should be simple, and (2) “pay-for-play”, that if you are doing the simple

thing, you shouldn’t have to pay the cost of the complex thing. Filling a list box with actual

windows also would have made the “virtual list box” design significantly trickier. With the

current design, you can say, “There are a million items” without actually having to create

them. (This is also why the window space is divided into “client” and “non-client” areas

rather than making the non-client area consist of little child windows.) To maintain

compatibility with 16-bit Windows programs (which still run on Windows XP thanks to the

WOW layer), there cannot be more than 65536 window handles in the system, because any

more than that would prevent 16-bit programs from being able to talk meaningfully about

windows. (Once you create your 65537’th window, there will be two windows with the same

16-bit handle value, thanks to the pigeonhole principle.) (And yes, 16/32-bit interoperability

is still important even today.) With a limit of 65536 window handles, your directory with

100,000 files in it would be in serious trouble. The cost of a window object has grown over

time, as new features get added to the window manager. Today it’s even heftier than the

svelte 88 bytes of yesteryear. It is to your advantage not to create more windows than

https://devblogs.microsoft.com/oldnewthing/20050315-00/?p=36183
http://blogs.msdn.com/dsutton1/archive/2004/11/03/251701.aspx


2/2

necessary. If your application design has you creating thousands of windows for sub-objects,

you should consider moving to a windowless model, like Internet Explorer, Word, list boxes,

treeview, listview, and even our scrollbar sample program. By going windowless, you shed

the system overhead of a full window handle, with all the baggage that comes with it. Since

window handles are visible to all processes, there is a lot of overhead associated with

centrally managing the window list. If you go windowless, then the only program that can

access your content is you. You don’t have to worry about marshalling, cross-process

synchronization, Unicode/ANSI translation, external subclassing, hooks… And you can use a

gigabyte of memory to keep track of your windowless data if that’s what you want, since your

windowless controls don’t affect any other processes. The fact that window handles are

accessible to other processes imposes a practical limit on how many of them can be created

without impacting the system as a whole.

I believe that WinFX uses the “everything on the screen is an element” model. It is my

understanding that they’ve built a windowless framework so you don’t have to. (I’m not sure

about this, though, not being a WinFX person myself.)

Raymond Chen

Follow

 

 

http://blogs.msdn.com/oldnewthing/archive/2005/02/11/371042.aspx
http://blogs.msdn.com/oldnewthing/archive/2003/07/25/54582.aspx
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

