
1/5

December 11, 2003

How do I pass a lot of data to a process when it starts
up?

devblogs.microsoft.com/oldnewthing/20031211-00

Raymond Chen

As we discussed
yesterday, if you need to pass more than
32767 characters of information to

a child process, you’ll
have to use something other than the command line.

One method is to wait for the child process to go input idle,
then FindWindow for some

agreed-upon window and
send it a WM_COPYDATA message. This method has
a few

problems:

You have to come up with some way of knowing that the
child process has created its

window so you can start looking
for it. (WaitForInputIdle is helpful here.)

You have to make sure the window you found belongs to
the child process and isn’t just

some other window which
happens to have the same name by coincidence.
Or, perhaps,

not by coincidence: If there is more than once
instance of the child process running,

you will need to
make sure you’re talking to the right one.

(GetWindowThreadProcessId is helpful here.)

You have to hope that nobody else manages to find the
window and send it the

WM_COPYDATA before you do.
(If they do, then they have effectively taken over your

child
process.)

The child process needs to be alert for the possibility of
a rogue process sending bogus

WM_COPYDATA messages in
an attempt to confuse it.

The method I prefer is to use anonymous shared memory.
The idea is to create a shared

memory block and fill it with
goodies. Mark the handle as inheritable, then spawn the child

process, passing the numeric value of the handle on the command
line. The child process

parses the handle out of its command
line and maps the shared memory block to see what’s

in it.

Remarks about this method:

You need to be careful to validate the handle, in case
somebody tries to be sneaky and

pass you something bogus
on your command line.

https://devblogs.microsoft.com/oldnewthing/20031211-00/?p=41543
http://blogs.gotdotnet.com/raymondc/PermaLink.aspx/4dfa171c-3dc6-4382-b38b-c82d391939f0

2/5

In order to mess with your command line, a rogue process
needs

PROCESS_VM_WRITE permission, and in order to mess
with your handle table, it

needs PROCESS_DUP_HANDLE permission.
These are securable access masks, so

proper choice of ACLs
will protect you.
(And
the default ACLs are usually what you

want anyway.)

There are no names that can be squatted or values that
can be spoofed (assuming

you’ve protected the process against
PROCESS_VM_WRITE and

PROCESS_DUP_HANDLE).

Since you’re using a shared memory block, nothing actually
is copied between the two

processes; it is just remapped.
This is more efficient for large blocks of data.

Here’s a sample program to illustrate the shared memory technique.

#include <windows.h>

#include <shlwapi.h>

#include <strsafe.h>

struct STARTUPPARAMS {

 int iMagic; // just one thing

};

In principle, the STARTUPPARAMS can be
arbitrarily complicated, but for illustrative

purposes,
I’m just going to pass a single integer.

STARTUPPARAMS *CreateStartupParams(HANDLE *phMapping)

{

 STARTUPPARAMS *psp = NULL;

 SECURITY_ATTRIBUTES sa;

 sa.nLength = sizeof(sa);

 sa.lpSecurityDescriptor = NULL;

 sa.bInheritHandle = TRUE;

 HANDLE hMapping = CreateFileMapping(INVALID_HANDLE_VALUE,

 &sa, PAGE_READWRITE, 0,

 sizeof(STARTUPPARAMS), NULL);

 if (hMapping) {

 psp = (STARTUPPARAMS *)

 MapViewOfFile(hMapping, FILE_MAP_WRITE,

 0, 0, 0);

 if (!psp) {

 CloseHandle(hMapping);

 hMapping = NULL;

 }

 }

 *phMapping = hMapping;

 return psp;

}

The CreateStartupParams
function creates a STARTUPPARAMS
structure in an inheritable

shared memory block.
First, we fill out a
 SECURITY_ATTRIBUTES structure so we can mark

the
handle as inheritable by child processes. Setting the
 lpSecurityDescriptor to NULL

http://msdn.microsoft.com/library/en-us/security/security/security_descriptors_for_new_objects.asp

3/5

means that we will
use the default security descriptor, which is fine for us.
We then create a

shared memory object of the appropriate size,
map it into memory, and return both the

handle and the
mapped address.

STARTUPPARAMS *GetStartupParams(LPSTR pszCmdLine, HANDLE *phMapping)

{

 STARTUPPARAMS *psp = NULL;

 LONGLONG llHandle;

 if (StrToInt64ExA(pszCmdLine, STIF_DEFAULT, &llHandle)) {

 *phMapping = (HANDLE)(INT_PTR)llHandle;

 psp = (STARTUPPARAMS *)

 MapViewOfFile(*phMapping, FILE_MAP_READ, 0, 0, 0);

 if (psp) {

 // Now that we've mapped it, do some validation

 MEMORY_BASIC_INFORMATION mbi;

 if (VirtualQuery(psp, &mbi, sizeof(mbi)) >= sizeof(mbi) &&

 mbi.State == MEM_COMMIT &&

 mbi.BaseAddress == psp &&

 mbi.RegionSize >= sizeof(STARTUPPARAMS)) {

 // Success!

 } else {

 // Memory block was invalid - toss it

 UnmapViewOfFile(psp);

 psp = NULL;

 }

 }

 }

 return psp;

}

The GetStartupParams
function is the counterpart to CreateStartupParams .
It parses a

handle from the command line and attempts to map a view.
If the handle isn’t a file mapping

handle, the call to
 MapViewOfFile will fail, so we get that part of the
parameter validation

for free.
We use VirtualQuery to validate the size of the memory
block. (We can’t use a

strict equality test since the value we
get back will be rounded up to the nearest page

multiple.)

void FreeStartupParams(STARTUPPARAMS *psp, HANDLE hMapping)

{

 UnmapViewOfFile(psp);

 CloseHandle(hMapping);

}

After we’re done with the startup parameters (either on the
creation side or the consumption

side), we need to free them
to avoid a memory leak.
That’s what FreeStartupParams is for.

4/5

void PassNumberViaSharedMemory(HANDLE hMapping)

{

 TCHAR szModule[MAX_PATH];

 TCHAR szCommand[MAX_PATH * 2];

 DWORD cch = GetModuleFileName(NULL, szModule, MAX_PATH);

 if (cch > 0 && cch < MAX_PATH &&

 SUCCEEDED(StringCchPrintf(szCommand, MAX_PATH * 2,

 TEXT("\"%s\" %I64d"), szModule,

 (INT64)(INT_PTR)hMapping))) {

 STARTUPINFO si = { sizeof(si) };

 PROCESS_INFORMATION pi;

 if (CreateProcess(szModule, szCommand, NULL, NULL,

 TRUE,

 0, NULL, NULL, &si, &pi)) {

 CloseHandle(pi.hProcess);

 CloseHandle(pi.hThread);

 }

 }

}

Most of the work here is just building the command line.
We run ourselves (using
the

GetModuleFileName(NULL)
trick), passing the numerical value of the handle on the

command
line, and passing TRUE to CreateProcess
to indicate that we want inheritable

handles to be inherited.
Note the extra quotation marks in case our program’s name contains

a space.

int CALLBACK

WinMain(HINSTANCE hinst, HINSTANCE hinstPrev,

 LPSTR pszCmdLine, int nShowCmd)

{

 HANDLE hMapping;

 STARTUPPARAMS *psp;

 if (pszCmdLine[0]) {

 psp = GetStartupParams(pszCmdLine, &hMapping);

 if (psp) {

 TCHAR sz[64];

 StringCchPrintf(sz, 64, TEXT("%d"), psp->iMagic);

 MessageBox(NULL, sz, TEXT("The Value"), MB_OK);

 FreeStartupParams(psp, hMapping);

 }

 } else {

 psp = CreateStartupParams(&hMapping);

 if (psp) {

 psp->iMagic = 42;

 PassNumberViaSharedMemory(hMapping);

 FreeStartupParams(psp, hMapping);

 }

 }

 return 0;

}

http://blogs.gotdotnet.com/raymondc/PermaLink.aspx/4bfc253c-a714-42f1-bdc5-db9deff3075f

5/5

At last we put it all together.
If we have a command line parameter, then this means that we

are the child process, so we convert it into a
 STARTUPPARAMS and display the number that

was
passed.
If we don’t have a command line parameter, then this means
that we are the

parent process, so we create a
 STARTUPPARAMS , stuff the magic number into it
(42, of

course), and pass it to the child process.

So there you have it: Passing a “large” (well, okay, small in
this example, but it could have

been megabytes if you wanted)
amount of data securely to a child process.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

