
1/2

December 9, 2003

Why you should never suspend a thread
devblogs.microsoft.com/oldnewthing/20031209-00

Raymond Chen

It’s almost as bad as terminating a thread.

Instead of just answering a question, I’m going
to ask you the questions and see if you can

come
up with the answers.

Consider the following program, in (gasp) C#:

using System.Threading;

using SC = System.Console;

class Program {

 public static void Main() {

 Thread t = new Thread(new ThreadStart(Program.worker));

 t.Start();

 SC.WriteLine("Press Enter to suspend");

 SC.ReadLine();

 t.Suspend();

 SC.WriteLine("Press Enter to resume");

 SC.ReadLine();

 t.Resume();

 }

 static void worker() {

 for (;;) SC.Write("{0}\r", System.DateTime.Now);

 }

}

When you run this program and hit Enter to suspend, the program hangs.
But if you change

the worker function to just “for(;;) {}” the program
runs fine.
Let’s see if we can figure out

why.

The worker thread spends nearly all its time calling System.Console.WriteLine,
so when you

call Thread.Suspend(), the worker thread is almost certainly
inside the

System.Console.WriteLine code.

Q: Is the System.Console.WriteLine method threadsafe?

https://devblogs.microsoft.com/oldnewthing/20031209-00/?p=41573

2/2

Okay, I’ll answer this one: Yes. I didn’t even have to look at any
documentation to figure this

out. This program calls it from two
different threads without any synchronization, so it had

better be
threadsafe or we would be in a lot of trouble already even before
we get around to

suspending the thread.

Q: How does one typically make an object threadsafe?

Q: What is the result of suspending a thread in the middle of a threadsafe
operation?

Q: What happens if – subsequently –
you try to access that same object (in this case,
the

console) from another thread?

These results are not specific to C#. The same logic applies
to Win32 or any other threading

model.
In Win32, the process heap
is a threadsafe object, and since it’s hard to do very much

in
Win32 at all without accessing the heap, suspending a thread
in Win32 has a very high

chance of deadlocking your process.

So why is there even a SuspendThread function in the first place?

Debuggers use it to freeze all the threads in a process while you
are debugging it. Debuggers

can also use it to freeze all but one
thread in a process, so you can focus on just one thread at

a time.
This doesn’t create deadlocks in the debugger since the debugger
is a separate

process.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

