
1/6

November 12, 2003

A different type of dialog procedure
devblogs.microsoft.com/oldnewthing/20031112-00

Raymond Chen

In the discussion following my entry about dialog procedure return
values, somebody

suggested an alternate dialog design where
you just call DefDlgProc to do default actions

(the same way you write window procedures and DefWindowProc)
rather than returning

TRUE/FALSE.

So let’s do that. In fact, we’re going to do it twice.
I’ll cover one method today and cover an

entirely different
method later this week. Each method consists of a simple kernel of
an idea;

the rest is just scaffolding to make the kernel work.

The first way uses a recursive call from the
dialog procedure back into
 DefDlgProc to

trigger the default behavior.
This technique requires that you have a flag that lets you detect

(and therefore break) the recursion.
Since you typically have instance data attached to your

dialog box
anyway, it’s not too hard to add another member to it.

The kernel
is to “subvert the recursive call”. DefDlgProc
calls your dialog procedure to see

what you want to do.
When you want to do the default action, just call
 DefDlgProc

recursively. The inner DefDlgProc
will call your dialog procedure to see if you want to

override the
default action. Detect this recursive call and return
FALSE (“do the default”).

The recursive DefDlgProc
will then perform the default action and
return its result. Now

you have the result of the default action,
and you can modify it or augment it before returning

that as
the result for
the dialog box procedure, back to the outer DefDlgProc
which returns

that value back as the final message result.

Here’s the flow diagram, for those who prefer pictures:

https://devblogs.microsoft.com/oldnewthing/20031112-00/?p=41863

2/6

Message delivered

-> DefDlgProc

 -> your dialog procedure

 decide what to do

 want to do the default action

 -> DefDlgProc

 -> your dialog procedure

 detect recursion

 <- return FALSE

 DefDlgProc sees FALSE

 performs default behavior

 <- returns result of default behavior

 you do other stuff (perhaps modify

 default behavior after it occurred)

 set DWLP_MSGRESULT to desired result

 <- return TRUE

 retrieve DWLP_MSGRESULT

<- return it as message result

Given this sketch, you should be able to write it up yourself.
Here’s what I came up with. I

call it a Wndproc-Like Dialog:

3/6

class WLDialogBox

{

public:

 virtual LRESULT WLDlgProc(

 HWND hdlg, UINT uMsg,

 WPARAM wParam, LPARAM lParam)

 {

 return DefDlgProcEx(hdlg, uMsg, wParam, lParam,

 &m_fRecursing);

 }

 INT_PTR DoModal(HINSTANCE hinst, LPCTSTR pszTemplate,

 HWND hwndParent)

 {

 m_fRecursing = FALSE;

 return DialogBoxParam(hinst, pszTemplate, hwndParent,

 s_DlgProc, (LPARAM)this);

 }

private:

 static INT_PTR CALLBACK s_DlgProc(

 HWND hdlg, UINT uMsg,

 WPARAM wParam, LPARAM lParam)

 {

 if (uMsg == WM_INITDIALOG) {

 SetWindowLongPtr(hdlg, DWLP_USER, lParam);

 }

 WLDialogBox *self = (WLDialogBox*)GetWindowLongPtr(

 hdlg, DWLP_USER);

 if (!self) {

 return FALSE;

 }

 CheckDefDlgRecursion(&self->m_fRecursing);

 return SetDlgMsgResult(hdlg, uMsg,

 self->WLDlgProc(

 hdlg, uMsg, wParam, lParam));

 }

private:

 BOOL m_fRecursing;

};

Let’s walk through this class.

The WLDlgProc method is virtual because we expect
derived classes to do custom actions in

their dialog procedure
that we invoke from our s_DlgProc .
The default implementation in

the base class
uses the DefDlgProcEx
macro from windowsx.h to do the dirty work.

That’s right, this technique has been published by Microsoft
since 1992. If you look at

DefDlgProcEx , it sets the
recursion flag to TRUE and then calls DefDlgProc ,
which

triggers the recursive call.

4/6

I could have had a separate WLDefDlgProc method which
calls DefDlgProcEx and have

WLDlgProc call
 WLDefDlgProc . (In fact, my first version did exactly that.)
But I decided

not to have a WLDefDlgProc to remove the
temptation to bypass the base class’s

WLDefDlgProc .
Instead, if you want default handling to take place, forward the
call to your

base class’s WLDefDlgProc .

The s_DlgProc method is the dialog procedure used for
all instances of Wndproc-Like

dialogs. It initializes itself in
the WM_INITDIALOG message so future messages can identify

which instance of the dialog is handling the message.
After short-circuiting messages that

arrive before the dialog box
has initialized, it uses the CheckDlgRecursion macro,
also

from windowsx.h . This macro checks the recursion
flag; if set, then it resets the flag and

just returns FALSE immediately.
This is what stops the recursion. Otherwise, it calls the

WLDlgProc method (which has probably been overriden in
a derived class), then sets the

dialog procedure return value and
returns.

The SetDlgMsgResult macro also comes from
 windowsx.h : It stores the return value

into the
 DWLP_MSGRESULT and returns TRUE. Well, unless the
message is one of the special

exceptions, in which case it returns
the value directly. Note to 64-bit developers: There
is

a bug in this macro as currently written. The expression
 (BOOL)(result) should be

changed to
 (INT_PTR)(result) so that the upper 32 bits of the return
value is not

truncated.

The last method is DoModal , which initializes the
recursion flag and kicks off the dialog box.

Here’s a sample program that illustrates the use of this class:

5/6

class SampleWLDlg : public WLDialogBox

{

 LRESULT WLDlgProc(HWND hdlg, UINT uMsg,

 WPARAM wParam, LPARAM lParam)

 {

 switch (uMsg) {

 HANDLE_MSG(hdlg, WM_COMMAND, OnCommand);

 HANDLE_MSG(hdlg, WM_SETCURSOR, OnSetCursor);

 }

 return __super::WLDlgProc(hdlg, uMsg, wParam, lParam);

 };

 void OnCommand(HWND hdlg, int id,

 HWND hwndCtl, UINT codeNotify)

 {

 switch (id) {

 case IDCANCEL:

 MessageBox(hdlg, TEXT("Bye"), TEXT("Title"), MB_OK);

 EndDialog(hdlg, 1);

 break;

 }

 }

 BOOL OnSetCursor(HWND hdlg, HWND hwndCursor,

 UINT codeHitTest, UINT msg)

 {

 if (codeHitTest == HTCAPTION) {

 SetCursor(LoadCursor(NULL, IDC_SIZEALL));

 return TRUE;

 }

 return FORWARD_WM_SETCURSOR(hdlg, hwndCursor,

 codeHitTest, msg, __super::WLDlgProc);

 }

};
int WINAPI WinMain(HINSTANCE hinst, HINSTANCE hinstPrev,

 LPSTR lpCmdLine, int nShowCmd)

{

 SampleWLDlg dlg;

 dlg.DoModal(hinst, MAKEINTRESOURCE(1), NULL);

 return 0;

}

1 DIALOGEX DISCARDABLE 0, 0, 200,200

STYLE DS_SHELLFONT | WS_POPUP | WS_VISIBLE | WS_CAPTION | WS_SYSMENU

CAPTION "sample"

FONT 8, "MS Shell Dlg"

BEGIN

DEFPUSHBUTTON "&Bye",IDCANCEL,"Button",WS_TABSTOP,7,4,50,14

END

To illustrate a custom return value, I override the WM_SETCURSOR
message to display a

custom cursor when the mouse is over the caption area.
It’s not exciting, but it gets the point

across.

6/6

Observe that in two places, we invoked
the default handler by calling

__super::WLDlgProc .
 __super is a Visual C++ extension that resolves to
the base class

of your derived class. This is quite handy since it
saves the reader the trouble of figure out “So

which level in the class
hierarchy are we forwarding this call to?” If you wanted to forward
a

call to your grandparent class, you would use
 __super::__super::WLDlgProc .

If your compiler doesn’t support __super , you can fake it
by adding this line to the

definition of SampleWLDlg :

 typedef WLDialogBox super;

and using super::WLDlgProc without the underscores.
In fact, this is the technique I use

because I was doing it
before the VC folks added the __super keyword and
now it’s just

habit.

Exercise: Does the m_fRecursing member
really have to be per-instance? Can it be

global?

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

