
1/2

October 23, 2003

Writing a sort comparison function
devblogs.microsoft.com/oldnewthing/20031023-00

Raymond Chen

When you are writing a sort comparison function (say, to be passed to

ListView_SortItems or *gasp* to be used as
an IComparer), your comparison function

needs to follow
these rules:

Reflexivity:
 Compare(a, a) = 0 .

Anti-Symmetry:
 Compare(a, b) has the opposite sign of
 Compare(b, a) , where

0 is considered to
be its own opposite.

Transitivity:
If Compare(a, b) ≤ 0
and Compare(b, c) ≤ 0 ,
then Compare(a,

c) ≤ 0 .

Here are some logical consequences of these rules (all easily proved).
The first two are

obvious, but the third may be a surprise.

Transitivity of equality:
If Compare(a, b) = 0
and Compare(b, c) = 0 ,
then

Compare(a, c) = 0 .

Transitivity of inequality:
If Compare(a, b) < 0
and Compare(b, c) < 0 ,

then Compare(a, c) < 0 .

Substitution: If
 Compare(a, b) = 0 , then
 Compare(a, c) has the same sign as

Compare(b, c) .

Of the original three rules,
the first two are hard to get wrong, but the third rule is
often hard

to get right if you try to be clever in your comparison
function.

For one thing, these rules require that you implement a total order.
If you merely have a

partial order, you must extend your partial
order to a total order in a consistent manner.

I saw somebody get into trouble when they tried to implement their
comparison function on

a set of tasks, where some tasks have other
tasks as prerequisites. The comparison function

implemented
the following algorithm:

If a is a prerequisite of b
(possibly through a chain of intermediate tasks),
then a <

b .

https://devblogs.microsoft.com/oldnewthing/20031023-00/?p=42063

2/2

If b is a prerequisite of a
(again, possibly through a chain of intermediate tasks),

then a > b .

Otherwise, a = b .
“Neither task is a prerequisite of the other, so I don’t care what

order they are in.”

Sounds great. Then you can sort with this comparison function and you
get the tasks listed in

some order such that all tasks come after
their prerequisites.

Except that it doesn’t work. Trying to sort with this comparison
function results in all the

tasks being jumbled together
with apparently no regard for which tasks are prerequisites of

which.
What went wrong?

Consider this dependency diagram:

 a ----> b

 c

Task “a” is a prerequisite for “b”, and task “c” is unrelated to both
of them. If you used the

above comparison function, it would declare
that “a = c” and “b = c” (since “c” is unrelated to

“a” or “b”),
which in turn implies by transitivity that “a = b”, which contradicts
“a < b”, since

“a” is a prerequisite for “b”.
If your comparison function is inconsistent, you will get garbled

results.

Moral of the story: When you write a comparison function, you really
have to know which

items are less than which other items.
Don’t just declare two items “equal” because you don’t

know which order
they should be in.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

