Scrollbars part 9 — Maintaining the metaphor

B” devblogs.microsoft.com/oldnewthing/20030909-00
September 9, 2003

Raymond Chen

When a document is displayed with scrollbars, the metaphor is that the window is a viewport
onto the entire document, only a portion of which is visible at the moment. The default
behavior of a resize, however, is to maintain the origin at the upper left corner of the client
area, which breaks the metaphor when the window is resized at the top or left edge.

Suppose, for example, that the top line in the document is line ten. If the user grabs the top
edge of the window and resizes upwards by one line (in an attempt to view line nine), the
default behavior is to maintain the origin, which keeps line ten at the top of the window. The
visual effect is that the window has scrolled upwards one line, subverting the user’s attempt
to view line nine.

This is one of the subtleties of scrollbars which users rarely consciously notice, but when it
doesn’t work, it gives the impression that computers never quite get things right.

Let’s fix our scrolling behavior to maintain the viewport metaphor. We'll do it in several
steps. First, we’ll over-preserve the metaphor. Add the following new section to
OnWindowPosChanging:

BOOL OnWindowPosChanging (HWND hwnd, LPWINDOWPOS pwp)
{
if (!(pwp->flags & SWP_NOMOVE)) {
RECT rc;
GetWindowRect(hwnd, &rc);
int dy = pwp->y - rc.top;
ScrollDelta(hwnd, dy / g_cyLine);

if (!(pwp->flags & SWP_NOSIZE)) {
RECT rc = { 0, 0@, pwp->CXx, pwp->cy };
AdjustSizeRectangle(hwnd, WMSZ_BOTTOM, &rc);
pwp->cy = rc.bottom;

}

return 9;


https://devblogs.microsoft.com/oldnewthing/20030909-00/?p=42603

Now run the program, move the scrollbar thumb to somewhere in the middle, and resize the
top edge of the window upwards and downwards. Notice that the existing lines on the screen
don’t move; all that resizing the top of the window does is expose or hide lines at the top. You
already experience this behavior when resizing the bottom edge; now you get it at the top,
too.

There are several things wrong with this code, however.

First, observe that it is trying too hard. Grab the window and move it across the screen.
Observe that it still tries to preserve the aperture metaphor. (Even worse: It depends on how
fast you move your mouse. The effect is more noticeable if you disable “Show window
contents while dragging”.) This is probably undesirable.

Second, notice all the horrible flicker.
We’ll address these two problems in turn.

Fixing the overzealousness is the easier problem. First, we do the work only if the window is
simultaneously moving and sizing. This prevents simple moving from triggering the
metaphor behavior.

BOOL OnWindowPosChanging(HWND hwnd, LPWINDOWPOS pwp)

{
if (!(pwp->flags & SWP_NOSIZE)) {

RECT rc = { @, 0@, pwp->CX, pwp->cy };
AdjustSizeRectangle(hwnd, WMSZ_BOTTOM, &rc);
pwp->cy = rc.bottom;

if (!(pwp->flags & SWP_NOMOVE)) {
RECT rc;
GetWindowRect(hwnd, &rc);
int dy = pwp->y - rc.top;
ScrollDelta(hwnd, dy / g cylLine);

}

return 9;

}

Now if you grab the window and move it around, we don’t do the metaphor thing because the
size didn’t change.



However, if you maximize a window, the metaphor code kicks in. But that’s easy to fix: Only
do the metaphor if the top edge changes and the bottom edge doesn’t.

BOOL OnWindowPosChanging(HWND hwnd, LPWINDOWPOS pwp)

{
if (!(pwp->flags & SWP_NOSIZE)) {

RECT rc = { @, ©, pwp->CX, pwp->Cy };
AdjustSizeRectangle(hwnd, WMSZ BOTTOM, &rc);
pwp->cy = rc.bottom;

if (!(pwp->flags & SWP_NOMOVE)) {
RECT rc;
GetWindowRect(hwnd, &rc);
if (rc.bottom == pwp->y + pwp->cy) {
int dy = pwp->y - rc.top;
ScrollDelta(hwnd, dy / g cylLine);

}

return 9;

}

We still have a problem with the flicker, though. Before we can fix that, we will need a deeper
understanding of the WM _NCCALCSIZE message.

Raymond Chen

Follow



https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

