
DISASSEMBLERS WITHIN VIRUSES
vx-underground.org archive // z0mbie

(x) 2001

xlated in 2002

The more different features (possibilities) our virus has, and the more there are relations
and reactions between these features and external environments, the more our virus is alive,
and the more complex it is. Here comes to mind such technologies as modularity, portable
viruses written in own emulated scripts, worms, distributed networks, and other complex stuff.

In this connexion lots of useful tools, toolkits, include files, articles and libraries, oriented to
help others in coding common stuff, are required today.

One of such things is disassembler. It can be used everywhere, and wherever it is used,
especially in viruses, it gives good effect -- mostly all good infection- and morphing- related
technologies are based on disassembling.

Code analysis and parsing it into single instructions can be done by means of sequential
calls to length disassembler. Such disassembler is used in permutation and code integration.

The trivial usage of length-disassembler is hooking functions in memory or, while infecting a
file, inserting virus call some commands after the entrypoint.

The code I'm considering is 32-bit x86 binary code. But, the length-disassembler shown
here can be easily changed to work with 16-bit.

Now, what will we disassemble, i.e. which kind of information we want to extract from
instruction flow. Is only length of instructions enough, or we also want to know something
about prefixes, operation code, arguments etc.

Some years ago, in 1997, i didn't knew that universal disassembler is very useful thing, and in
ZCME there where the following commands:

inc cx ; 5

cmp al​, ​0EAh
je @@exit

cmp ax​, ​3E80h ; cmp [xxxx], yy

je @@exit

inc cx ; 6

...

@@exit: ; return cx

As you can see, this is disassembler for only instructions, which were present in the ZCME
virus. Year after i changed the virus, and so, i had to change disassembler too. And then
once again, and again, until universal length disassembler (LDE) were written, and then there
appeared different LDE modifications for different tasks.

In the example above i only need to call the length-disassembler, and then check current
instruction opcode for being EB,E8,E9,7x,0F 8x, and etc., while in more advanced tasks i
need to know much more information about instructions -- for example, knowing register usage,
it is possible to insert own instructions into the middle of the program's code:

mov​ ​eax​, [​ebx​+​4​]

…

mov eax​, vir_1
add vir_2, ​eax
mov eax​, [​ebx​+​4​]

Also, while permutation, knowing registers and stack usage is necessary to mix instructions
between each other.

In other words, the more advanced our disassembler is, the more our knowledge about
instructions is, and as such our imagination is less limited by our possibilities, and the more
good things can be done.

In the end of this article there is DISASM.CPP, the source of instruction parser.

It is called as following;

int​ disasm_ok = disasm(&buf[ip]);

As a result, 1 is returned if instruction is known, and 0 if some error has occurred.

In case of successful disassembly, disasm function will parse given instruction into the
following parts:

DWORD disasm_len; -- total instruction length in bytes, ​0​ ​if​ error

DWORD disasm_flag; -- bitmask, flags, see C_xxx

 C_66 -- there is ​66​-prefix
 C_67 -- there is ​67​-prefix
 C_LOCK -- there is LOCK-prefix (F0)

 C_REP -- there is REPZ- ​or​ REPNZ-prefix, exact value in disasm_rep
 C_SEG -- there is seg-prefix, exact value in disasm_seg

 C_OPCODE2 -- there is ​2​nd ​opcode​ (​1​st one is ​0x0F​), value in
disasm_opcode2

 C_MODRM -- there is modrm, value in disasm_modrm

 C_SIB -- there is sib, value in disasm_sib

DWORD disasm_memsize; -- length of the memory address,

 ​if​ used in instruction, value in disasm_mem
BYTE disasm_mem[​8​]; -- memory ​address​ (length in disasm_memsize)

DWORD disasm_datasize; -- length of data, used in ​instructions​ (in
bytes),

 value in disasm_data

BYTE disasm_data[8]; -- data (length in disasm_datasize)

BYTE disasm_seg; -- C_SEG: seg-prefix (CS DS ES SS FS GS)

BYTE disasm_rep; -- C_REP: rep-prefix REPZ/REPNZ

BYTE disasm_opcode; -- opcode itself, ​not​ depending on flags
BYTE disasm_opcode2; -- C_OPCODE2: ​2​nd ​opcode​ (​if​ ​1​st one is ​0x0F​)
BYTE disasm_modrm; -- C_MODRM: value of modxxxrm

BYTE disasm_sib; -- C_SIB: value of ​sib​ (scale-index-base)

So, assembling instruction from all the stuff listed above, looks as following:

if​ (disasm_flag & C_66) *outptr++ = ​0x66​;
if​ (disasm_flag & C_67) *outptr++ = ​0x67​;
if​ (disasm_flag & C_LOCK) *outptr++ = ​0xF0​;
if​ (disasm_flag & C_REP) *outptr++ = disasm_rep;

if​ (disasm_flag & C_SEG) *outptr++ = disasm_seg;

*outptr++ = disasm_opcode;

if​ (disasm_flag & C_OPCODE2) *outptr++ = disasm_opcode2;
if​ (disasm_flag & C_MODRM) *outptr++ = disasm_modrm;
if​ (disasm_flag & C_SIB) *outptr++ = disasm_sib;

for​ (DWORD i=​0​; i<disasm_memsize; i++) *outptr++ = disasm_mem[i];
for​ (DWORD i=​0​; i<disasm_datasize; i++) *outptr++ = disasm_data[i];

Source code can be found here

https://vxug.fakedoma.in/archive/z0mbie/Disassembler.cpp

