Code Transformation and Finite
Automatons

vx-underground.org archive // zOmbie

There are such interesting objects as finite automata. This automaton has some internal states
(just such variables), so when they change, some action is performed. So, there is a set of
actions, and each action is performed when some automaton's state is changed to some
specified value, and there is a matrix(es), which defines state changes.

Here is a simple task: to convert strings like "1,3-7,9-100,105" into binary form. Let's consider
implementation, based on finite automata. Lets introduce single internal state S, and its values
will be:

0 - before first (before '-') number

1 - inside of first number

2 - before second (after '-') number
3 - inside of second number

4 - end of string (after last char)

5 - syntax error

so, program will look as follows:

C - pointer to current character
*c - current character's value
A -action #

action: situation:

l=*c-'0"

new pair, got NOT a digit
store(l,1)
1=1*10+*c-'0" adding new digit to first number

two numbers, 1st one ends with '-'
store(l,1)

unavailable char within first number
h=*c-'0"

two numbers, got NOT a digit after '-'

store(l,h)
h=h*10+*c-'0"
store(l,h)

unavailable char within first number
exit()
error()

So, matrix which describes state changes and corresponding actions, will look as follows:

-3
“
7
£
3
£
b |
£

LN o L B i

Simple source in C will look as follows:

int S = 0;
char*c = "1,3-7,9-100,105";

for(;;)
{
switch(S)
{

case
if (isdigit(*c)) { S=1; l=*c-'@'; } else

{ s=5; s
break;
case
if (= ", S=0; store(1l,1); } else
if (; 1=1*10+*c-'9'; } else
if (tet H } else
if (} else

5 s

break;
case
if (isdigit(*c)) { S=3; h=*c-'@’; } else

{ S=5; 3
break;
case
if ((*c == "',"') {
if (isdigit(*c))
i e =) {

S=0; store(l,h); } else

{ S=3; h=h*10+*c-'0"'; } else
S=4; store(l,h); } else
{ s=5; s
break;
case
exit();
break;
case
error();
break;

Now, if we will make source listed above a bit more low-level, and remove state-variables, we
will get the following:

isdigit(*c) l=*c-'0"; c++; goto x1; } else
c++; goto x5; };

¢ == ", store(1l,1); c++; goto x@; } else
isdigit(*c) 1=1*10+*c-'0"'; c++; goto x1; } else
Xc == '-' goto x2; } else
Vg == store(1l,1); c++; goto x4; } else

goto x5; };

isdigit(*c) h=*c-'0"; c++; goto x3; } else
goto x5; };

Yo = V" store(l,h); c++; goto x0; } else
isdigit(*c) h=h*10+*c-'0"'; c++; goto x3; } else
store(l,h); c++; goto x4; } else
goto x5; };

Now, if somebody will try to reverse this code into classical C constructions, such as for, while,
if-else, there will remain many redundant goto(jmp) commands, and if the number of them wiill
be big enough, it will be very hard to understand what this code does.

Execution graphs for such code will differ from execution graphs for classical code by a larger
amount of crossed links.

To reverse this code into its source form, you should select constant code blocks, enum them,
then introduce states, and only after that it will be possible to continue understanding this code.
But this looks as a hard task, because while optimization, original code blocks can be divided
into parts, mixed and merged.

Now, let's consider a bit more complicated source:

for(;;

{

int A;

switch(S)

{

switch(T[*c]
{

case 1: { S= ; break;
default: { S=5; ; break;
}

break;

.

switch(T[*c]

{
}; break;
}; break;
break;
}; break;
break;

}

break;

.

switch(T[*c]

{

case 1: { S=3; A=4; }; break;
default: { S= }; break;

}

break;

switch(T[*c]

{

case 2: ; A=5; }; break;
case 1: ; A=6; }; break;
case 4: ; A=5; }; break;
default: ; }; break;

}

break;

A=17,
break;

A = 8;
break;
}
switch(A)
{
l=*c-'0"; c++; }; break;
store(l,1); c++; }; break;
1=1*10+*c-'0"'; c++; }; break;
h=*c-'0"; c++; }; break;
store(l,h); c++; }; break;
h=h*10+*c-'0"'; c++; }; break;
exit(); }; break;
error(); }; break;

As you can see, this sample is written without comparison commands, and conditional jmps;
everything is based on switches which is equivalent to tables.

In such form our program is a cycle, consisting of three parts: in first part, external data is
analyzed (here it is string of chars), and converted into some internal variables (here it is shown
indirectly using matrix T[]), then state changes are calculated (here it is first switch), and at the
same time action # is calculated (here it is once again the first switch and variable A), and in the
third part, some action is performed (here it is 2nd switch).

And here is interesting moment: now, instead of program, we have action #'s (indexes of code
blocks), and sequence of these indexes is the core of our program.

Now let's consider the following question: how next action # is generated. It is generated
depending on current automaton state values and some other data.

This means that we can use tables, which will tell us which state is next, and which action
should be executed on such state change.

Such tables can be converted into a function.

Requirements for this function are simple: argument of this function is a number, which contains
current state values, and probably some identifier, and result of this function is a number,
which contains next state values, probably another identifier, and action index.

As such, our program will just iterate the following cycle:
1. Call main function, passing state values as argument;

then extract new state values and action index from the result.
2. Execute action by given index,

which will probably change state values too.

Let's consider the following sample: States are register values, from EAX to EDI, and action
number is an instruction value, padded with NOP's or RETN.

Then, ALL main parts of our program will be a ...function. Lets initially pass to function:

EAX =2, ECX = 3, other regs = 0, command is NOP.
So, argument will be:

C3960

<--EDI->...<--ECX-><--EAX-><--cmd->

Lets function result then will be:

. C341
<--EDI->...<--ECX-><--EAX-><--cmd->

which means the same state values, and command = inc ecx. So, we execute given command,
and ecx state is changed, and then we pass into a function this argument:

€341

<--EDI->...<--ECX-><--EAX-><--cmd->

and so on.

For sure, argument and result values can also contain unique instruction id, in case when some
opcodes are duplicated.

Interesting fact is that our function can indirectly encode many instructions, such as jumps and
arithmetic commands. The only commands can not be encoded are commands modifying
memory, working with other external devices and api-calls.

So, the question appears: how to build such a function.
There can be many variants, from simple tables up to neural networks.

In the sample given above, it is impossible, for sure, because there are many registers, and they
can have many values, so the function will be so big so it will not fit into existing computers.

So, let's consider a simplified sample.

Argument of function is just a current state number. Result is WORD. High result byte is the first
opcode byte. Low result byte is state number, and low state bit is value of ZF flag. As such, we
can indirectly encode JZ/JNZ commands. Also, the state number is equal to the action index.
Program will just encrypt/decrypt some asciiz text string.

Source:

ACTIONS: STATES/ACTIONS AND STATE CHANGES:
NZ ZR
XOrmsq: ~1 ~-> B8 15T BYTE:
Xor edx, edx g8 --= 02 @81 az 33
cyclel: lea esi, msg 82 --> 94 03 a4 BE
mow ecx, msg_size 84 --> B6 065 86 B9
cycle2: xor [esi], dh g6 --> 08 A7 B8 30
sub dh, dl 68 --» 10 09 1@ 2A
inc esi 18 --» 12 11 12 46
dec ecx 12 --> 06 13 14 49
jnz cycle2
inc dl 14 16 15 16 FE
cmp dlz rE 16 62 17 18 8o
jne cyclel
retn 18

Here is a function, defined by arguments and results:
Argument Result

f{ -1) Ax3360
f{oxea) BxBE@2
f(BxB81) = AxBEB2
f{0x02) BxB994
f{ox03) 0xB994
f(Bx04) = Bx3006
f(BxB5) = Bx3006
f(BxB6) = Ox2A08
f{0x07) Bx2A08
f{Oxe8) Bx4604
f(OxB9) = Ox460A
f{0x0A) Bx498C
f{Ox0B) Bx498C
f(BxBC) = Bx3006
f(BxBD) = BxFEBE
f(BxBE) = Gx8610
f{OxaF) Bx8010
f{ox1a) BxBE@2
f(Bx11) = Ax0612

Now lets generate a function.
Let it be polynomial.

FIX) = SUMi{ C[i]*X"1), i=0..18

Now let's generate a function. Let it be polynomial.

F(X) = SUMi(C[i]*X*i), i=

Here X is a function argument, which, as we decided, is the current state, and the function result

contains the next state and its first opcode byte. Simple program to calculate coefficients is
here: see (1). So, now we have everything to implement function: Here it is:

float calc(float X)

{
float y = 0;
for(int j=0; j<N; j++)
y += pow(X,3) * C[J];

return y;

Or, in more nice form:

dword ptr [esp+4*4]
N

ecx

edx, C_table

st(0)
tbyte ptr [edx]

st(2),st(0)

st(@),st(2)
edx,

_cl
dword ptr [esp+4*4]
dword ptr [esp+4*4]

dt
dt
dt
dt
dt
dt
dt
dt
dt
dt
dt
dt

Since first opcode byte is encoded within high byte of function result,
it will be defined in our program as ?:

msg 'Hello world!"’,

msg_size $-msg

Xormsg

offset msg

offset msg

MessageBoxA

Xormsg

offset msg

offset msg

MessageBoxA

ExitProcess

go_next_state

bl,
quit

eax ecx
cl,
s
eax, jtab[ebx*4]
[eax], cl
ecx eax

jtab[ebx*4]

dword

s00,s01
s02,s03
s04,s05
s06,s07
s08,s09
s10,s11
sl12,s13
sl1l4,s15
s16,s17

>

offset msg
cycle

?
msg_size
cycle

Now, to understate the logic of this compiled program, you should calculate all function results
for all state values, then build a table of state changes, and insert JZ/JNZ into corresponding
program places. After that, if the program is NOT builded using the method shown in the 1st
part of this article, i.e. not based on finite automaton conception, it will be possible to reverse it
into classical C constructions, such as if, for, while.

Now, a bit of theory.

All these code transformations can be applied to mostly all blocks of existing code, i.e. any
linear code can be converted into finite automaton, and then the state change table can be
converted into a function.

Let's assume that the variable state of automaton's state is not ZF flag, as it shows above, but
AL register value. This means that to extract all information encoded in our function, it is
required to iterate 256 variants. If this would be an AX register, then, for example on checking
two first bytes of some file for MZ sign, the current state will be changed into one state in 65534
cases, and into another state in 2 cases. The bigger argument size is, the more difficult it is to
iterate it; and in some cases some state changes will be lost, and part of code, which, for
example, follows MZ-check will not be extracted.

Ideally, such a function is a black box, which has some value on input, and outputs some other
value, but extracting all the information is impossible. Well, enough words have been said, and

i'll go drink some beer, while you will think about all that crap. | hope it will help you somewhere.

Appendix (1) - program to calculate polynomial coefficients.

int N =

float X[
float Y[

float C[1;

float calc(float X)
{

float y = 0;

for(int j=0; j<N; j++)
y += pow(X,3) * C[];
return y;

void init()
{
float* Z = new float[N*(N+1)];

assert(Z);

for(int y=0; y<N; y++)
{

for(int x=0; Xx<N; X++)
Zyx(y,x) = pow(X[y], x);

Zyx(y,N) = Y[y];
}

for(int n=0; n<N-1; n++)
for(int y=n+1; y<N; y++)
{

float t = Zyx(y,n) / Zyx(n,n);
for(int x=0; x<=N; Xx++)
Zyx(y,x) -= Zyx(n,x) * t;

for(int n=N-1; n>»=0; n--)

{
float s = 0;

for(int t=n+1; t<=N-1; t++)
s += Zyx(n,t) * C[t];

C[n] = (Zyx(n,N) - s) / Zyx(n,n);

delete Z;

for(int i=0; i<N; i++)
assert(abs(calc(X[i]) - Y[i]) <

void main()

{

init();

for(int n=0; n<N; n++)
printf("f(%5.2LF) (%02X) = %5.2Lf (%04X)\n", X[n],

(int)ceil(X[n]), Y[n], (int)ceil(Y[n]));

printf("f(X) = SUMi(C[i]*X*i), i=0..%i\n", N-1);

for(int n=0; n<N; n++)
printf("dt %30.19Le ; C[%2i]\n", C[n], n);

