
AUTOMATED REVERSE
ENGINEERING: MISTFALL ENGINE

vx-underground.org archive // z0mbie

(x) 2000 Z0MBiE

xlated from russian in 2001

Our efforts are directed to develop such a method of executable program modification, that
finding changes will require a maximal amount of time. Modification means addition of the viral
code to some specified program, given in the PE format. It is obvious that the main viral body
should be encrypted, and metamorphic (generated) virus decryptor should be integrated with
the program's code.

Hence, our task is divided into 3 parts, or 3 global questions: WHAT?, WHERE? and HOW?

WHAT? - is a question about instructions, those will be inserted into a modifying program. It is
explained in the article about metamorphism and shown in the CODEGEN metamorphic engine.

WHERE? - is a question of finding places in the modifying program, our instructions should be
inserted into. This is a simple task; the engine's caller will resolve it in different ways. This
article shows HOW to insert our own instruction between two arbitrary instructions of the
modifying program. In other words, how to decompile, modify and compile the whole program.

THEORY

So, the task is to insert my own instructions between PE file's ones. But, because instructions
are linked between each other, changing instructions involves change of links. But change of
links involves change of other instructions, and so on, until a significant part of code will be
changed.

For example: when inserting some instruction into a block of code, offsets of all the
instructions coming after insertion are increased. This means that mostly all offsets - both
relative and absolute, should be fixed. While fixing relative offsets, some jxx can grow, that
means that all this shit should be repeated from the start.

As you can see, there are two kinds of offsets: absolute (offsets tself) and relative (jmp/call
arguments). And we should find all these offsets. Absolute offsets may be found by means of
analyzing PE structure, including fixup table. Finding relative offsets requires partial
disassembly. Hence, we must disassemble file into some easy-modifiable substance,
change this substance, and assemble the file back.

Algorithms will be formalized as an universal engine, working with PE files.

 So, task is divided into 5 general steps:

1. Load PE file into virtual addresses; allocate flag table (DWORD for each byte), and
initialize it with special PE structure - related bits; in other words, perform initial PE
structure analysis.

2. Disassemble file (instruction by instruction), at the same time filling the flag table with
new information about instruction offsets. At this step we can not make a mistake, i.e.
to recognize code as data or vise versa, because such fault is fatal; so, dual
situations should be excluded, and some files may not be processed at all.

3. Convert all known information into a list of: instructions, datablocks, labels and
pointers. I.e. to make our information a bit more high-level, a bit nearer to source.
Such a list is an easy-modifiable substance we were speaking about; it is generated
because of easy manipulation with its elements.

4. Call (external relative to engine), which will modify the instruction list; for example
insert additional instructions or remove existing ones.

5. Assemble file back: recalculate all offsets; fix PE structure; rebuild fixup table and so
on.

DISASSEMBLING PROBLEMS

Main problem, of course, is disassembling. We have no such resources, as IDA, for example,
- neither memory, neither time, nor signatures; moreover, our virus is limited to some kilobytes.
And the main disassembling problem is duality of some labels: they can precede both code
and data. I.e. If we have some data fixup that points to some label, and there is no code
instruction pointing to the same label, then we can not correctly decide if this label precedes
code or data. Such mis recognizing causes the following: code, interpreted as data, will not
be fixed, and will fail the program when executed, commonly on such instruction as jmp, jxx or
call. Vise versa, incorrectly fixed data (i.e. data interpreted as code) will with high probability
cause fault too. This means that we must always correctly distinguish code and data. Some
library functions may be found by signatures, but we can not insert signature base into the
virus; also, jmp table-analysis can help, but only partially.

We can work with only special easy-decompilable files, containing only code in the CODE
section, but such files are a real rarity. So, we will reduce the number of processing files
(exclude packed ones and etc.), improve our disassembler as much as possible, and hope for
luck.

IMPLEMENTATION

Really, there are much more little steps we should perform; and each step has an influence
on the result. Here is a complete list of steps required for PE file reversing:

1. Check if the given PE file is valid; if the fixup table is present & etc.
2. Allocate memory for virtual program image and for flag table
3. Load into virtual addresses:

a. Dos stub & PE header
b. Sections

4. Analyze PE header; process pointers; mark physical / virtual start/end of each section &
etc.

5. Process imports
6. Process exports
7. Process fixups
8. Process resources
9. Search for signatures (such as push ebp/mov ebp, esp) and mark 'em as

for-next-analysis
10. Mark entry point
11. Disassemble file, instruction by instruction.
12. Algorithm is described in the article about permutation, but there are some differences:

when there are no more bytes marked as for-next-analysis, we must search for
labels-pointed-by-data-fixups, and check if they precedes code instructions. (see below)

a. Build list of opcodes, labels, pointers & etc.
b. Note, that such list will contain zero-length pointers (labels), i.e.transfer is

performed to a higher level of abstraction, nearer to source.After converting linear
arrays into list, linear arrays (memory & flag table) may be deallocated.

13. Modify list; while debugging, I was inserting NOPs between instructions.
14. Recalculate new virtual/physical addresses for each list entry
15. Recalculate fixup table
16. Recalculate pointers (i.e. rva's, fixups & relative arguments of the conditional jmps); if

some jmps are grown,repeat from recalculating virtual addresses.
a. Note, that here possible some iterations, it is normal.

17. Assemble list (collect all stuff into single file)
18. Write file to disk
19. Copy overlay, if present
20. Recalculate checksum, if non-zero

Phrases, such as "analyzing PE header" or "process imports" means that we analyze these
structures and marking labels, pointers and other special objects in the flag table with special
bits. For example byte at the pe_header+28h (28h=EntryPointRva) will be marked as
FLAG_DWORD | FLAG_RVA, and byte it points to will be marked as FLAG_LABEL |
FLAG_CREF.

Which special objects will be present in the instruction list?

1. Label, i.e. zero-length substance pointed by RVAs and FIXUPs.
2. RVA, or DWORD pointing to some label.
3. FIXUP, or DWORD, same as RVA, but increased by IMAGEBASE, requires to be

inserted into the fixup table on the final steps.
4. So-called DELTA, or difference between virtual addresses of two labels.
5. instruction
6. Data Block

Now, about distinguishing code and data when only the existing reference is data-reference.
Algorithm: take instruction by instruction; check if it is not 00 00, FF FF, F4 (hlt), CD (int), and
so on -- i.e. fail if such instruction is never present in the standard PE file. Also fail, if one of the
middle bytes of the instruction is marked as label, data, or other special object. Also, if the
instruction is jmp,call,jxx,jecxz and so on, then it should not point into the middle of other
instructions or to data. Analysis is repeated, until marked-as-code instruction, RET or JMP is
found.

But, there are other kinds of dual situations. You can think that such an object as a label can
not exist in the middle of some instruction, generated by the HLL compiler. But it can. Let's
examine typical situation:

As you can see, 100050F0-address, that is XREF-ed by (1), really is part of the instruction
(2). It's not so hard to understand why it is so. As a result, we can not decide, if (2) is code
or data. I.e. it is impossible to determine if (10050F0 == 100050F4 - 4) or (10050F0 ==
100050EC + 4). So, pointer at (1) can not be fixed and file can not be processed.

Or, another one example:

And, in addition, another bad thing: parts of 16-bit code, inserted into 32-bit applications, such
as antiviruses, formatters and so on.

The ENGINE
Though, it works. Engine is called MISTFALL, there is G.Martin's story named "With morning
comes Mistfall".

Engine is written in Borland C++, but without classes or other shit. Main engine() subroutine
with fucking lots of parameters comes first, followed by some internal additional subroutines.
All this stuff is called kernel, and it is located in the engine.cpp & .hpp; code and constants
correspondingly. Kernel calls a so-called user's mutator (mutate.cpp), which must be written
by the engine's user. Mutator works only with an instruction list. List entries describe labels,
opcodes, data blocks and so on. Moreover, all the engine interface technology is taken from
the RPME engine.
The only difference is that RPME works with blocks of viral code, and MISTFALL works with
PE files.

As a result, simplest file infection is the following:

1. Find any two non-jmp instructions; insert JMP after first instruction
 to the second one; insert encrypted viral body after JMP.

2. The same for decryptor.
3. The same for commands calling the decryptor.

This was only one of lots of possible variants; the more such methods we will use, the harder it
will be to analyze the virus

USAGE
Engine uses lots of memory. It can fail on an incorrect file; and on a normal one too.
Memory allocation, same as in RPME, is provided by the engine's caller. Before calling the
engine, you must allocate about 32 MB of memory, and write your own malloc() subroutine
which will provide engine pointers to little parts of this big block. It is just a kind of heap.
Engine's allocation strategy is specific: it will only allocate memory and never deallocate. But, it's
ok because the same big memory block will be used for each file. Really, engine uses
(17*SizeOfImage) bytes of memory for linear arrays and 40 bytes of memory for each list entry.
Engine's code is permutable, i.e. it satisfies most of the demands described in the "Demands to
engines" article. Engine can work in ring-0, but, because of lots of required memory &
time, don't call it there. Time used by the engine is unpredictable; minimal time for
processing one file is some minutes in realtime priority.

Obviously, that such engine cant be invoked on system events, such as openfile. You should
work with file queue, passing file by file to the engine in the individual thread or process.

SPECIAL FEATURES
Engine works only with standard files. I.e. all the section names must be known: such as
.text, .data and so on. Otherwise the file is packed or whatever, and will not be processed.

For all the standard files it is accepted that code exists only in the first section; this allows us to
increase disassembly quality.

SIGNATURE LIBRARY
This is another external subroutine, performing 2 tasks:

1. On start: search for known codeblocks, and
2. Add existing code blocks into library

I.e. before disassembling the signature manager will mark known codeblocks as CODE,
for-next-analysis, and, on exit, it will update the signature library with new information.

When applied to viruses, a signature library will be created per each local machine,
performing a kind of self-education, with each new file. Signature here means some constant
code bytes, not containing fixups and relative offsets.

ENGINE INTERFACE

// return: 0==success, non-zero error codes listed in ENGINE.HPP

int​ __cdecl ​engine​(
 DWORD user_arg, // user's parameter (whatever)

 BYTE* buf, // PE file

 DWORD inbufsize, // initial size of file

 DWORD* outbufsize, ​// ptr to resulting size of file
 DWORD maxbufsize, // maximal allocated buf size

 int __cdecl user_disasm(DWORD,BYTE*), ​// length-disassembler
 void​* __cdecl ​user_malloc​(DWORD,DWORD), ​// memory allocator
 DWORD __cdecl ​user_random​(DWORD,DWORD), ​// randomer
 int __cdecl ​user_mutate​(// mutator

 DWORD user_arg, // (described below)

 PE_HEADER* pe,

 PE_OBJENTRY* oe,

 hooy* root,

 int​ __cdecl (*)(DWORD user_arg,BYTE*),
 void​* __​cdecl​ (*)(DWORD user_arg,DWORD),
 DWORD __​cdecl​ (*)(DWORD user_arg,DWORD)
),

int __cdecl ​user_sigman​(// signature manager or NULL

 DWORD user_arg,

 PE_HEADER* pe,

 PE_OBJENTRY* oe,

 BYTE* memb,

 DWORD* flag,

 DWORD action) // 0/1

); ​//engine

int​ __cdecl ​mutate​(​//mutator
 DWORD user_arg, ​// user's parameter
 PE_HEADER* pe, // pe header

 PE_OBJENTRY* oe, // pe objtable

 hooy* root, // list root

 int __cdecl user_disasm(DWORD user_arg,BYTE*),

 void​* __cdecl ​user_malloc​(DWORD user_arg,DWORD),
 DWORD __cdecl ​user_random​(DWORD user_arg,DWORD)
); ​//mutate

int​ __cdecl ​sigman​(​//signature manager
 DWORD user_arg, // user parameter

 PE_HEADER* pe, // pe header

 PE_OBJENTRY* oe, // pe objtable

 BYTE* memb, // virtual memory block to work with

 DWORD* flag, // flag table

 DWORD action // 0==before(mark), 1==after(update)

); ​//sigman

This shit shown above... of course it doesn't mean that you should program in C++ to use an
engine. Engine may be called both from asm & cpp.

EXAMPLES
Mistfall engine was used in the Z-10 virus, all sources are published in the TZ #1 e-zine.

