
1/5

September 15, 2022

Malware AV/VM evasion - part 10: anti-debugging.
NtGlobalFlag. Simple C++ example.

cocomelonc.github.io/malware/2022/09/15/malware-av-evasion-10.html

1 minute read

�

Hello, cybersecurity enthusiasts and white hackers!

This post is the result of my own research into interesting anti-debugging trick: checking
NtGlobalFlag.

This is just another way how malware can detect that it is running in a debugger.

NtGlobalFlag

During debugging, the system sets the FLG_HEAP_ENABLE_TAIL_CHECK (0x10),
FLG_HEAP_ENABLE_FREE_CHECK (0x20) and FLG_HEAP_VALIDATE_PARAMETERS (0x40) flags in
the NtGlobalFlag field, which is located in the PEB structure.

The NtGlobalFlag has the value 0x68 offset on 32-bit Windows, the value of 0xbc on 64-
bit Windows and both of them are set to 0:

https://cocomelonc.github.io/malware/2022/09/15/malware-av-evasion-10.html

2/5

practical example

Simple PoC code for anti-debugging:

3/5

/*
hack.cpp
anti-debugging via NtGlobalFLag
author: @cocomelonc
https://cocomelonc.github.io/malware/2022/09/15/malware-av-evasion-10.html
*/
#include <winternl.h>
#include <windows.h>
#include <stdio.h>

#define FLG_HEAP_ENABLE_TAIL_CHECK 0x10
#define FLG_HEAP_ENABLE_FREE_CHECK 0x20
#define FLG_HEAP_VALIDATE_PARAMETERS 0x40
#define NT_GLOBAL_FLAG_DEBUGGED (FLG_HEAP_ENABLE_TAIL_CHECK |
FLG_HEAP_ENABLE_FREE_CHECK | FLG_HEAP_VALIDATE_PARAMETERS)

#pragma comment (lib, "user32.lib")

DWORD checkNtGlobalFlag() {
 PPEB ppeb = (PPEB)__readgsqword(0x60);
 DWORD myNtGlobalFlag = *(PDWORD)((PBYTE)ppeb + 0xBC);
 MessageBox(NULL, myNtGlobalFlag & NT_GLOBAL_FLAG_DEBUGGED ? "Bow-wow!" : "Meow-
meow!", "=^..^=", MB_OK);
 return 0;
}

int main(int argc, char* argv[]) {
 DWORD check = checkNtGlobalFlag();
 return 0;
}

As you can see, the logic is pretty simple, we just check a combination of flags.

For simplicity, I have only considered 64-bit Windows

demo

Let’s go to see everything in action. Compile:

x86_64-w64-mingw32-g++ -O2 hack.cpp -o hack.exe -I/usr/share/mingw-w64/include/ -s -
ffunction-sections -fdata-sections -Wno-write-strings -fno-exceptions -fmerge-all-
constants -static-libstdc++ -static-libgcc -fpermissive

Run it via x64dbg debugger:

4/5

and run from cmd:

5/5

As you can see everything is worked perfectly :)

Upload it to VirusTotal:

As you can see, 5 of 69 AV engines detect our PoC file as malicious.

https://www.virustotal.com/gui/file/6e0c2294a13f0b78e0526f217ee1a255ac3107123967e1fe
9cd91cbbd8fd57dd/detection

I hope this post spreads awareness to the blue teamers of this interesting technique, and
adds a weapon to the red teamers arsenal.

MITRE ATT&CK: Debugger evasion
MSDN: PEB structure
x64dbg
al-khaser
source code in github

This is a practical case for educational purposes only.

Thanks for your time happy hacking and good bye! PS. All drawings and screenshots are
mine

https://www.virustotal.com/gui/file/6e0c2294a13f0b78e0526f217ee1a255ac3107123967e1fe9cd91cbbd8fd57dd/detection
https://attack.mitre.org/techniques/T1622/
https://docs.microsoft.com/en-us/windows/win32/api/winternl/ns-winternl-peb
https://github.com/x64dbg/x64dbg
https://github.com/LordNoteworthy/al-khaser
https://github.com/cocomelonc/meow/tree/master/2022-09-15-malware-av-evasion-10

