
1/16

www.elastic.co
/security-labs/bits-and-bytes-analyzing-bitsloth

BITS and Bytes: Analyzing BITSLOTH, a newly identified backdoor

Elastic Security Labs identified a novel Windows backdoor leveraging the Background Intelligent Transfer Service
(BITS) for C2. This malware was found during a recent activity group tracked as REF8747.

BITSLOTH at a glance
BITSLOTH is a newly discovered Windows backdoor that leverages the Background Intelligent Transfer Service
(BITS) as its command-and-control mechanism. BITSLOTH was uncovered during an intrusion within the LATAM
region earlier this summer. This malware hasn't been publicly documented to our knowledge and while it’s not clear
who’s behind the malware, it has been in development for several years based on tracking distinct versions uploaded
to VirusTotal.

The most current iteration of the backdoor at the time of this publication has 35 handler functions including keylogging
and screen capture capabilities. In addition, BITSLOTH contains many different features for discovery, enumeration,
and command-line execution. Based on these capabilities, we assess this tool is designed for gathering data from
victims.

Key takeaways

BITSLOTH is a newly discovered Windows backdoor
BITSLOTH uses a built-in Microsoft feature, Background Intelligent Transfer Service (BITS) for command-and-
control communication
BITSLOTH has numerous command handlers used for discovery/enumeration, execution, and collection
purposes
The backdoor contains logging functions and strings consistent with the authors being native Chinese speakers

Discovery
Our team observed BITSLOTH installed on a server environment on June 25th during REF8747, this was an intrusion
into the Foreign Ministry of a South American government. The intrusion was traced back to PSEXEC execution on
one of the infected endpoints. The attackers used a slew of publicly available tools for most of their operations with
the exception of BITSLOTH.

One of the primary mechanisms of execution was through a shellcode loading project called RINGQ. In a similar
fashion to DONUTLOADER, RINGQ will convert any Windows executable and generate custom shellcode placing it
into a file (main.txt). This shellcode gets decrypted and executed in-memory. This technique is used bypass
defenses that rely on hash blocklists or static signatures in some anti-malware products.

Screenshot of RingQ demo

https://www.elastic.co/security-labs/bits-and-bytes-analyzing-bitsloth

2/16

We observed RINGQ being used to load the IOX port forwarder. Note: The key in the image below is the hex
conversion of “whoami”.

RINGQ loading and executing IOX

Additionally the attackers used the STOWAWAY utility to proxy encrypted traffic over HTTP to their C2 servers. Proxy
tools, tunnelers, and redirectors are commonly used during intrusions to conceal the adversary responsible for an
intrusion. These tools offer adversaries various features, including the ability to bypass internal network controls,
provide terminal interfaces, encryption capabilities as well as file transfer options.

STOWAWAY proxy usage

After initial access, the actor moved laterally and dropped BITSLOTH in the form of a DLL (flengine.dll) inside
the ProgramData directory. The actor then executed the music-making program FL Studio (fl.exe). Based on the
observed call stack associated with the self-injection alert, we confirmed the threat actor used a traditional side-
loading technique using a signed version of FL Studio.

 c:\windows\syswow64\ntdll.dll!0x770841AC

 c:\windows\syswow64\ntdll.dll!0x7709D287

 c:\windows\syswow64\kernelbase.dll!0x76ED435F

 c:\windows\syswow64\kernelbase.dll!0x76ED42EF

 Unbacked!0x14EAB23

 Unbacked!0x14EA8B6

 c:\programdata\pl studio\flengine.dll!0x74AD2F2E

 c:\programdata\pl studio\fl.exe!0xDB3985

 c:\programdata\pl studio\fl.exe!0xDB3E5E

 c:\programdata\pl studio\fl.exe!0xDB4D3F

 c:\windows\syswow64\kernel32.dll!0x76B267F9

 c:\windows\syswow64\ntdll.dll!0x77077F4D

 c:\windows\syswow64\ntdll.dll!0x77077F1B

This call stack was generated along with a process injection alert, and enabled researchers to extract an in-memory
DLL that was set with Read/Write/Execute(RWX) page protections.

BITSLOTH overview

During our analysis, we found several older BITSLOTH samples demonstrating a record of development since
December 2021. Within this project, the malware developer chose notable terminology– referring to BITSLOTH as
the Slaver component and the command and control server as the Master component. Below is an example of one
of the PDB file paths linked to BITSLOTH that depicts this:

https://www.virustotal.com/gui/file/75747c8b5b3676abde25a8dd66280908c0d0fc57ef054b88a41673619d3bee28/details

3/16

PDB linked to BITSLOTH sample

BITSLOTH employs no obfuscation around control flow or any kind of string encryption.

BITSLOTH strings

Both older and recent samples contain strings used for logging and debugging purposes. As an example at startup,
there is a string referenced in the read-only section (.rdata).

Debugging

This Simplified Chinese wide-character string translates to:
Note: There is already a program running,
do not run it again…

String left by developer

These small snippets contained within BITSLOTH help shed light on the development and prioritization of features,
along with what appear to be operator instructions. In the latest version, a new scheduling component was added by
the developer to control specific times when BITSLOTH should operate in a victim environment. This is a feature we
have observed in other modern malware families such as EAGERBEE.

https://www.elastic.co/security-labs/introducing-the-ref5961-intrusion-set

4/16

BITSLOTH scheduling component

BITSLOTH code analysis

BITSLOTH is a backdoor with many different capabilities including:

Running and executing commands
Uploading and downloading files
Performing enumeration and discovery
Collecting sensitive data through keylogging and screen capturing

Mutex

BITSLOTH uses a hard-coded mutex (Global\d5ffff77ff77adad657658) within each sample to ensure only
one instance is running at a time.

Mutex used by BITSLOTH

Communication

BITSLOTH adopts a traditional client/server architecture, the developer refers to the client as the Slaver component
and the command and control server (C2) as the Master component. The developer embeds the IP/port of the C2
server in each sample with a front-loaded string (rrrr_url). This string acts as a key to identify the C2 configuration
in itself while running in memory, this is used when updating the C2 server.

Below are the configurations in several samples our team has observed, the threat actor configures both internal and
external IP ranges.

rrrr_url216.238.121[.]132:8443

rrrr_url192.168.1[.]125:8443

rrrr_url192.168.1[.]124:8443

rrrr_url45.116.13[.]178:443

One of the defining features of BITSLOTH is using the Background Intelligent Transfer Service (BITS) for C2. While
this feature has been designed to facilitate the network transfer of files between two machines, it’s been abused by
multiple state-sponsored groups and continues to fly under the radar against organizations. This medium is appealing
to adversaries because many organizations still struggle to monitor BITS network traffic and detect unusual BITS
jobs.

Windows has a system administration feature called Background Intelligent Transfer Service (BITS)
enabling the download and upload of files to HTTP web servers or SMB shares. The BITS service
employs multiple features during the file transfer process such as the ability to pause/resume transfers,
handling network interruptions, etc. BITS traffic is usually associated with software updates therefore
wrongfully implied as trusted. Many organizations lack visibility into BITS network traffic making this an
appealing target.

The BITS API is exposed through Window’s Component Object Model (COM) using the IBackgroundCopyManager
interface. This interface provides capabilities to create new jobs, enumerate existing jobs in the transfer queue, and
access a specific job from a transfer queue.

https://learn.microsoft.com/en-us/windows/win32/bits/background-intelligent-transfer-service-portal
https://www.welivesecurity.com/2019/09/09/backdoor-stealth-falcon-group/
https://learn.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal
https://learn.microsoft.com/en-us/windows/win32/api/bits/nn-bits-ibackgroundcopymanager

5/16

Initializing IBackgroundCopyManager interface

After initialization, BITSLOTH cancels any existing BITS jobs on the victim machine that match the following display
names:

WU Client Download

WU Client Upload

WU Client Upload R

These names are used by the developer to blend in and associate the different BITS transfer jobs with their
respective BITS job type. By canceling any existing jobs, this allows the execution of the malware to operate from a
clean state.

Switch statement inside BITSLOTH to process BITS job

Below are the Microsoft definitions matching the type of BITS job:

BG_JOB_TYPE_DOWNLOAD - Specifies that the job downloads files to the client.
BG_JOB_TYPE_UPLOAD - Specifies that the job uploads a file to the server.
BG_JOB_TYPE_UPLOAD_REPLY - Specifies that the job uploads a file to the server, and receives a reply file
from the server application.

https://learn.microsoft.com/en-us/windows/win32/api/bits/ne-bits-bg_job_type

6/16

After canceling any existing jobs, the MAC address and operating system information are retrieved and placed into
global variables. A new thread gets created, configuring the auto-start functionality. Within this thread, a new BITS
download job is created with the name (Microsoft Windows).

BITS job creation for auto-start functionality

This download job sets the destination URL to http://updater.microsoft[.]com/index.aspx. While this
domain is not routable, BITSLOTH masquerades this BITS job using a benign looking domain as a cover then uses
SetNotifyCmdLine to execute the malware when the transfer state is changed.

Setting up BITS persistence via SetNotifyCmdLine

Interestingly, this unique toolmark allowed us to pivot to additional samples showing this family has been in circulation
for several years.

VirusTotal relationships from embedded Microsoft URL

At this point, the malware has now been configured with persistence via a BITS job named Microsoft Windows.
Below is a screenshot of this job’s configuration showing the notification command line set to the BITSLOTH location
(C:\ProgramData\Media\setup_wm.exe)

BITSLOTH persistence job

Once BITSLOTH becomes active, it will start requesting instructions from the C2 server using the WU Client
Download job. This request URL is generated by combining the MAC address with a hard-coded string (wu.htm).
Below is an example URL:

https://192.168.182.130/00-0C-29-0E-29-87/wu.htm

7/16

In response to this request, the malware will then receive a 12-byte structure from the C2 server containing a unique
ID for the job, command ID for the handler, and a response token. Throughout these exchanges of file transfers,
temporary files from the victim machine are used as placeholders to hold the data being transmitted back and forth,
BITSLOTH uses a filename starting with characters (wm) appended by random characters.

Data exchange through temporary files

Command functionality

BITSLOTH uses a command handler with 35 functions to process specific actions that should be taken on the victim
machine. The malware has the option to be configured with HTTP or HTTPS and uses a hardcoded single byte XOR
(0x2) to obfuscate the incoming instructions from the C2 server. The outbound requests containing the collected
victim data have no additional protections by the malware itself and are sent in plaintext.

In order to move fast, our team leveraged a helpful Python implementation of a BITS server released by SafeBreach
Labs. By setting the C2 IP to our loopback address inside a VM, this allowed us to get introspection on the network
traffic.

BITSLOTH command handler

The handlers all behave in a similar approach performing a primary function then writing the data returned from the
handler to a local temporary file. These temporary files then get mapped to a BITS upload job called WU Client
Upload. Each handler uses its own string formatting to create a unique destination URL. Each filename at the end of
the URL uses a single letter to represent the type of data collected from the host, such as P.bin for processes or
S.bin for services.

https://github.com/SafeBreach-Labs/SimpleBITSServer
https://www.safebreach.com/

8/16

http://192.168.182.130/00-0C-29-0E-29-87/IF/P.bin

Below is an example screenshot showing the process enumeration handler with the string formatting and how this
data is then linked to the BITS upload job.

BITSLOTH handler for running processes

This link to the exfiltrated data can also be observed by viewing the BITS upload job directly. In the screenshots
below, we can see the destination URL (C2 server) for the upload and the temporary file (wm9F0C.tmp) linked to the
job.

BITS upload job configuration

If we look at the temporary file, we can see the collected process information from the victim host.

Contents of temporary file holding exfiltrated data

Soon after the upload job is created, the data is sent over the network through a BITS_POST request containing the
captured data.

9/16

Outbound BITS_POST request

Command handling table

Command ID Description
0 Collect running processes via WTSEnumerateProcessesW
1 Get Windows services via EnumServicesStatusW
2 Get system information via systeminfo command
3 Retrieve all top-level Windows via EnumWindows
5 Collect file listings
6 Download file from C2 server
7 Upload file to C2 server
10 Terminate itself
11 Set communication mode to HTTPS
12 Set communication mode to HTTP
13 Remove persistence
14 Reconfigure persistence
15 Cancel BITS download job (WU Client Download)
16 Remove persistence and delete itself
17 Thread configuration
18 Duplicate of handler #2
19 Delete file based on file path
20 Delete folder based on file path
21 Starts terminal shell using stdin/stdout redirection
22 Resets terminal handler (#21)
23 Runs Windows tree command
24 Updates BITSLOTH, delete old version
25 Shutdown the machine via ExitWindowsEx
26 Reboot the machine via ExitWindowsEx
27 Log user off from the machine via ExitWindowsEx
28 Terminate process based on process identifier (PID)
29 Retrieves additional information via msinfo32 command
30 Execute individual file via ShellExecuteW
34 Create new directory via CreateDirectoryW
41 Upload data to C2 server
42 Checks for capture driver via capGetDriverDescriptionW
43 Take screenshots of victim machine desktop
44 Record keystrokes from victim machine
45 Stop recording screenshot images
46 Stop keylogger functionality

Backdoor functionality

10/16

BITSLOTH includes a wide range of post-compromise capabilities for an adversary to operate within a victim
environment. We will focus on the more significant capabilities by grouping them into different categories.

Discovery/enumeration

A portion of the BITSLOTH handlers are focused on retrieving and enumerating data from victim machines. This
includes:

Retrieving process information via WTSEnumerateProcessesW
Collecting Windows services via EnumServicesStatusW
Enumerating all top-level Windows via EnumWindows with a callback function
Retrieving system information via windows utilities such as systeminfo and msinfo32

BITSLOTH handler used to collect system information

In many of the handlers, the locale version is configured to chs (Chinese - Simplified).

Retrieve Windows information

BITSLOTH has a couple custom enumeration functions tied to retrieving file listings and performing directory tree
searches. The file listing handler takes a custom parameter from the operator to target specific folder locations of
interest:

GET_DESKDOP → CSIDL_DESKTOPDIRECTORY (Desktop)
GET_BITBUCKET -> CSIDL_BITBUCKET (Recycle Bin)
GET_PERSONAl -> CSIDL_MYDOCUMENTS (My Documents)

11/16

File listing parameters via BITSLOTH

BITSLOTH also has the ability to collect entire directory/file listings on the machine for every file by using the
Windows tree utility. This handler loops across the alphabet for each drive letter where the data is then saved locally
in a temporary file named aghzyxklg.

Tree listing via BITSLOTH

The tree data is then compressed and sent to the C2 server with a .ZIP extension. Below is an example of the
collected data. This data can help pinpoint sensitive files or provide more context about the target environment.

Example of data collected through GetDirectoryTree handler

Collection

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/tree

12/16

In terms of collection, there are a few handlers used for actively gathering information. These are centered around
capturing screenshots from the desktop and performing keylogging functionality.

BITSLOTH implements a lightweight function used to identify capture recording devices, this appears to be a
technique to check for a camera using the Windows API (capGetDriverDescriptionW).

Handler that records capture devices

BITSLOTH has the ability to take screenshots based on parameters provided by the operator. Input to this function
uses a separator (||) where the operator provides the number of seconds of the capture interval and the capture
count. The images are stored as BMP files with a hard coded name ciakfjoab and compressed with the DEFLATE
algorithm using a .ZIP archive. These timestamped zipped archives are then sent out to the C2 server.

The handler leverages common screenshot APIs such as CreateCompatibleBitmap and BitBlt from Gdi32.dll.

BITSLOTH screen capture using Windows APIs

For recording keystrokes, BITSLOTH uses traditional techniques by monitoring key presses using
GetAsyncKeyState/GetKeyState. The handler has an argument for the number of seconds to perform the
keylogging. This data is also compressed in a .ZIP file and sent outbound to the C2 server.

13/16

Keylogger functionality inside BITSLOTH

Execution / Maintenance

BITSLOTH has multiple capabilities around maintenace and file execution as well as standard backdoor
functionalities such as:

Capability to execute files stand-alone via ShellExecuteW
Windows terminal capability to execute commands and read data back via pipes
Create directories, perform reboots, shutdown the machine, terminate processes
Perform file upload and download between C2 server
Modify BITSLOTH configuration such as communication modes, update C2 URL, turn off
keylogging/screenshot features

BITSLOTH’s CMD terminal

BITSLOTH pivots

BITSLOTH appears to be actively deployed. We identified another BITSLOTH C2 server (15.235.132[.]67) using
the same port (8443) with the same SSL certificate used from our intrusion.

https://www.shodan.io/search?query=ssl.cert.serial%3A253c1c0bbf58e1f509fc4468de462ed8872f81d9

14/16

Shodan SSL certificate matches

While it’s not exactly clear who’s behind BITSLOTH, there was a large amount of activity of VirusTotal uploads
occurring on December 12, 2021. With around 67 uploads over 24 hours from one submitter (1fcc35ea), we suspect
someone linked to this project was validating detections, making modifications, and uploading different versions of
BITSLOTH to VirusTotal. One sample was packed with VMProtect, others stripped of functionality, some uploads
were debug builds, etc.

BITSLOTH - VirusTotal Submitter (1fcc35ea)

A lot of time has passed since then, but it is interesting seeing this family show up in a recent intrusion. Whatever the
objective behind this malware, it's surprising that this family remained under the radar for so many years.

Different PDB paths from BITSLOTH uploads

REF 8747 through MITRE ATT&CK

Elastic uses the MITRE ATT&CK framework to document common tactics, techniques, and procedures that advanced
persistent threats use against enterprise networks.

[h4] Tactics
Tactics represent the why of a technique or sub-technique. It is the adversary’s tactical goal: the reason
for performing an action.

Techniques

Techniques represent how an adversary achieves a tactical goal by performing an action.

Detecting REF8747
Detection

The following detection rules and behavior prevention events were observed throughout the analysis of this intrusion
set:

https://attack.mitre.org/

15/16

YARA Signatures

YARA

Elastic Security has created YARA rules to identify this activity. Below are YARA rules to identify BITSLOTH:

rule Windows_Trojan_BITSLOTH_05fc3a0a {

 meta:

 author = "Elastic Security"

 creation_date = "2024-07-16"

 last_modified = "2024-07-18"

 os = "Windows"

 arch = "x86"

 threat_name = "Windows.Trojan.BITSLOTH"

 	 license = "Elastic License v2"

 strings:

 $str_1 = "/%s/index.htm?RspID=%d" wide fullword

 $str_2 = "/%s/%08x.rpl" wide fullword

 $str_3 = "/%s/wu.htm" wide fullword

 $str_4 = "GET_DESKDOP" wide fullword

 $str_5 = "http://updater.microsoft.com/index.aspx" wide fullword

 $str_6 = "[U] update error..." wide fullword

 $str_7 = "RMC_KERNEL ..." wide fullword

 $seq_global_protocol_check = { 81 3D ?? ?? ?? ?? F9 03 00 00 B9 AC 0F 00 00

0F 46 C1 }

 $seq_exit_windows = { 59 85 C0 0F 84 ?? ?? ?? ?? E9 ?? ?? ?? ?? 6A 02 EB ??

56 EB }

 condition:

 2 of them

}

Observations
All observables are also available for download in both ECS and STIX format in a combined zip bundle.

The following observables were discussed in this research.

Observable Type Name Reference

4a4356faad620bf12ff53bcfac62e12eb67783bd22e66bf00a19a4c404bf45df SHA-
256

s.dll BITSLOTH

dfb76bcf5a3e29225559ebbdae8bdd24f69262492eca2f99f7a9525628006d88 SHA-
256

125.exe BITSLOTH

4fb6dd11e723209d12b2d503a9fcf94d8fed6084aceca390ac0b7e7da1874f50 SHA-
256

setup_wm.exe BITSLOTH

0944b17a4330e1c97600f62717d6bae7e4a4260604043f2390a14c8d76ef1507 SHA-
256

1242.exe BITSLOTH

0f9c0d9b77678d7360e492e00a7fa00af9b78331dc926b0747b07299b4e64afd SHA-
256

setup_wm.exe
BITSLOTH
(VMProtect)

216.238.121[.]132 ipv4-
addr

BITSLOTH
C2 server

45.116.13[.]178 ipv4-
addr

BITSLOTH
C2 server

15.235.132[.]67 ipv4-
addr

BITSLOTH
C2 server

http ://updater.microsoft.com/index.aspx BITSLOTH
file indicator

updater.microsoft.com BITSLOTH
file indicator

References

The following were referenced throughout the above research:

https://github.com/SafeBreach-Labs/SimpleBITSServer/tree/master
https://github.com/T4y1oR/RingQ
https://github.com/EddieIvan01/iox
https://github.com/ph4ntonn/Stowaway/

https://github.com/elastic/labs-releases/tree/main/indicators/bitsloth
https://github.com/SafeBreach-Labs/SimpleBITSServer/tree/master
https://github.com/T4y1oR/RingQ
https://github.com/EddieIvan01/iox
https://github.com/ph4ntonn/Stowaway/

16/16

