
1/19

www.esentire.com /blog/blind-eagles-north-american-journey

Blind Eagle's North American Journey

IN THIS POST

Blind Eagle Case Study
Ande Loader Analysis
Crypter “ByRoda”
How eSentire is Responding
Recommendations from eSentire’s Threat Response Unit (TRU)
Yara Rule
Indicators of Compromise
References
MITRE ATT&CK

Key takeaways:
Ande Loader is utilized in this campaign to deliver the final payloads: Remcos RAT and NjRAT.
Blind Eagle threat actor(s) have been using crypters written by Roda and Pjoao1578.
One of the crypters developed by Roda has the hardcoded server hosting both injector components of the
crypter and additional malware that was used in the Blind Eagle campaign.
We observed Blind Eagle threat actor(s) targeting Spanish-speaking users in the manufacturing industry based
in North America.

Blind Eagle Case Study

Blind Eagle, also tracked as APT-C-36, first appeared around 2018. The alleged threat actor(s) originated from South
America and is known to target Colombia and other countries in the region. The threat actor(s) employ phishing
emails to establish an initial foothold.

In 2021, Trend Micro published a blog post mentioning various RAT variants deployed by Blind Eagle threat actors,
such as njRAT, Remcos, Imminent Monitor, AsyncRAT, LimeRAT, BitRAT, and Warzone RAT.

Recently, the eSentire Threat Response Unit (TRU) observed Blind Eagle threat actor(s) targeting the manufacturing
industry. The users received the phishing email that contained the link to download the RAR and BZ2 archives with a
malicious VBS file inside.

Ande Loader Analysis

Case One

The RAR archive is password-protected and contains the malicious VBS file. The VBS file contains the code
responsible for copying the VBS file into the Startup folder for persistence
(\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup) using File.Copy method.

https://www.esentire.com/blog/blind-eagles-north-american-journey
https://www.trendmicro.com/en_us/research/21/i/apt-c-36-updates-its-long-term-spam-campaign-against-south-ameri.html
https://www.esentire.com/what-we-do/threat-response-unit

2/19

Before copying the file into the Startup folder, it introduces the delay with the command “cmd.exe /c ping 127.0.0.1 -n
10”. Later in the script, there is an obfuscated code with a simple “Replace” containing the PowerShell base64-
encoded command to load an assembly ($rOWg), retrieve a specific type (Fiber.Home), and invoke a method (VAI)
on that type. The method is invoked with an array of parameters (Figure 2).

Figure 1: Snippet of the obfuscated PowerShell command

Figure 2: PowerShell command containing the array of parameters

The infection chain is shown below.

Figure 3: Infection chain

Upon decoding the Base64-encoded command, we discovered a .NET binary (MD5:
48b6064beec687fc110145cf7a19640d). The .NET binary is obfuscated with YanoObfuscator version 1.0.15.0. The
string decryption function applies XOR and bitwise operations to each character in the input string, using a changing
key (num) based on the provided integer.

The modified characters are stored in an array, which is then converted back to a string and returned as the
decrypted result.

3/19

Here’s how the decryption works:

The function initializes two variables: num is set to 356636782 + A_1, and num2 is set to 0.
The input string A_0 is converted into a character array called an array.
The function enters a loop.
Within each iteration of the loop, it performs the following steps:

It checks the value of num2 to determine the appropriate action.
If num2 is 0, it sets num3 to 0 and proceeds to the next step.
If num2 is 1, it initializes num3 to 0.
If num2 is 2, it increments num3 and proceeds to the next step.
If num2 is 3, it skips to the next iteration of the loop.
If num3 is greater than or equal to the length of the array, it breaks out of the loop.
Otherwise, it performs some bitwise operations on the character at index num3 in the array:

It applies an XOR operation between the lower 8 bits of the character and the current value of num.
It shifts the resulting value 8 bits to the left and combines it with the XOR operation between the
upper 8 bits of the character and the incremented value of num.
The resulting value is stored back in the array at the same index.

It sets num2 to 2 to continue the loop.
After the loop finishes, the modified array is converted back to a string using the string constructor.
The resulting string is then returned as the decrypted value.

Figure 4: Obfuscated strings

Figure 5: Decryption algorithm

We can run the obfuscated binary through de4dot to get the strings decrypted.

Further analyzing the code, it performs the string replacement to produce a URL where it would download a text file
from and then reverses the contents of the file.

It then compares the parameters '1No1me_Startup' and '2No3me_3tartup' that are passed in the PowerShell
command mentioned above to 1 and 2. And if they are not equal, then the code proceeds with decoding the contents

4/19

of the downloaded file.

If the first comparison to “1” is true, then:

The code creates a new .vbs file in the %AppData% folder only if there are no .vbs files already in that
directory. It does this by starting a new process to run a PowerShell command that copies all .vbs files from the
current directory to the %AppData% directory.
Then, it opens the Run registry key, which stores information about programs that should run at startup.
If there isn't already a registry entry named "Path", it creates one with the path to the .vbs file. This will cause
the .vbs file to run every time the computer starts up.
Finally, it runs a function Tools.Ande(Convert.FromBase64String(text2)). This involves converting text2 from a
Base64 string back to a byte array, and then passing this byte array to the Ande method in the Tools.

Figure 6: The first evaluation

If the second comparison to “2” is true, then similarly to the first block, this block of code creates a new .vbs file in the
%AppData% directory if there are no .vbs files in that directory already. Then, it creates a shortcut in the Windows
Startup folder. The shortcut points to a PowerShell command that, when launched, waits for 5 seconds and then
starts the .vbs file.

The PowerShell command to run the .vbs file would look like this:

C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe -WindowStyle Hidden Start-Sleep 5; Start-
Process C:\Users\Username\AppData\Roaming\<GUID>.vbs

The shortcut is created with some specific properties like having the Notepad icon and the description set to
"Microsoft". The creation of this shortcut will cause the .vbs script to be run every time the user logs in to Windows.

The naming format “{0}_{1:N}.lnk” means that the shortcut name is composed of two parts separated by an
underscore:

{0}: This placeholder will be replaced with the filename of the .vbs file (without the extension).
{1:N}: This placeholder will be replaced with a new GUID (Globally Unique Identifier). The :N format specifier
makes the GUID more compact by removing the hyphens.

Finally, it also runs the same Tools.Ande(Convert.FromBase64String(text2)) function.

In both cases, the script is set up to run at each system startup, albeit through slightly different mechanisms. The if
condition associated with the "1" comparison uses the Windows Registry to do this, whereas the else if condition
associated with the "2" comparison uses a shortcut in the Startup folder to achieve the same goal.

Figure 7: The first evaluation

Let’s go back to the beginning of the method “VAI” method.

5/19

The method VAI takes three arguments of type string. The arguments are as follows:

QBXtX: This is a string parameter at the end of the PowerShell command and is used as input for the method,
the parameter is used as a part of the URL deobfuscation.
startup: This is another string parameter at the end of the PowerShell command and is used to evaluate the
first condition and compare it to ‘1’.
startup_reg: This is the third string parameter used as an input for the method and is used to evaluate the
second condition and compare it to ‘2’.

As shown below, after reversing the first-string parameter and replacing it with certain ASCII characters, the produced
output is the URL that contains the text file with reversed Base64-encoded blob.

Figure 8: URL obfuscation

Figure 9: Reversed Base64-encoded blob

After reversing the Base64-encoded in the correct order and Base64-decoding it, Ande Loader loads a dynamic-link
library (DLL) into the current process. The specific library to be loaded is determined by the value stored in the
variable and then retrieves the address of a function within the loaded DLL. The function name is determined by the
value stored in variable A, as shown below.

6/19

Figure 10: Loading functions from the library

Eventually, Ande Loader injects the payload into the RegAsm process using the following functions:

CreateProcessA – creates the process in a suspended mode with the CREATE_SUSPENDED flag.
GetThreadContext / Wow64GetThreadContext (depending on the OS) – obtains the current context of the
suspended thread.
ReadProcessMemory – used to read data from the memory of a specified process.
ZwUnmapViewOfSection – used to unmap a section of a mapped executable image or a shared data file from
the virtual address space of a process.
VirtualAllocEx – used to allocate memory within the virtual address space of a specified process.

In our example, the value 12288 corresponds to the MEM_COMMIT | MEM_RESERVE constant,
indicating that the memory should be both committed and reserved. It is passed as the fourth argument to
the function. 64 or 0x40 – the parameter represents the memory protection flags for the allocated region.
The value 64 corresponds to the PAGE_EXECUTE_READWRITE constant, indicating that the allocated
memory should be readable, writable, and executable. It is passed as the fifth argument to the function.

WriteProcessMemory – used to write data to the memory of a specified process.
SetThreadContext / Wow64SetThreadContext – used to set the thread context (registers and flags) for a
thread.
ResumeThread – used to resume the execution of a suspended thread within a process.

Figure 11: Process injection

The final payload dropped by Ande Loader is a RemcosRAT (Remote Access Tool) that is being sold online by
BreakingSecurity. The eSentire Threat Response Unit (TRU) will release the technical malware analysis of
RemcosRAT separately in the future. We have also observed other malware stored on the server, such as ArrowRAT,
NjRAT, Quasar RAT, and Ursnif.

7/19

Case Two

In the second infection case, the BZ2 archive was distributed via a Discord CDN link.

Figure 12: Password-protected BZ2 archive

The VBS file contains a similar obfuscation pattern and persistence mechanism. Here are some differences in Ande
Loader dropped:

The loader did not contain the strings in the encrypted form and instead was in the unobfuscated form but with
the same replacement logic in place.
Instead of RemcosRAT, the loader delivers NjRAT (the configuration for NjRAT can be found at the end of this
article).
The process hollowing is performed in one of these processes instead of just one hardcoded process:

AppLaunch.exe
aspnet_regbrowsers.exe
cvtres.exe
ilasm.exe
jsc.exe
MSBuild.exe
RegAsm.exe
RegSvcs.exe

Figure 13: List of processes to perform process hollowing on

Crypter “ByRoda”
An anonymous person shared the crypter that is used during one of the Blind Eagle campaigns that Igal Lytzki,
Threat Analyst at PerceptionPoint, mentioned. The crypter developer goes under the nickname “Roda-Modder” or
“Roda” on hacking forums. The developer also shares other crypters and protectors on forums since 2014.

Figure 14: Crypter advertisement (1)

https://twitter.com/0xToxin/status/1674401247464509441?s=20

8/19

Figure 15: Crypter advertisement (2)

To activate the crypter, the user would need to provide the “active” key.

Figure 16: Crypter activation form

The key activation works in the following way:

The base64-encoded string is retrieved from developer’s GitHub repository.
Login_Load: This method is called when the form loads. It starts the download of the string from the GitHub
repository.
x1_DownloadStringCompleted: This method is triggered when the string download started by Login_Load is
finished. It calls the descrypted function on the downloaded string to obtain the original keys.

9/19

Figure 17: x1_DownloadStringCompleted method

descrypted: This method is called within x1_DownloadStringCompleted to decode the downloaded string from
Base64. The function takes the base64 encoded string, replaces "@" with "1", decodes it from base64, and
then reverses the string. The decrypted string is stored in this.S to be used later in the Button1_Click method.

Figure 18: descrypted method

Button1_Click: This method is called when the user clicks the button. It splits the decrypted string into an array
of keys using “//” as a delimeter and compares each key with the text entered by the user. If a match is found, it
logs the user in and shows a success pop-up message. If the match is found, the user receives an “Expired
key!!” pop-up message.

Figure 19: Button1_Click method

10/19

Figure 20: FuckCrypt panel

The crypter can be generated in VBS and JS extensions with the options for persistence as a startup name,
scheduled task, and AntiVM.

The payload reaches out to Pastebin and then pasteio[.]com to retrieve the injector. We have also seen a different
version of the crypter posted by a Security Researcher, @1ZRR4H. The crypter reaches out to Pastebin and then
wtools[.]io to retrieve the injector components.

At the moment of writing this blog, pasteio appears to be down, which makes FuckCrypt version 2.1 non-operable.
The generated VBS contains an obfuscated base64-encoded PowerShell one-liner and junk code that can be found
hardcoded in the Resource section of the crypter.

Figure 21: The crypted VBS file

https://twitter.com/1ZRR4H/status/1677747923600257028?s=20

11/19

Figure 22: Embedded Resources section

The first downloaded file mentioned above is the payload that is partially responsible for process injection. From the
screenshot below, the functions such as GetThreadContext, SetThreadContext, ReadProcessMemory,
NtUnmapViewOfSection, VirtualAllocEx, ResumeThread, etc. used, suggesting process hollowing (T1055.012). The
DLL also contains other APIs that are well-known to be used in process injection.

From the code below, the decoded-base64 final payload would be injected into InstalUtil.exe.

Figure 23: Process hollowing

If the decoded PowerShell one-liner contains “4” in the fourth parameter passed to the binary – it means the AntiVM
is enabled. The AntiVM feature checks if one of the processes, such as vmtoolsd or VirtualBox, is running on the
infected machine.

If a process is found that matches either of these names (indicating that a virtual machine tool is currently running),
the function will terminate and return immediately.

Figure 24: VM check

If the fourth parameter also contains the value “1”, the code creates a new registry entry in
"HKCU:\SOFTWARE\Microsoft\Windows\CurrentVersion\Run" with a value that runs a PowerShell command to
execute a VBScript file located under the %TEMP% folder, that way, the code gets executed each time the system
starts up.

The file containing the PowerShell command is named "xx1.ps1". Moving forward, the code constructs a VBScript
command that executes the initial VBS crypted script in a new file "xx2.vbs" under the %TEMP% folder.

12/19

Figure 25: If the fourth parameter contains "1"

If the fourth parameter contains “2”, it should perform similar actions as in the previous code. But instead, it creates a
scheduled task in our example named “Roda”, that runs every minute and a VBS file named “xx.vbs’ instead of
“xx2.vbs”.

Figure 26: If the fourth parameter contains "2"

If the fourth parameter contains “3”, the code creates a Windows shortcut (.lnk file) in the Startup directory of the
current user to run the initial VBS file via PowerShell. The Startup directory is a special folder where any files or
shortcuts placed within it automatically run when Windows starts. The name of the shortcut is the string stored in the
third parameter, in our example, it’s “bestcrypt”.

Figure 27: If the fourth parameter contains "3"

Another crypter (MD5: b167a0bc7b097550a89a5ba4cb258592) written by Roda, shown in Figure 28, pulls the
additional injector components from the hardcoded server (Figure 29). We assess with medium confidence that the
FuckCrypt developer is also involved in the Blind Eagle campaign, dropping the malware stored on the same server.

13/19

Figure 28: FuckCrypt

Figure 29: Hardcoded IP containing injector components

We were able to find other samples associated with the binary or the developer. The hashes are included in the
Indicators of Compromise at the end of this article.

In one of the crypters mentioned above, another developer’s handle, “Pjoao1578’ was mentioned.

Figure 30: The mention of the nickname in one of the crypters

The crypter developer “Pjoao1578’ has been selling .NET crypters since around 2016.

14/19

Figure 31: Crypter sale advertisement by Pjoao1578 (translated to English from Portuguese)

The Pastebin repository of the “Pjoao1578’ “ developer contains some files that have been used in the crypters. The
developer is also known for re-purposing the open-source NjRAT under their own version, “0.7d” (MD5:
5d4c903e2ba132fe886be296c10707e9).

Figure 32: Pastebin repository of c

15/19

After some research, we have confirmed that Pjoao1578 and Roda are two different developers, but their crypters are
actively used in the Blind Eagle campaign.

Currently, the developer is actively working on UpCrypter or also known as UpCry in the previous version.

Figure 33: UpCry crypter

Figure 34: New version of UpCrypter

The generated VBS files for the UpCry and UpCrypter are shown below.

16/19

Figure 35: VBS file (UpCry)

Figure 36: VBS file UpCrypter

At the time of writing this report, the URL that serves additional payloads for the UpCry crypter is down
(hxxps://ia903401.us.archive[.]org/28/items/dll_20210416_20210416_2051/Dll.txt).

The execution pattern for the UpCrypter is similar to FuckCrypt: hxxps://pastebin[.]com/raw/vwbv5PXc >
hxxps://wtools[.]io/code/dl/bOlD.

The initial binary is responsible for setting up persistence mechanisms and writing files to the disk (similar to
FuckCrypt), the registry run key value name is hardcoded as “NetwrixParam". The binary then proceeds with
retrieving the payload responsible for persistence, and the second binary, which is obfuscated with .NET Reactor, is
responsible for process hollowing, this is a part of the RunPE feature of the crypter (Figure 38).

Figure 37: Initial binary pulled from Pastebin

17/19

Figure 38: APIs indicating process hollowing

Then the third retrieved PowerShell one-liner is responsible for invoking the final payload.

How eSentire is Responding
The eSentire Threat Response Unit (TRU) combines threat intelligence gained from research and security incidents
to create practical outcomes for our customers. We are taking a comprehensive response approach to combat
modern cybersecurity threats by deploying countermeasures, such as:

Performing global threat hunts for indicators associated with Blind Eagle.
Implementing threat detections and BlueSteel, our machine-learning powered PowerShell classifier, to identify
malicious command execution and exploitation attempts and ensure that eSentire has visibility and detections
are in place across eSentire MDR for Endpoint and MDR for Network.
Implementing threat detections to identify malicious command execution and ensure that eSentire has visibility
and detections are in place across eSentire MDR for Endpoint.

Our detection content is supported by investigation runbooks, ensuring our 24/7 SOC Cyber Analysts respond rapidly
to any intrusion attempts related to known malware Tactics, Techniques, and Procedures. In addition, TRU closely
monitors the threat landscape, constantly addresses capability gaps, and conducts retroactive threat hunts to assess
customer impact.

Recommendations from eSentire’s Threat Response Unit (TRU)
We recommend implementing the following controls to help secure your organization against Blind Eagle:

Confirm that all devices are protected with Endpoint Detection and Response (EDR) solutions.
Implement a Phishing and Security Awareness Training (PSAT) program that educates and informs your
employees on emerging threats in the threat landscape.

While the TTPs used by threat actor(s) grow in sophistication, they lead to a certain level of difficulties at which critical
business decisions must be made. Preventing the various attack technique and tactics utilized by the modern threat
actor requires actively monitoring the threat landscape, developing and deploying endpoint detections, and the ability
to investigate logs & network data during active intrusions.

eSentire TRU is a world-class team of threat researchers who develop new detections enriched by original threat
intelligence and leverage new machine learning models that correlate multi-signal data and automate rapid response
to advanced threats.

To learn what it means to have an elite team of Threat Hunters and researchers that works for you, connect with an
eSentire Security Specialist now.

Yara Rule
rule Ande_Loader {

 meta:

 author = "eSentire TI"

 description = "Ande_Loader"

 date = "7/3/2023"

 strings:

 $s1 = {37 39 31 37 32 42 31 33 2d 45 44 42 41 2d 34 30 39 36 2d 42 37 32 35 2d

38 45 39 32 42 37 33 30 42 32 42 41}

 $s2 = {56 41 49}

 $s3 = {6F 25 00 00 0A}

 $s4 = {28 ?? 00 00 0A}

 condition:

 all of ($s*)

}

Indicators of Compromise

Name Indicators
Ande Loader 48b6064beec687fc110145cf7a19640d
Ande Loader b8f878d1ee6a118f9eee4cf111193f53
Ande Loader 4c30ea433832fb13b5d7637d3b13bead
Ande Loader 2a59f2a51b96d9364e10182a063d9bec
Ande Loader 99d3b2eb598775d41b18d57a9d1dc9ee
Ande Loader 97c880a2514a9faaaa327e745a4c5c5c

https://www.esentire.com/what-we-do/threat-response-unit
https://www.esentire.com/resources/library/how-mdr-with-proactive-threat-hunting-improves-cyber-resilience
https://www.esentire.com/how-we-do-it/signals/endpoint
https://www.esentire.com/how-we-do-it/signals/network
https://www.esentire.com/what-we-do/security-operations-center
https://www.esentire.com/how-we-do-it/signals/endpoint
https://www.esentire.com/what-we-do/managed-vulnerability-and-risk/technical-testing/security-awareness-training-managed-phishing-training
https://www.esentire.com/what-we-do/threat-response-unit
https://www.esentire.com/get-started

18/19

Ande Loader 9e447f721d859407da88a8e6992e4aa0
Ande Loader 2885d0ab293d957f2a237a64f956d61a
Ande Loader 64b690d32216049b199234c5fc092e6f
Ande Loader 1a321713876f764543d75859a4727b9a
Ande Loader a5da69e6c72a8759297415a0e30cbea8
Ande Loader bcb0ed502a8275a23a9d627f319cb610
Ande Loader 6ecd3d6c93cec7e7133afd691c2c2225
Ande Loader e14efed36bb6870d65277776281dc3b3
Ande Loader fb4c1a0a6d525af1e3778e9e9ee48c7d
Ande Loader 2e30e9db2016f9cb67d0f5ec4ca3d0a3
Ande Loader 6f62e2abb7558c83f2a4d3edefa05c7f
Ande Loader ffcbdcec38e077448a87f5546dada7bd
Ande Loader ac2940e6619dbc4dbb1a096f657dd346
UpCry e3962d6ecd509dcb7669b8df6dbb5c76
FuckCrypt a2994443fac8cf94f497dcf204ab818e
Vbs-Crypter Simples.exe 0b9cc70477af81a3fc8a5d335162f96d
FuckCrypt b167a0bc7b097550a89a5ba4cb258592
Vbs-Crypter.exe 191d5bf5d3ab54549d436399bcab642d
Remcos RAT 137f21d1f8fdd5cfe86637368b526027
NjRAT 7b72f2775b7bf33c9778533480d34e04
VBS 917392f4b75c0b5f19839c2da1af2d37
VBS 76250bc5ea0235a90bc153e0d7262349
C2 (RemcosRAT) rxms.duckdns[.]org:57832
C2 (NjRAT) njnjnjs[.]duckdns.org
C2 (opendir) 91.213.50[.]74

Extracted Remcos Configuration:

rxms.duckdns[.]org:57832:1||RemoteHost||1|| ||||||1|||| ||8||r e m c o s . e x e ||R

e m c o s ||||0||Rmc-YYR00A||1||8||l o g s . d a t || || || ||10|| ||

||5||6||Screenshots|| || || || || || || || || ||5||||MicRecords|| ||0||0|| || ||||0||

||1||R e m c o s ||r e m c o s || || ||FF7378C2D2969BB7BFD41F14D42772D3||

||100000||

NjRAT Configuration:

host = "njnjnjs[.]duckdns.org";

port = "35888";

registryName = "6515f0beea";

splitter = "@!#&^%$";

victimName = "TllBTiBDQVQ=";

version = "0.7NC";

stubMutex = null;

currentAssemblyFileInfo = new FileInfo(Application.ExecutablePath);

keylogger = null;

isConnected = false;

tcpSocket = null;

lastCapturedImage = "";

currentPlugin = null;

References

MITRE ATT&CK

MITRE ATT&CK
Tactic ID MITRE ATT&CK Technique Description

Initial Access T1566 Phishing
Blind Eagle is delivered via a phishing email
containing the link to retrieve the password-
protected archive.

User Execution T1204.002 Malicious File The user launches the malicious VBS file

Persistence T1547.001
Boot or Logon Autostart
Execution: Registry Run Keys /
Startup Folder

Persistence is achieved via the Registry Run
Keys / Startup folder

Execution T1059.001 Command and Scripting
Interpreter: PowerShell

The VBS script spawns PowerShell to execute
Ande Loader

Defense Evasion,
Privilege
Escalation

T1055.012 Process Injection: Process
Hollowing

Blind Eagle is using process hollowing to inject
the final payload

19/19

