
1/8

www.netskope.com /blog/a-look-at-the-nim-based-campaign-using-microsoft-word-docs-to-impersonate-the-nepali-government

A Look at the Nim-based Campaign Using Microsoft Word Docs to
Impersonate the Nepali Government
⋮ 12/20/2023

Summary

Threat actors often employ stealthy attack techniques to elude detection and stay under the defender’s radar. One
way they do so is by using uncommon programming languages to develop malware. Using an uncommon
programming language to develop malware provides several benefits, including:

Evading some signature based detections
Impeding analysis by malware analysts that are unfamiliar with the language
Limited community detection and published analysis

Netskope recently analyzed a malicious backdoor written in Nim, which is a relatively new programming language.
Netskope Threat labs has observed an increase in Nim-based malware over the past year and expects Nim-based
malware to become more popular as attackers continue to modify existing Nim-based samples. One of the highest-
profile Nim-based malware families was the Dark Power ransomware, which began spreading in the wild earlier this
year.

This blog post provides a breakdown of a recent targeted threat that uses Word document bait to deliver a Nim
backdoor.

Delivery Method

A malicious Word document was used to drop the Nim backdoor. The document was sent as an email attachment,
where the sender claims to be a Nepali government official sending security arrangements. Despite the security
controls placed around macros in Office files, we are still seeing APT-attributed malware using them to drop their
payload, like the Menorah malware we analyzed a couple of months ago.

Initially opening the file will show a blank document with an instruction to enable macros. When the user clicks
“Enable Content,” the auto-trigger routine (Document_Open) in the code will execute. Once the main function is
called, the code is executed through additional VBA functions inside the document.

https://www.netskope.com/blog/a-look-at-the-nim-based-campaign-using-microsoft-word-docs-to-impersonate-the-nepali-government
https://www.bleepingcomputer.com/news/security/new-dark-power-ransomware-claims-10-victims-in-its-first-month/
https://www.netskope.com/blog/netskope-threat-coverage-menorah

2/8

Malicious Word file prior enabling macro

Defense Evasion

To help bypass AV and static based detections, the VBA project is password protected and macros are obfuscated
using the Chr() VBA function and string concatenation. The VBA code is split into the four subroutines in the image
below.

sch_task is a function that creates a VBscript named “OCu3HBg7gyI9aUaB.vbs” that will serve as the chain trigger.
Initially, the VBscript is created in the AppData startup folder (C:\Users\
<user>\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup\OCu3HBg7gyI9aUaB.vbs) and is set as
a hidden file. Oddly, some variables are initialized in one function, but then utilized in a different function/s, which
could be meant to confuse static analysis. Some strings referring to directories and libraries are split and then
concatenated to evade static detection.

VBA code for sch_task routine.

3/8

hide_cons is a function to create another VBScript named “skriven.vbs,” which will be used by
“8lGghf8kIPIuu3cM.bat” as a shell to run other scripts. More detailed info about this batch script is found below.
Again, some strings referring to directories and libraries are split and then concatenated.

VBA code for hide_cons routine.

read_shell is a function that creates the payload named conhost.exe, which is inside a ZIP archive. As can be seen
from the screenshot below of the macro code, it assembles the ZIP from an array of decimals (by converting each to
byte) stored in the “UserForm1” object. The resulting byte array is the actual ZIP file and is dropped to C:\Users\
<user>\AppData\Local\Microsoft\conhost.zip

VBA code for read_shell routine.

UserForm1 Containing Decimal/Bytes.

vb_chainis a function mainly for creating “8lGghf8kIPIuu3cM.bat”, which will be the stage of infection before the final
payload. Exact file paths are generated by the VBA macro before writing to the batch file.

4/8

vb_chain code snapshot.

Dropped Files Summary:

e2a3edc708016316477228de885f0c39.doc drops:

OCu3HBg7gyI9aUaB.vbs (C:\Users\<user>\AppData\Roaming\Microsoft\Windows\Start
Menu\Programs\Startup\OCu3HBg7gyI9aUaB.vbs)
skriven.vbs (C:\Users\<user>\AppData\Local\skriven.vbs)
conhost.zip (C:\Users\<user>\AppData\Local\Microsoft\conhost.zip)
8lGghf8kIPIuu3cM.bat (C:\Users\<jack>\AppData\Local\8lGghf8kIPIuu3cM.bat) drops these in C:\Users\
<user>\AppData\Local:

unzFile.vbs
unz.vbs
2L7uuZQboJBhTERK.bat
2BYretPBD4iSQKYS.bat
d.bat
e.bat

5/8

Nim Backdoor

The Word document drops a malicious backdoor named “conhost.exe”. The malware is written in Nim and was likely
compiled on September 20, 2023. Nim is a statically typed compiled programming language. Its versatility shines
through its ability to be compiled to C, C++, or JavaScript, coupled with a Pythonic syntax for a developer-friendly
experience.

The backdoor runs within the same privilege as the current user logged in. It’s looking to continue its ploy that the file
was from a Nepali authority by imitating government domains for its C&C server ([.]govnp[.]org). When this backdoor
is left undetected, users are at risk of having attackers gaining remote access.

Even though the C2 servers are no longer accessible at the time of analysis, we were still able to extrapolate some of
its behaviors, which can be seen below.

Anti-analysis Technique

The malware performs a simple background check before connecting to its command and control server. Initially, the
Nim backdoor spawns a command prompt to run tasklist.exe and checks for any processes running from its list of
known analysis tools. The backdoor will terminate itself shortly if it sees any of the analysis tools from the list running.

https://nim-lang.org/

6/8

Processes the backdoor avoids

Command and control through web protocol

Once the backdoor confirms there are no analysis tools running, it will spawn another command prompt instance to
get the machine’s hostname, then connect to its C&C server. It encrypts the hostname with a function named bakery.
The encrypted hostname is encoded twice in base64, spliced behind a randomly chosen C&C server URL, and then
concatenated with the “.asp” suffix at the end to obtain the URL of the final command. The command delivered by the
C&C server is obtained through an HTTP GET request.

Response data from GET contains the command from the C&C server. If the response data is different from the last
time it was fetched, it means that the C&C server has issued a new command. Otherwise it will be dormant and keep
requesting the command from the C&C server. Decryption of response data (command) is done by the confectionary
function, then concatenated with cmd /c to execute the command. The execution result is also sent back to the server
through a GET request. The key used for encryption and decryption is “NPA”, which may be an abbreviation of NP
(Nepal) Agent.

Screenshot of network traffic specific to the sample.

The sample contacts the following C2 hosts:

mail[.]mofa[.]govnp[.]org
nitc[.]govnp[.]org

7/8

mx1[.]nepal[.]govnp[.]org
dns[.]govnp[.]org

Persistence through Startup Folder and Scheduled Task
To retain access on the machine, a VBscript named “OCu3HBg7gyI9aUaB.vbs” is placed in the startup folder. The
script will initially confirm an internet connection using WMI’s “Win32_PingStatus” class to ping
https://www.google[.]com. If successful, it will run a batch file named “8lGghf8kIPIuu3cM.bat”.

The main task of the batch file “8lGghf8kIPIuu3cM.bat” is to drop files that will further unpack and create a scheduled
task for the payload. The batch file will create more scripts that will carry out these subtasks:

unz.vbs is used for decompressing the executable out from the archive into the same directory
unzFile.vbs creates unz.vbs
2L7uuZQboJBhTERK.bat is just for chaining; runs unzFile.vbs then runs 2BYretPBD4iSQKYS.bat
2BYretPBD4iSQKYS.bat is just for chaining; runs unz.vbs then runs d.bat
d.bat creates a scheduled task of the unpacked payload (conhost.exe) then runs e.bat
e.bat deletes itself and the other scripts created by 8lGghf8kIPIuu3cM.bat

The batch file named “d.bat” creates a scheduled task to attain another persistent execution of the malware on the
target machine. The scheduled task is named “ConsoleHostManager” as seen in the below screenshot.

Screenshot for Scheduled Task created.

Netskope Detection

Netskope Advanced Threat Protection provides proactive coverage against zero-day and APT samples of
malicious Office documents using both our static analysis engines and cloud sandbox. The following screenshot
shows the detection for e2a3edc708016316477228de885f0c39, indicating it was detected by Netskope Cloud
Sandbox, Netskope Advanced Heuristic Engine, and Netskope Threat Intelligence.

8/8

Conclusions

Malware written in uncommon programming languages puts the security community at a disadvantage as
researchers and reverse engineers’ unfamiliarity can hamper their investigation. Nim is one of the young
programming languages increasingly abused by malware authors. Aside from its familiar syntax, its cross-compilation
features allow attackers to write one malware variant and have it cross-compiled to target different platforms.
Netskope Threat Labs will continue monitoring the usage of unpopular programming languages.

IOCs

MD5
 e2a3edc708016316477228de885f0c39

 777fcc34fef4a16b2276e420c5fb3a73
 EF834A7C726294CE8B0416826E659BAA

 32C5141B0704609B9404EFF6C18B47BF

SHA-1
 3aa803baf5027c57ec65eb9b47daad595ba80bac

 5D2E2336BB8F268606C9C8961BED03270150CF65
 4CAE7160386782C02A3B68E7A9BA78CC5FFB0236
 0599969CA8B35BB258797AEE45FBD9013E57C133

SHA-256
 b5c001cbcd72b919e9b05e3281cc4e4914fee0748b3d81954772975630233a6e

 696f57d0987b2edefcadecd0eca524cca3be9ce64a54994be13eab7bc71b1a83
 88FA16EC5420883A9C9E4F952634494D95F06F426E0A600A8114F69A6127347F

 1246356D78D47CE73E22CC253C47F739C4F766FF1E7B473D5E658BA1F0FDD662

Network
mail[.]mofa[.]govnp[.]org

 nitc[.]govnp[.]org
 mx1[.]nepal[.]govnp[.]org

 dns[.]govnp[.]org

Thank you to Juan Diego Huet for helping analyze the sample files and contributing to this blog.

