
1/14

www.welivesecurity.com /en/eset-research/lazarus-luring-employees-trojanized-coding-challenges-case-spanish-aerospace-company/

Lazarus luring employees with trojanized coding challenges: The
case of a Spanish aerospace company

ESET Research

While analyzing a Lazarus attack luring employees of an aerospace company, ESET researchers discovered a
publicly undocumented backdoor

Peter Kálnai

29 Sep 2023 • , 29 min. read

ESET researchers have uncovered a Lazarus attack against an aerospace company in Spain, where the group
deployed several tools, most notably a publicly undocumented backdoor we named LightlessCan. Lazarus operators
obtained initial access to the company’s network last year after a successful spearphishing campaign, masquerading
as a recruiter for Meta – the company behind Facebook, Instagram, and WhatsApp.

The fake recruiter contacted the victim via LinkedIn Messaging, a feature within the LinkedIn professional social
networking platform, and sent two coding challenges required as part of a hiring process, which the victim
downloaded and executed on a company device. The first challenge is a very basic project that displays the text
“Hello, World!”, the second one prints a Fibonacci sequence – a series of numbers in which each number is the sum
of the two preceding ones. ESET Research was able to reconstruct the initial access steps and analyze the toolset
used by Lazarus thanks to cooperation with the affected aerospace company.

In this blogpost, we describe the method of infiltration and the tools deployed during this Lazarus attack. We will also
present some of our findings about this attack at the Virus Bulletin conference on October 4, 2023.

Key points of the blogpost:

Employees of the targeted company were contacted by a fake recruiter via LinkedIn and tricked
into opening a malicious executable presenting itself as a coding challenge or quiz.
We identified four different execution chains, delivering three types of payloads via DLL side-
loading .
The most notable payload is the LightlessCan backdoor, implementing techniques to hinder
detection by real-time security monitoring software and analysis by cybersecurity professionals; this
presents a major shift in comparison with its predecessor BlindingCan, a flagship HTTP(S) Lazarus
RAT.
We attribute this activity with a high level of confidence to Lazarus, particularly to its campaigns
related to Operation DreamJob.
The final goal of the attack was cyberespionage.

Lazarus delivered various payloads to the victims’ systems; the most notable is a publicly undocumented and
sophisticated remote access trojan (RAT) that we named LightlessCan, which represents a significant advancement

https://www.welivesecurity.com/en/eset-research/lazarus-luring-employees-trojanized-coding-challenges-case-spanish-aerospace-company/
https://undefined/en/our-experts/peter-kalnai/
https://undefined/en/our-experts/peter-kalnai/
https://www.virusbulletin.com/conference/vb2023/abstracts/lazarus-campaigns-and-backdoors-2022-2023/

2/14

compared to its predecessor, BlindingCan. LightlessCan mimics the functionalities of a wide range of native Windows
commands, enabling discreet execution within the RAT itself instead of noisy console executions. This strategic shift
enhances stealthiness, making detecting and analyzing the attacker’s activities more challenging.

Another mechanism used to minimize exposure is the employment of execution guardrails; Lazarus made sure the
payload can only be decrypted on the intended victim’s machine. Execution guardrails are a set of protective
protocols and mechanisms implemented to safeguard the integrity and confidentiality of the payload during its
deployment and execution, effectively preventing unauthorized decryption on unintended machines, such as those of
security researchers. We describe the implementation of this mechanism in the Execution chain 3: LightlessCan
(complex version) section.

Attribution to the Lazarus group

The Lazarus group (also known as HIDDEN COBRA) is a cyberespionage group linked to North Korea that has been
active since at least 2009. It is responsible for high-profile incidents such as both the Sony Pictures Entertainment
hack and tens-of-millions-of-dollar cyberheists in 2016, the WannaCryptor (aka WannaCry) outbreak in 2017, the 3CX
and X_TRADER supply-chain attacks, and a long history of disruptive attacks against South Korean public and
critical infrastructure since at least 2011. The diversity, number, and eccentricity in implementation of Lazarus
campaigns define this group, as well as that it performs all three pillars of cybercriminal activities: cyberespionage,
cybersabotage, and pursuit of financial gain.

Aerospace companies are not an unusual target for North Korea-aligned advanced persistent threat (APT) groups.
The country has conducted multiple nuclear tests and launched intercontinental ballistic missiles, which violate United
Nations (UN) Security Council resolutions. The UN monitors North Korea’s nuclear activities to prevent further
development and proliferation of nuclear weapons or weapons of mass destruction, and publishes biannual reports
tracking such activities. According to these reports, North Korea-aligned APT groups attack aerospace companies in
attempts to access sensitive technology and aerospace know-how, as intercontinental ballistic missiles spend their
midcourse phase in the space outside of Earth’s atmosphere. These reports also claim that money gained from
cyberattacks accounts for a portion of North Korea’s missile development costs.

We attribute the attack in Spain to the Lazarus group, specifically to Operation DreamJob, with a high level of
confidence. The name for Operation DreamJob was coined in a blogpost by ClearSky from August 2020, describing a
Lazarus campaign targeting defense and aerospace companies, with the objective of cyberespionage. Since then, we
have loosely used the term to denote various Lazarus operations leveraging job-offering lures but not deploying tools
clearly similar to those involved in its other activities, such as Operation In(ter)ception. For example, the campaign
involving tools signed with 2 TOY GUYS certificates (see ESET Threat Report T1 2021, page 11), and the case of
Amazon-themed lures in the Netherlands and Belgium published in September 2022.

Our attribution is based on the following factors, which show a relationship mostly with the previously mentioned
Amazon-themed campaign:

1. Malware (the intrusion set):

Initial access was obtained by making contact via LinkedIn and then convincing the target to execute malware,
disguised as a test, in order to succeed in a hiring process. This is a known Lazarus tactic, used at least since
Operation DreamJob.
We observed new variants of payloads that were previously identified in the Dutch case from last year, such as
intermediate loaders and the BlindingCan backdoor linked with Lazarus.
Multiple types of strong encryption were leveraged in the tools of this Lazarus campaign – AES-128 and RC6
with a 256-bit key – that were also used in the Amazon-themed campaign.

2. Infrastructure:

For the first-level C&C servers (listed in the Network section at the end of this blogpost), the attackers do not
set up their own servers, but compromise existing ones, usually those having poor security and that host sites
with neglected maintenance. This is a typical, yet weak-confidence behavior, of Lazarus.

3. Cui bono:

Pilfering the know-how of an aerospace company is aligned with long-term goals manifested by Lazarus.

Initial access
The group targeted multiple company employees via LinkedIn Messaging. Masquerading as a Meta recruiter, the
attacker used a job offer lure to attract the target’s attention and trust; a screenshot of this conversation, which we
obtained during our cooperation with the Spanish aerospace company, is depicted in Figure 1.

https://attack.mitre.org/groups/G0032/
https://www.welivesecurity.com/2014/12/08/sony-pictures-hacking-traced-thai-hotel-north-korea-denies-involvement/
https://www.welivesecurity.com/2016/03/15/bangladesh-central-bank-boss-quits-100m-cyberheist/
https://www.welivesecurity.com/2017/05/15/wannacryptor-key-questions-answered/
https://www.welivesecurity.com/2023/04/20/linux-malware-strengthens-links-lazarus-3cx-supply-chain-attack/
https://www.welivesecurity.com/2020/11/16/lazarus-supply-chain-attack-south-korea/
https://www.dia.mil/Portals/110/Documents/News/North_Korea_Military_Power.pdf
https://www.securitycouncilreport.org/un-documents/dprk-north-korea/
https://www.un.org/securitycouncil/sanctions/1718/panel_experts/reports
https://www.clearskysec.com/operation-dream-job/
https://www.welivesecurity.com/2020/06/17/operation-interception-aerospace-military-companies-cyberspies/
https://web-assets.esetstatic.com/wls/en/papers/threat-reports/eset_threat_report_t12021.pdf#page=11
https://www.welivesecurity.com/2022/09/30/amazon-themed-campaigns-lazarus-netherlands-belgium/
https://malpedia.caad.fkie.fraunhofer.de/details/win.blindingcan
https://www.microsoft.com/en-us/security/blog/2022/09/29/zinc-weaponizing-open-source-software/
https://en.wikipedia.org/wiki/Cui_bono
https://www.meta.com/

3/14

Figure 1. The initial contact by the attacker impersonating a
recruiter from Meta

At the beginning of Lazarus attacks, the unaware targets are usually convinced to recklessly self-compromise their
systems. For this purpose, the attackers employ different strategies; for example, the target is lured to execute an
attacker-provided (and trojanized) PDF viewer to see the full content of a job offer. Alternately, the target is
encouraged to connect with a trojanized SSL/VPN client, being provided with an IP address and login details. Both
scenarios are described in a Microsoft blogpost published in September 2022. The narrative in this case was the
scammer’s request to prove the victim’s proficiency in the C++ programming language.

Two malicious executables, Quiz1.exe and Quiz2.exe, were provided for that purpose and delivered via the Quiz1.iso
and Quiz2.iso images hosted on a third-party cloud storage platform. Both executables are very simple command line
applications asking for input.

The first one is a Hello World project, which is a very basic program, often consisting of just a single line of code, that
displays the text “Hello, World!” when executed. The second prints a Fibonacci sequence up to the largest element
smaller than the number entered as input. A Fibonacci sequence is a series of numbers in which each number is the
sum of the two preceding ones, typically starting with 0 and 1; however, in this malicious challenge, the sequence
starts with 1 and 2. Figure 2 displays example output from the Fibonacci sequence challenge. After the output is
printed, both executables trigger the malicious action of installing additional payloads from the ISO images onto the
target’s system. The task for a targeted developer is to understand the logic of the program and rewrite it in the C++
programming language.

Figure 2. The output of the decoy program Quiz2.exe

The chain of events that led to the initial compromise is sketched in Figure 3. The first payload delivered to the
target’s system is an HTTP(S) downloader that we have named NickelLoader. The tool allows the attackers to deploy
any desired program into the memory of the victim’s computer.

https://www.microsoft.com/en-us/security/blog/2022/09/29/zinc-weaponizing-open-source-software/

4/14

Figure 3. The chain of events completing the initial access

Post-compromise toolset

Once NickelLoader is running on the target’s system, the attackers use it to deliver two types of RATs. One of these
RATs is already known to be part of the Lazarus toolkit, specifically a variant of the BlindingCan backdoor with limited
functionality but identical command processing logic. To distinguish it, we put the prefix mini- in front of the variant’s
name. Additionally, the attackers introduced a RAT not previously undocumented publicly, which we have named
LightlessCan.

The RATs are deployed as the final step of chains of stages with varying levels of complexity and are preceded by
helper executables, like droppers and loaders. We denote an executable as a dropper if it contains an embedded
payload, even if it’s not dropped onto the file system but instead loaded directly into memory and executed. Malware
that doesn’t have an encrypted embedded data array, but that loads a payload from the file system, we denote as a
loader.

Besides the initial quiz-related lures, Table 1 summarizes the executable files (EXEs) and dynamic link libraries
(DLLs) delivered to the victim’s system. All the malware samples in the third column are trojanized open-source
applications (see the fourth column for the underlying project), with a legitimate executable side-loading a malicious
DLL. For example, the malicious mscoree.dll is a trojanized version of the legitimate NppyPluginDll; the DLL contains
an embedded NickelLoader and is loaded by a legitimate PresentationHost.exe, both located in the
C:\ProgramShared directory.

Table 1. Summary of binaries involved in the attack

Location directory Legitimate parent
process

Malicious
side-loaded
DLL

Trojanized
project

 (payload)

C:\ProgramShared\ PresentationHost.exe mscoree.dll NppyPluginDll
 (NickelLoader)

C:\ProgramData\Adobe\ colorcpl.exe colorui.dll LibreSSL 2.6.5
 (miniBlindingCan)

C:\ProgramData\Oracle\Java\ fixmapi.exe mapistub.dll
Lua plugin for
Notepad++
1.4.0.0

 (LightlessCan)

C:\ProgramData\Adobe\ARM\ tabcal.exe HID.dll
MZC8051 for
Notepad++ 3.2

 (LightlessCan)

LightlessCan – new backdoor
The most interesting payload used in this campaign is LightlessCan, a successor of the group’s flagship HTTP(S)
Lazarus RAT named BlindingCan. LightlessCan is a new complex RAT that has support for up to 68 distinct
commands, indexed in a custom function table, but in the current version, 1.0, only 43 of those commands are
implemented with some functionality. The remaining commands are present but have a formal implementation in the
form of placeholders, lacking actual functionality. The project behind the RAT is definitely based on the BlindingCan
source code, as the order of the shared commands is preserved significantly, even though there may be differences
in their indexing.

The most significant update is mimicked functionality of many native Windows commands like ping, ipconfig,
systeminfo, sc, net, etc. The hardcoded string “The operation completed successfully.”, the standard system message
for the ERROR_SUCCESS result, brought us to that idea. Table 2 contains a list of those commands that are
implemented in LightlessCan. In previously reported Lazarus attacks, as documented in blogposts by Positive
Technologies in April 2021 and HvS Consulting in December 2020, these native commands are often executed in
many instances after the attackers have gotten a foothold in the target’s system. However, in this case, these
commands are executed discreetly within the RAT itself, rather than being executed visibly in the system console.
This approach offers a significant advantage in terms of stealthiness, both in evading real-time monitoring solutions
like EDRs, and postmortem digital forensic tools. The internal version number (1.0) indicates that this represents a
new development effort by the attackers.

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/windows-commands
https://learn.microsoft.com/en-us/windows/win32/debug/system-error-codes--0-499-
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/lazarus-recruitment/
https://www.hvs-consulting.de/media/downloads/ThreatReport-Lazarus.pdf
https://blogs.jpcert.or.jp/en/2016/01/windows-commands-abused-by-attackers.html

5/14

As the core utilities of Windows are proprietary and not open-source, the developers of LightlessCan faced a choice:
either to reverse engineer the closed-source system binaries or to get inspired by the code available via the Wine
project, where many programs are rewritten in order to mimic their execution on other platforms like Linux, macOS, or
ChromeOS. We are inclined to believe the developers chose the first option, as the corresponding Wine programs
they mimicked in LightlessCan were implemented a little bit differently or not at all (e.g., netsh).

Interestingly, in one of the cases we analyzed, the LightlessCan payload is stored in an encrypted file on the
compromised machine, which can only be decrypted using an environment-dependent key. More details about this
can be found in the Execution chain 3: LightlessCan (complex version) section. This is to ensure that the payload can
only be decrypted on the computer of the intended victim and not, for example, on a device of a security researcher.

Table 2. The list of LightlessCan commands mimicking those for Windows prompt

Index Description
33 Mimic the ipconfig command from the Windows command prompt; see Figure 4.
34 Mimic the net command from the Windows prompt; see Figure 5.
35 Mimic the netshadvfirewall firewall command from the Windows prompt; see Figure 4.
36 Mimic the netstat command from the Windows prompt.
37 Mimic the ping -6 command from the Windows prompt.
38 Mimic the reg command from the Windows prompt; see Figure 7.
39 Mimic the sc command from the Windows prompt; see Figure 8.
40 Mimic the ping command from the Windows prompt.
41 Mimic the tasklist command from the Windows prompt.
42 Mimic the wmic process call create command from the Windows prompt; see Figure 9.
43 Mimic the nslookup command from the Windows Server prompt.
44 Mimic the schstasks command from the Windows prompt; see Figure 10.
45 Mimic the systeminfo command from the Windows prompt.
46 Mimic the arp command from the Windows prompt.
47 Mimic the mkdir command from the Windows prompt.

Figure 4. Hardcoded strings revealing the subset of the ipconfig functionality

Figure 5. Hardcoded strings revealing the subset of the net functionality

Figure 6. Hardcoded strings revealing the netsh firewall functionality

https://www.winehq.org/
https://gitlab.winehq.org/wine/wine/-/tree/master/programs
https://learn.microsoft.com/en-us/troubleshoot/windows-server/networking/net-commands-on-operating-systems
https://learn.microsoft.com/en-us/troubleshoot/windows-server/networking/netsh-advfirewall-firewall-control-firewall-behavior

6/14

Figure 7. Hardcoded strings revealing the (partial) reg functionality

Figure 8. Hardcoded strings revealing the (partial) sc functionality

Figure 9. Hardcoded strings revealing the wmic process call create functionality

Figure 10. Hardcoded strings revealing the (partial) schtasks functionality

Furthermore, an examination of the RAT’s internal configuration suggests that, in comparison to BlindingCan, Lazarus
increased the code sophistication in LightlessCan.

Technical analysis
In this section, we provide technical details about the compromise chain that delivers the NickelLoader downloader,
and the three execution chains Lazarus used to deliver its payloads on the compromised system.

Compromise chain: NickelLoader

NickelLoader is an HTTP(S) downloader executed on the compromised system via DLL side-loading, which is later
used to deliver other Lazarus payloads.

The process of delivering NickelLoader unfolds in a series of stages, commencing with the execution of
PresentationHost.exe, which is triggered automatically after the target manually executes the initial quiz challenges;
the Quiz1 case is depicted in Figure 3. A malicious dynamically linked library, mscoree.dll, is then side-loaded by the
legitimate PresentationHost.exe – both located in C:\ProgramShared\. This DLL is a trojanized NppyPluginDll.dll,
from the inactive General Python Plugins DLL for Notepad++ project from 2011. It serves as a dropper and has

https://learn.microsoft.com/en-us/windows-server/administration/windows-commands/reg
https://learn.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2012-r2-and-2012/cc754599(v=ws.11)
https://github.com/Ciantic/NppyPluginDll

7/14

various exports: all the exports copied from the original NppyPluginDll.dll plus all the exports from the legitimate
mscoree.dll. One of these legitimate exports, CorExitProcess, contains the malicious code responsible for the
decryption and execution of the next malware stage.

To successfully decrypt an encrypted data array embedded in the dropper, three 16-character-long keywords are
required by the dropper. These keywords are as follows:

1. the name of the parent process (PresentationHost),
2. the internal parameter hardcoded in the binary (9zCnQP6o78753qg8), and
3. the external parameter passed on the command line (‑embeddingObject), which is inherited from the parent

process of PresentationHost.exe, being provided by Quiz1.exe or Quiz2.exe.

The keywords are XOR-ed byte by byte and the output forms the AES-128 decryption key.

The payload is an HTTP(S) downloader that recognizes four commands, all five letters long, shown in Table 3.
Because of those five letter commands, we chose to name this payload “NickelLoader”, drawing inspiration from the
colloquial term for the US five-cent coin – a nickel. The most important commands are avdrq and gabnc. When these
commands are issued, each of them loads data received from the C&C server as a DLL. For this purpose, the
attackers probably used MemoryModule, a library that can be used to load a DLL completely from memory.

Table 3. The list of magic keywords recognized in received buffers

Keyword Description

abcde Requests another immediate command without the usual long sleep delay
that separates the execution of the commands.

avdrq Loads a DLL contained in the received buffer and executes its hardcoded
export info.

gabnc Loads a DLL contained in the received buffer.
dcrqv Terminates itself.

Execution chain 1: miniBlindingCan

One of the payloads downloaded and executed by NickelLoader is miniBlindingCan, a simplified version of the
group’s flagship BlindingCan RAT. It was reported for the first time by Mandiant in September 2022, under the name
AIRDRY.V2.

To load miniBlindingCan, a 64-bit malicious dynamically linked library colorui.dll is side-loaded by a legitimate
colorcpl.exe executed from C:\ProgramData\Adobe\ and serves as a dropper. The DLL is obfuscated using
VMProtect and contains thousands of exports from which LaunchColorCpl is the most important, as it handles the
execution of the next stage. There’s an encrypted data array in the DLL’s dumped body, together with multiple debug
symbols revealing the root directory and the project from which it was built:

W:\Develop\aTool\ShellCodeLoader\App\libressl-2.6.5\

As the name ShellCodeLoader suggests, the main purpose of this initial stage is to decrypt and load the data array
from its body, which contains shellcode. At the beginning of its execution, ShellCodeLoader employs anti-debugging
techniques by inspecting the BeingDebugged value within the Process Environment Block (PEB) structure to
determine if it’s being scrutinized or analyzed by debugging tools, and utilizes anti-sandbox techniques to avoid
detection within sandboxed environments designed for security analysis. The malware also explicitly checks whether
its parent process is colorcpl.exe; if not, it exits immediately.

The decrypted data array is not a complete DLL, but forms an intermediate blob with two parts: shellcode followed by
another encrypted data array, which represents the last step of the chain. The shellcode seems to be produced by an
instance of the open-source project ShellcodeRDI – in particular, the ShellcodeRDI.c code. It was probably produced
by executing the Python script ConvertToShellcode.py from this project on a payload DLL acting as a source for
reflective DLL injection.

The final payload is extracted and decrypted using XOR with a long key, which is a string built by concatenating the
name of the parent process (colorcpl.exe), the filename of the dropper (colorui.dll), and the external command line
parameter – in this case resulting in COLORCPL.EXECOLORUI.DLL669498484488D3F22712CC5BACA6B7A7.
This process is akin to what we observed with BlindingCan backdoor in the Dutch case we previously described in
this WeLiveSecurity blogpost. The decryption reveals an executable with download-and-execute functionality, whose
internal logic of sending and parsing commands is strongly reminiscent of BlindingCan, a flagship HTTP(S) Lazarus
RAT. Unlike the case in the Netherlands, it is not VMProtect-ed and it supports only a small subset of commands
available previously: compare Table 4in this blogpost and Table 3 in the blogpost on the Dutch case from September
2022. Because the features of this RAT are notably scaled down compared to those in BlindingCan, and yet they
seem to share the same server-side infrastructure, we have chosen to distinguish it by appending the prefix “mini-“ to
its name, highlighting its reduced functionality compared to its fully-featured RAT counterpart.

Table 4. Commands of miniBlindingCan

Command ID Description
8201 Send system information like computer name, Windows version, and code page.

https://github.com/fancycode/MemoryModule
https://www.mandiant.com/resources/blog/dprk-whatsapp-phishing
https://github.com/monoxgas/sRDI/tree/master/ShellcodeRDI
https://disman.tl/2015/01/30/an-improved-reflective-dll-injection-technique.html
https://www.welivesecurity.com/2022/09/30/amazon-themed-campaigns-lazarus-netherlands-belgium/
https://www.welivesecurity.com/2022/09/30/amazon-themed-campaigns-lazarus-netherlands-belgium/

8/14

Command ID Description
8232 Update the current communication interval with a value provided by the C&C server.
8233 Discontinue the command execution.
8241 Send the current configuration of size 9,392 bytes to the C&C server.
8242 Update the configuration of size 9,392 bytes, stored encrypted on the file system.
8247 Wait for the next command.
8248 Update the current communication interval with a value stored in the configuration.
8274 Download and decrypt a file from the C&C server.
8279 Execute shellcode passed as a parameter.

Figure 11 shows the decrypted state of a 9,392-byte-long configuration embedded in the RAT. It contains five URLs,
in this case compromised websites, each limited by a maximum size of 260 wide characters.

Figure 11. A configuration of the miniBlindingCan backdoor. The highlighted value is the count of URLs,
but only the first and the last of the five URLs are shown here. The purpose of the last two wide strings is
not known

Execution chain 2: LightlessCan (simple version)

Another payload we have seen executed by NickelLoader is LightlessCan, a new Lazarus backdoor. We have
observed two different chains loading this backdoor.

In the simple version of the chain, the dropper of this payload is the malicious dynamically linked library mapistub.dll
that is side-loaded by the legitimate fixmapi.exe executed from C:\ProgramData\Oracle\Java\. The DLL is a trojanized
Lua plugin, version 1.4, with all the exports copied from the legitimate Windows mapi32.dll. The export FixMAPI
contains malicious code responsible for decrypting and loading the next stage; all the other exports contain benign
code sourced from a publicly available MineSweeper sample project. This mapistub.dll dropper has persistence
established via a scheduled task. Unfortunately, we lack additional details about this task, except that its parent
process appears as %WINDOWS%\system32\svchost.exe -k netsvcs -p -s Schedule.

To successfully decrypt the embedded data array, the dropper needs three keywords to be provided correctly:

1. the name of the parent process (fixmapi.exe),
2. the internal parameter hardcoded in the binary (IP7pdINfE9uMz63n), and
3. the external parameter passed in the command line (AudioEndpointBuilder).

The keywords are XOR-ed byte by byte and the output forms a 128-bit AES key to be used for decryption. Note that
the length of the keywords are not all exactly 16 bytes, but the decryption process will still work if the oversized string
is truncated to a 16-byte length (for instance, AudioEndpointBuilder to AudioEndpointBui), and the undersized string,
fixmapi.exe, is treated as fixmapi.exe\x00\x00\x00\x00\x00, because the string was initialized as 260 instances of the
NUL character.

Execution chain 3: LightlessCan (complex version)

The most complex chain we observed on the compromised system also delivers LightlessCan, with various
components involved in the complete chain of installation stages: a legitimate application, an initial dropper, a
complete dropper (which contains the configuration), an intermediate dropper, a configuration file, a file with system
information (for the decryption of encrypted payloads on the file system), an intermediate loader and the final step,
the LightlessCan RAT. The connections and relationships among these files are illustrated in Figure 12.

https://en.wikipedia.org/wiki/Wide_character
https://github.com/gbelwariar/Self-Made-Projects/tree/master/Minesweeper
https://en.wikipedia.org/wiki/Null_character

9/14

Figure 12. A complex chain of stages delivering the fourth payload

The initial dropper of the fourth chain is a malicious dynamically linked library HID.dll that is side-loaded by a
legitimate executable, tabcal.exe, executed from C:\ProgramData\Adobe\ARM\. The DLL is a trojanized version of
MZC8051.dll, a legitimate file from the 8051 C compiler plugin project for Notepad++. It contains all the exports from
the original project, but also the necessary exports from the legitimate Hid User Library by Microsoft, so that the side-
loading by tabcal.exe will be successful. The export HidD_GetHidGuid contains the malicious code responsible for
dropping the next stage and, as in the case of the dropper of the previous chain (Execution chain 2), all the other
exports contain the benign MineSweeper code.

As in the previous cases, three long keywords must be provided to decrypt the embedded payload:

1. the name of the parent process (tabcal.exe),
2. the internal parameter hardcoded in the binary (9zCnQP6o78753qg8), and
3. the external parameter (LocalServiceNetworkRestricted) – this time not expressed as a command line

parameter, but instead as the content of a file located at %WINDOWS%\system32\thumbs.db.

Again, the keywords are XOR-ed byte by byte and the output forms a 128-bit AES key to be used for the decryption.
As in the previous case, the lengths of the keywords are not all exactly 16 bytes, but the decryption will still work if the

https://github.com/Jiangshan00001/npp_MZC8051

10/14

oversized string is truncated (for instance, to LocalServiceNetw) and the undersized string is extended with nulls (for
instance, to tabcal.exe\x00\x00\x00\x00\x00\x00).

The executable produced by the above recipe is the complete dropper from Figure 12 and has the InternalName
resource AppResolver.dll (found in the VERSIONINFO resource). It contains two encrypted data arrays: a small one
of 126 bytes, and a large one of 1,807,464 bytes (which contains three subparts). First, it decrypts the small array
using the RC6 algorithm with the hardcoded 256-bit key DA 48 A3 14 8D BF E2 D2 EF 91 12 11 FF 75 59 A3 E1 6E
A0 64 B8 78 89 77 A0 37 91 58 5A FF FF 07. The output represents paths to which the first two subparts of the large
blob are dropped (i.e., LightlessCan and the intermediate dropper), and yields the strings
C:\windows\system32\oci.dll and C:\windows\system32\grpedit.dat.

Next, it continues with decrypting the second data array – the large blob – using the same encryption key as before.
The result is a decrypted blob containing three subparts: a DLL corresponding to grpedit.dat (LightlessCan), a DLL
corresponding to oci.dll (the intermediate dropper), and a 14,948 byte encrypted file dropped to
%WINDOWS%\System32\wlansvc.cpl (configuration); as depicted in Figure 13.

Figure 13. The decrypted configuration stored in wlansvc.cpl

Moreover, the complete dropper also stores several characteristics identifying the compromised system in the file
%WINDOWS%\System32\4F59FB87DF2F, whose name is hardcoded in the binary. These characteristics are
primarily retrieved from the Computer\HKLM\HARDWARE\DESCRIPTION\System\BIOS registry path. Here are the
specific values of these characteristics, along with a PowerShell command provided in brackets that can be used to
display the corresponding value on any Windows machine:

SystemBIOSDate (Get-ItemProperty "HKLM:\HARDWARE\Description\System\BIOS" -Name
BIOSReleaseDate | Select-Object -Property BIOSReleaseDate)
SystemBIOSVersion (Get-CimInstance -ClassName Win32_Bios | Select-Object -Property Version)
SystemManufacturer (Get-CimInstance -ClassName Win32_ComputerSystem | Select-Object -Property
Manufacturer)
SystemProductName (Get-CimInstance -ClassName Win32_ComputerSystemProduct | Select-Object -
Property Name)
Identifier in
Computer\HKEY_LOCAL_MACHINE\HARDWARE\DESCRIPTION\System\MultifunctionAdapter\0\DiskController\0\DiskPeripheral\0

The concatenation of the values is required for decryption of the encrypted grpedit.dat from the file system. On a test
machine running an image of Windows 10 on VMWare, the output can be:

11/12/20INTEL - 6040000VMware, Inc.VMware Virtual Platform656ba047-20b25a2a-A

The oci.dll file is another dropping layer – the intermediate dropper that drops the intermediate loader, which is a
payload similar to the one described in the previously mentioned Dutch case. Again, the attackers used an open-
source project, the Flashing Tip plugin for Notepad++, which is no longer available online. Unlike the previous cases,
only two long keywords must be provided in order to decrypt the embedded payload successfully using AES-128:

https://www.welivesecurity.com/2022/09/30/amazon-themed-campaigns-lazarus-netherlands-belgium/
https://web.archive.org/web/0/https:/github.com/Nikipit/Flashing-tip

11/14

1. the name of the parent process (msdtc.exe), and
2. the internal parameter hardcoded in the binary (fb5XPNCr8v83Y85P).

Both keywords are XOR-ed byte by byte (the parent process name is truncated, or padded with NULLs, as necessary
to fill 16 bytes). The product of the decryption is the intermediate loader (LLTMapperAPI.dll). It uses the system
information (same as the values stored in 4F59FB87DF2F) to decrypt the configuration file wlansvc.cpl and to locate,
decrypt, and load the encrypted grpedit.dat, which is LightlessCan, the new full-featured RAT.

Conclusion
We have described a new Lazarus attack that originated on LinkedIn where fake recruiters approached their potential
victims, who were using corporate computers for personal purposes. Even though public awareness of these types of
attacks should be high, the success rates of these campaigns have still not dropped to zero.

The most worrying aspect of the attack is the new type of payload, LightlessCan, a complex and possibly evolving
tool that exhibits a high level of sophistication in its design and operation, representing a significant advancement in
malicious capabilities compared to its predecessor, BlindingCan.

The attackers can now significantly limit the execution traces of their favorite Windows command line programs that
are heavily used in their post-compromise activity. This maneuver has far-reaching implications, impacting the
effectiveness of both real-time monitoring solutions and of post-mortem digital forensic tools.

For any inquiries about our research published on WeLiveSecurity, please contact us
at threatintel@eset.com.

 ESET Research offers private APT intelligence reports and data feeds. For any inquiries about this
service, visit the ESET Threat Intelligence page.

IoCs
Files

SHA-1 Filename Detection
C273B244EA7DFF20B1D6B1C7FD97F343201984B3 %TEMP%\7zOC35416EE\Quiz1.exe Win64/NukeSped.KT

38736CA46D7FC9B9E5C74D192EEC26F951E45752 %TEMP%\7zOCB3CC96D\Quiz2.exe Win64/NukeSped.KT

C830B895FB934291507E490280164CC4234929F0 %ALLUSERSPROFILE%\Adobe\colorui.dll Win64/NukeSped.KV
8CB37FA97E936F45FA8ECD7EB5CFB68545810A22 N/A Win64/NukeSped.KU
0F33ECE7C32074520FBEA46314D7D5AB9265EC52 %ALLUSERSPROFILE%\Oracle\Java\mapistub.dll Win64/NukeSped.KW
C7C6027ABDCED3093288AB75FAB907C598E0237D N/A Win64/NukeSped.KW
C136DD71F45EAEF3206BF5C03412195227D15F38 C:\ProgramShared\mscoree.dll Win64/NukeSped.KT
E61672B23DBD03FE3B97EE469FA0895ED1F9185D N/A Win64/NukeSped.KT
E18B9743EC203AB49D3B57FED6DF5A99061F80E0 %ALLUSERSPROFILE%\Adobe\ARM\HID.dll Win64/NukeSped.KX
10BD3E6BA6A48D3F2E056C4F974D90549AED1B96 N/A Win64/NukeSped.KT
3007DDA05CA8C7DE85CD169F3773D43B1A009318 %WINDIR%\system32\grpedit.dat Win64/NukeSped.KW
247C5F59CFFBAF099203F5BA3680F82A95C51E6E %WINDIR%\system32\oci.dll @Trojan.Win64/NukeSp
EBD3EF268C71A0ED11AE103AA745F1D8A63DDF13 N/A Win64/NukeSped.KT

Network

IP Domain Hosting provider First seen Details

46.105.57[.]169 bug.restoroad[.]com OVH SAS 2021‑10‑10
A compromised legitimate site hosting the C&C server:

http://bug.restoroad[.]com/admin/view_status.php

50.192.28[.]29 hurricanepub[.]com
Comcast Cable
Communications,
LLC

2020‑01‑06
A compromised legitimate site hosting the C&C server:

https://hurricanepub[.]com/include/include.php

67.225.140[.]4 turnscor[.]com Liquid Web, L.L.C 2020‑01‑03
A compromised legitimate WordPress-based site hostin
the C&C server:

https://turnscor[.]com/wp-includes/contacts.php

78.11.12[.]13 mantis.quick.net[.]pl Netia SA 2021‑03‑22
A compromised legitimate site hosting the C&C server:

http://mantis.quick.net[.]pl/library/securimage/index.php

89.187.86[.]214 www.radiographers[.]org Coreix Ltd 2020‑10‑23
A compromised legitimate site hosting the C&C server:

https://www.radiographers[.]org/aboutus/aboutus.php

118.98.221[.]14 kapata-
arkeologi.kemdikbud.go[.]idPustekkom 2020‑01‑02

A compromised legitimate site hosting the C&C server:

https://kapata-
arkeologi.kemdikbud.go[.]id/pages/payment/payment.ph

160.153.33[.]195 barsaji.com[.]mx GoDaddy.com,
LLC 2020‑03‑27

A compromised legitimate site hosting the C&C server:

http://barsaji.com[.]mx/src/recaptcha/index.php

175.207.13[.]231 www.keewoom.co[.]kr Korea Telecom 2021‑01‑17
A compromised legitimate site hosting the C&C server:

http://www.keewoom.co[.]kr/prod_img/201409/prod.php

https://undefined/mailto:threatintel@eset.com?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=autotagging&utm_content=eset-research&utm_term=en
https://www.eset.com/int/business/services/threat-intelligence/?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=wls-research&utm_content=lazarus-luring-employees-trojanized-coding-challenges-case-spanish-aerospace-company

12/14

IP Domain Hosting provider First seen Details

178.251.26[.]65 kerstpakketten.horesca-
meppel[.]nl InterRacks B.V. 2020‑11‑02

A compromised legitimate WordPress-based site hostin
the C&C server:

https://kerstpakketten.horesca-meppel[.]nl/wp-
content/plugins/woocommerce/lib.php

185.51.65[.]233 kittimasszazs[.]hu
DoclerNet
Operations, ORG-
DHK1-RIPE

2020‑02‑22
A compromised legitimate site hosting the C&C server:

https://kittimasszazs[.]hu/images/virag.php

199.188.206[.]75 nrfm[.]lk Namecheap, Inc. 2021‑03‑13
A compromised legitimate WordPress-based site hostin
the C&C server:

https://nrfm[.]lk/wp-includes/SimplePie/content.php

MITRE ATT&CK techniques
This table was built using version 13 of the MITRE ATT&CK framework.

Tactic ID Name Description

Reconnaissance T1593.001
Search Open
Websites/Domains:
Social Media

Lazarus attackers used LinkedIn
to identify and contact specific
employees of a company of
interest.

Resource
Development

T1584.004 Acquire Infrastructure:
Server

Compromised servers were used
by the Lazarus HTTP(S)
backdoors and the downloader
for C&C.

T1585.001
Establish Accounts:
Social Media
Accounts

Lazarus attackers created a fake
LinkedIn identity of a headhunter
from Meta.

T1585.003 Establish Accounts:
Cloud Accounts

Lazarus attackers had to create
an account on a third-party cloud
storage in order to deliver the
initial ISO images.

T1587.001 Develop Capabilities:
Malware

Custom tools from the attack are
likely developed by the attackers.
Some exhibit highly specific
kernel development capacities
seen earlier in Lazarus tools.

T1608.001 Stage Capabilities:
Upload Malware

Lazarus attackers uploaded the
initial ISO images to a cloud
storage.

Initial Access
T1566.002 Phishing:

Spearphishing Link
The target received a link to a
third-party remote storage with
malicious ISO images.

T1566.003
Phishing:
Spearphishing via
Service

The target was contacted via
LinkedIn Messaging.

Execution

T1106 Native API
Windows APIs are essential for
miniBlindingCan and
LightlessCan to function and are
resolved dynamically at runtime.

T1053 Scheduled Task/Job
Based on the parent process, a
scheduled task was probably
created to trigger thesimple chain
of the LightlessCan execution.

T1129 Shared Modules
NickelLoader can load and
execute an arbitrary DLL within
memory.

T1204.002 User Execution:
Malicious File

Lazarus attackers relied on the
execution of Quiz1.exe and
Quiz2.exe from the ISO files.

T1047
Windows
Management
Instrumentation

One of the LightlessCan
commands allows creation of a
new process via WMI.

Persistence T1053 Scheduled Task/Job

Based on the parent process, a
scheduled task was probably
created to trigger the simple chain
of the LightlessCan execution.
Moreover, LightlessCan can
mimic the schtasks command.

Defense
Evasion

T1134.002
Access Token
Manipulation: Create
Process with Token

LightlessCan can create a new
process in the security context of
the user represented by the
specified token and collect the
output.

T1622 Debugger Evasion There’s an anti-debug check in
the dropper of miniBlindingCan.

https://attack.mitre.org/resources/versions/
https://attack.mitre.org/versions/v13/techniques/T1593/001/
https://attack.mitre.org/versions/v13/techniques/T1583/004/
https://attack.mitre.org/versions/v13/techniques/T1585/001/
https://attack.mitre.org/versions/v13/techniques/T1585/003/
https://attack.mitre.org/versions/v13/techniques/T1587/001/
https://attack.mitre.org/versions/v13/techniques/T1608/001/
https://attack.mitre.org/versions/v13/techniques/T1566/002/
https://attack.mitre.org/versions/v13/techniques/T1566/003/
https://attack.mitre.org/versions/v13/techniques/T1106/
https://attack.mitre.org/versions/v13/techniques/T1053/
https://attack.mitre.org/versions/v13/techniques/T1129/
https://attack.mitre.org/versions/v13/techniques/T1204/002/
https://attack.mitre.org/versions/v13/techniques/T1047/
https://attack.mitre.org/versions/v13/techniques/T1053/
https://attack.mitre.org/versions/v13/techniques/T1134/002/
https://attack.mitre.org/versions/v13/techniques/T1622/

13/14

Tactic ID Name Description

T1480 Execution Guardrails

There’s a parent process check in
the miniBlindingCan dropper. The
concatenation of the values is
required for decryption of the
encrypted LightlessCan from the
file system.

T1140 Deobfuscate/Decode
Files or Information

Many of these Lazarus tools and
configurations are encrypted on
the file system, e.g., LightlessCan
in grpedit.dat and its configuration
in wlansvc.cpl.

T1574.002
Hijack Execution
Flow: DLL Side-
Loading

Many of the Lazarus droppers
and loaders use a legitimate
program for their loading.

T1027.002
Obfuscated Files or
Information: Software
Packing

Lazarus obfuscated several
executables by VMProtect in this
attack, e.g., colorui.dll

T1027.007
Obfuscated Files or
Information: Dynamic
API Resolution

Both LightlessCan and
miniBlindingCan resolve Windows
APIs dynamically.

T1027.009
Obfuscated Files or
Information:
Embedded Payloads

The droppers of all malicious
chains contain an embedded data
array with an additional stage.

T1562.003
Impair Defenses:
Impair Command
History Logging

New features of LightlessCan
mimic the most useful Windows
command line utilities, to avoid
executing the original console
utilities.

T1562.004
Impair Defenses:
Disable or Modify
System Firewall

LightlessCan can mimic the netsh
command and interact with
firewall rules.

T1070.004 Indicator Removal:
File Deletion

LightlessCan has the ability to
delete files securely.

T1070.006 Indicator Removal:
Timestomp

LightlessCan can alter the
modification timestamps of files.

T1202 Indirect Command
Execution

LightlessCan bypasses command
execution by implementing their
functionality.

T1055 Process Injection
LightlessCan and
miniBlindingCan use various
types of process injection.

T1497.003
Virtualization/Sandbox
Evasion: Time Based
Evasion

The miniBlindingCan dropper has
an intentional initial execution
delay.

T1620 Reflective Code
Loading

Most of the droppers use
reflective DLL injection.

Discovery

T1083 File and Directory
Discovery

LightlessCan can locate a file by
its name.

T1135 Network Share
Discovery

LightlessCan can mimic the net
share command.

T1057 Process Discovery LightlessCan identifies processes
by name.

T1012 Query Registry
LightlessCan queries the registry
for various system information it
uses for encryption.

T1018 Remote System
Discovery

LightlessCan can mimic the net
view command.

T1016
System Network
Configuration
Discovery

LightlessCan can mimic the arp
and ipconfig commands.

T1049
System Network
Connections
Discovery

LightlessCan can mimic the
netstat command.

T1007 System Service
Discovery

LightlessCan can mimic the sc
query and tasklist commands.

Command and
Control

T1071.001
Application Layer
Protocol: Web
Protocols

NickelLoader, LightlessCan, and
miniBlindingCan use HTTP and
HTTPS for C&C.

T1573.001
Encrypted Channel:
Symmetric
Cryptography

LightlessCan and
miniBlindingCan encrypt C&C
traffic using the AES-128
algorithm.

T1132.001 Data Encoding:
Standard Encoding

LightlessCan and
miniBlindingCan encode C&C
traffic using base64.

Exfiltration T1041 Exfiltration Over C2
Channel

LightlessCan can exfiltrate data
to its C&C server.

References

https://attack.mitre.org/versions/v13/techniques/T1480/
https://attack.mitre.org/versions/v13/techniques/T1140/
https://attack.mitre.org/versions/v13/techniques/T1574/002/
https://attack.mitre.org/versions/v13/techniques/T1027/002/
https://attack.mitre.org/versions/v13/techniques/T1027/007/
https://attack.mitre.org/versions/v13/techniques/T1027/009/
https://attack.mitre.org/versions/v13/techniques/T1562/003/
https://attack.mitre.org/versions/v13/techniques/T1562/004/
https://attack.mitre.org/versions/v13/techniques/T1070/004/
https://attack.mitre.org/versions/v13/techniques/T1070/006/
https://attack.mitre.org/versions/v13/techniques/T1202/
https://attack.mitre.org/versions/v13/techniques/T1055/
https://attack.mitre.org/versions/v13/techniques/T1497/003/
https://attack.mitre.org/versions/v13/techniques/T1620/
https://attack.mitre.org/versions/v13/techniques/T1083/
https://attack.mitre.org/versions/v13/techniques/T1135/
https://attack.mitre.org/versions/v13/techniques/T1057/
https://attack.mitre.org/versions/v13/techniques/T1012/
https://attack.mitre.org/versions/v13/techniques/T1018/
https://attack.mitre.org/versions/v13/techniques/T1016/
https://attack.mitre.org/versions/v13/techniques/T1049/
https://attack.mitre.org/versions/v13/techniques/T1007/
https://attack.mitre.org/versions/v13/techniques/T1071/001/
https://attack.mitre.org/versions/v13/techniques/T1573/001/
https://attack.mitre.org/versions/v13/techniques/T1132/001/
https://attack.mitre.org/versions/v13/techniques/T1041/

14/14

[1] Microsoft Security Threat Intelligence, "ZINC weaponizing open-source software," 29 September 2022. [Online].

[2] D. Breitenbacher and O. Kaspars, "Operation In(ter)ception: Aerospace and military companies in the crosshairs
of cyberspies," June 2020. [Online].

[3] HvS-Consulting AG, "Greetings from Lazarus: Anatomy of a cyber-espionage campaign," 15 December 2020.
[Online].

[4] Positive Technologies Expert Security Center, "Lazarus Group Recruitment: Threat Hunters vs Head Hunters,"
Positive Technologies, 27 April 2021. [Online].

[5] P. Kálnai, "Amazon-themed campaigns of Lazarus in the Netherlands," 30 September 2022. [Online].

[6] P. Kálnai, "Lazarus campaigns and backdoors in 2022-2023," in Virus Bulletin International Conference, London,
2023.

[7] A. Martin, "Sony Pictures hacking traced to Thai hotel as North Korea denies involvement," WeLiveSecurity.com,
08 December 2014. [Online].

[8] P. Kálnai and M.-É. M.Leveillé, "Linux malware strengthens links between Lazarus and the 3CX supply chain
attack," ESET, 20 April 2023. [Online].

[9] Defense Intelligence Agency, North Korea military power : a growing regional and global threat, Washington, D.C.:
U.S. Government Publishing Office, 2021, p. 98.

[10] UN Panel of Experts, "UN Security Council Resolutions," 1993-2023. [Online].

[11] ESET Editor, "WannaCryptor aka WannaCry: Key questions answered," WeLiveSecurity.com, 15 May 2017.
[Online].

[12] Security Council Committee, "Sanctions Committee (DPRK), Panel of Experts, Reports," United Nations Security
Council, 2010-2023. [Online].

[13] ClearSky Research Team, "Operation ‘Dream Job’ Widespread North Korean Espionage Campaign," 13 August
2020. [Online].

[14] ESET Research, "Threat Report T1 2022," ESET, June 2022. [Online].

[15] D. Staples, "An Improved Reflective DLL Injection Technique," 30 January 2015. [Online].

[16] J. Maclachlan, M. Potaczek, N. Isakovic, M. Williams and Y. Gupta, "It's Time to PuTTY! DPRK Job Opportunity
Phishing via WhatsApp," Mandiant, 14 September 2022. [Online].

[17] S. Tomonaga, "Windows Commands Abused by Attackers," JPCERT/CC, 26 January 2016. [Online].

https://www.microsoft.com/en-us/security/blog/2022/09/29/zinc-weaponizing-open-source-software/
https://www.welivesecurity.com/wp-content/uploads/2020/06/ESET_Operation_Interception.pdf
https://www.hvs-consulting.de/media/downloads/ThreatReport-Lazarus.pdf
https://www.ptsecurity.com/ww-en/analytics/pt-esc-threat-intelligence/lazarus-recruitment/
https://www.welivesecurity.com/2022/09/30/amazon-themed-campaigns-lazarus-netherlands-belgium
https://www.welivesecurity.com/2014/12/08/sony-pictures-hacking-traced-thai-hotel-north-korea-denies-involvement/
https://www.welivesecurity.com/2023/04/20/linux-malware-strengthens-links-lazarus-3cx-supply-chain-attack/
https://www.securitycouncilreport.org/un-documents/dprk-north-korea/
https://www.welivesecurity.com/2017/05/15/wannacryptor-key-questions-answered/
https://www.un.org/securitycouncil/sanctions/1718/panel_experts/reports
https://www.clearskysec.com/wp-content/uploads/2020/08/Dream-Job-Campaign.pdf
https://web-assets.esetstatic.com/wls/2022/06/eset_threat_report_t12022.pdf
https://disman.tl/2015/01/30/an-improved-reflective-dll-injection-technique.html
https://www.mandiant.com/resources/blog/dprk-whatsapp-phishing
https://blogs.jpcert.or.jp/en/2016/01/windows-commands-abused-by-attackers.html
https://www.eset.com/int/business/services/threat-intelligence/?utm_source=welivesecurity.com&utm_medium=referral&utm_campaign=wls-research&utm_content=lazarus-luring-employees-trojanized-coding-challenges-case-spanish-aerospace-company

