
1/18

www.mandiant.com /resources/blog/lightshow-north-korea-unc2970

Stealing the LIGHTSHOW (Part One) — North Korea's UNC2970

Since June 2022, Mandiant has been tracking a campaign targeting Western Media and Technology companies from
a suspected North Korean espionage group tracked as UNC2970. In June 2022, Mandiant Managed Defense
detected and responded to an UNC2970 phishing campaign targeting a U.S.-based technology company. During this
operation, Mandiant observed UNC2970 leverage three new code families: TOUCHMOVE, SIDESHOW, and
TOUCHSHIFT. Mandiant suspects UNC2970 specifically targeted security researchers in this operation. Following
the identification of this campaign, Mandiant responded to multiple UNC2970 intrusions targeting U.S. and European
Media organizations through spear-phishing that used a job recruitment theme and demonstrated advancements in
the groups ability to operate in cloud environments and against Endpoint Detection and Response (EDR) tools.

UNC2970 is suspected with high confidence to be UNC577, also known as Temp.Hermit. UNC577 is a cluster of
North Korean cyber activity that has been active since at least 2013. The group has significant malware overlaps with
other North Korean operators and is believed to share resources, such as code and complete malware tools with
other distinct actors. While observed UNC577 activity primarily targets entities in South Korea, it has also targeted
other organizations worldwide.

UNC2970 has historically targeted organizations with spear phishing emails containing a job recruitment theme.
These operations have multiple overlaps with public reporting on “Operation Dream Job” by Google TAG, Proofpoint,
and ClearSky.

UNC2970 has recently shifted to targeting users directly on LinkedIn using fake accounts posing as recruiters.
UNC2970 maintains an array of specially crafted LinkedIn accounts based on legitimate users. These accounts are
well designed and professionally curated to mimic the identities of the legitimate users in order to build rapport and
increase the likelihood of conversation and interaction. UNC2970 uses these accounts to socially engineer targets
into engaging over WhatsApp, where UNC2970 will then deliver a phishing payload either to a target’s email, or
directly over WhatsApp. UNC2970 largely employs the PLANKWALK backdoor during phishing operations as well as
other malware families that share code with multiple tools leveraged by UNC577. Mandiant recently published a blog
post detailing UNC2970 activity that was identified by Mandiant Managed Defense during proactive threat hunting.
This activity was initially clustered as UNC4034 but has since been merged into UNC2970 based on multiple
infrastructure, tooling, and tactics, techniques, and procedures (TTP) overlaps.

When you're done reading this post, don't forget to check out part two on LIGHTSHIFT and LIGHTSHOW.

Summary

In June 2022, Mandiant Managed Defense detected and responded to an UNC2970 phishing campaign targeting a
U.S.-based technology company. During this operation, Mandiant observed UNC2970 leverage three new code
families: TOUCHMOVE, SIDESHOW, and TOUCHSHIFT. Mandiant suspects UNC2970 specifically targeted security
researchers in this operation. Following the identification of this campaign, Mandiant responded to multiple UNC2970
intrusions targeting U.S. and European Media organizations through spear-phishing that used a job recruitment
theme.

Initial Access

When conducting phishing operations, UNC2970 engaged with targets initially over LinkedIn masquerading as
recruiters. Once UNC2970 contacts a target, they would attempt to shift the conversation to WhatsApp, where they
would continue interacting with their target before sending a phishing payload that masqueraded as a job description.
In at least one case, UNC2970 continued interacting with a victim even after the phishing payload was executed and
detected, asking for screenshots of the detection.

The phishing payloads primarily utilized by UNC2970 are Microsoft Word documents embedded with macros to
perform remote-template injection to pull down and execute a payload from a remote command and control (C2).
Mandiant has observed UNC2970 tailoring the fake job descriptions to specific targets.

https://www.mandiant.com/resources/blog/lightshow-north-korea-unc2970
https://advantage.mandiant.com/campaigns/campaign--a88d0ca3-6887-5024-ac17-b1682250710c
https://advantage.mandiant.com/actors/threat-actor--90d4205f-c1a0-54ab-9d43-e2a507c82de9
https://www.mandiant.com/resources/blog/mapping-dprk-groups-to-government
https://blog.google/threat-analysis-group/countering-threats-north-korea/
https://www.proofpoint.com/us/blog/threat-insight/above-fold-and-your-inbox-tracing-state-aligned-activity-targeting-journalists
https://www.clearskysec.com/operation-dream-job/
https://advantage.mandiant.com/malware/malware--ec04315b-0ba3-552b-a008-fa519265cf1b
https://www.mandiant.com/resources/blog/dprk-whatsapp-phishing
https://www.mandiant.com/resources/blog/lightshift-and-lightshow
https://advantage.mandiant.com/malware/malware--4df9ff57-29d1-5094-a27c-841a416b07d6
https://advantage.mandiant.com/malware/malware--b209ce9f-5e33-5c51-a8f5-6307ced37da4
https://advantage.mandiant.com/malware/malware--aa058a44-5f15-59a4-94eb-4891bc817794
https://attack.mitre.org/techniques/T1221/

2/18

Figure 1: UNC2970 lure document

The C2 servers utilized by UNC2970 for remote template injection have primarily been compromised WordPress
sites, a trend observed in other UNC2970 code families as well as those used by other DPRK groups. At the time of
analysis, the remote template was no longer present on the C2, however following this phishing activity, Mandiant
identified it beaconing to a C2 associated with PLANKWALK.

In the most recent UNC2970 investigation, Mandiant observed the group returning to WhatsApp to engage their
targets. This activity overlaps with a recent blog post by MSTIC on operations from ZINC, as well as the previously
mentioned Mandiant blog post from July 2022.

The ZIP file delivered by UNC2970 contained what the victim thought was a skills assessment test for a job
application. In reality, the ZIP contained an ISO file, which included a trojanized version of TightVNC that Mandiant
tracks as LIDSHIFT. The victim was instructed to run the TightVNC application which, along with the other files, are
named appropriately to the company the victim had planned to take the assessment for.

In addition to functioning as a legitimate TightVNC viewer, LIDSHIFT contained multiple hidden features. The first was
that upon execution by the user, the malware would send a beacon back to its hardcoded C2; the only interaction this
needed from the user was the launching of the program. This lack of interaction differs from what MSTIC observed in
their recent blog post. The initial C2 beacon from LIDSHIFT contains the victim’s initial username and hostname.

LIDSHIFT’s second capability is to reflectively inject an encrypted DLL into memory. The injected DLL is a trojanized
Notepad++ plugin that functions as a downloader, which Mandiant tracks as LIDSHOT. LIDSHOT is injected as soon
as the victim opens the drop down inside of the TightVNC Viewer application. LIDSHOT has two primary functions:
system enumeration and downloading and executing shellcode from the C2.

LIDSHOT sends the following information back to its C2:

Computer Name

Product name as recorded in the following registry key SOFTWARE\\Microsoft\\Windows
NT\\CurrentVersion\\ProductName
IP address

Process List with User and Session ID associate per process

Establish Foothold

In multiple investigations, Mandiant has observed UNC2970 deploy PLANKWALK to establish footholds within
environments. PLANKWALK is a backdoor written in C++ that communicates over HTTP and utilizes multiple layers
of DLL sideloading to execute an encrypted payload. PLANKWALK is initially executed through a launcher that will
import and execute a second stage launcher expected to be on disk.

Observed First Stage Launcher names:

destextapi.dll

https://www.microsoft.com/en-us/security/blog/2022/09/29/zinc-weaponizing-open-source-software/
https://www.mandiant.com/resources/blog/dprk-whatsapp-phishing
https://advantage.mandiant.com/malware/malware--7ab8deac-e1ae-502f-a12f-2bab9a7d398e
https://advantage.mandiant.com/malware/malware--a9181d67-5769-5c15-91f1-16ea10c6788c

3/18

manextapi.dll

pathextapi.dll

preextapi.dll

Wbemcomn.dll

Once loaded and executed, the secondary launcher will attempt to decrypt and execute an encrypted PLANKWALK
sample on disk that matches the following pattern:

C:\ProgramData\Microsoft\Vault\cache<three numerical digits>.db

Once executed, PLANKWALK will decrypt an on-host encrypted configuration file that contains the C2 for the
backdoor. The C2 for PLANKWALK has largely been co-opted by legitimate WordPress sites.

Following the deployment of PLANKWALK, Mandiant observed UNC2970 leverage a wide variety of additional
tooling, including Microsoft InTune to deploy a shellcode downloader.

Tool Time: Kim “The Toolman” Taylor

During their operations, Mandiant has observed UNC2970 use a wide range of custom, post-exploitation tooling to
achieve their goals. One of UNC2970's go-to tools has been a dropper tracked as TOUCHSHIFT. TOUCHSHIFT
allows UNC2970 to employ follow-on tooling that range from keyloggers and screenshot utilities, to full featured
backdoors.

TOUCHSHIFT

TOUCHSHIFT is a malicious dropper that masquerades as mscoree.dllor netplwix.dll. TOUCHSHIFT is
typically created in the same directory and simultaneously as a legitimate copy of a Windows binary. TOUCHSHIFT
leverages DLL Search Order Hijacking to use the legitimate file to load and execute itself. TOUCHSHIFT has been
observed containing one to two various payloads which it executes in-memory. Payloads that have been seen include
TOUCHSHOT, TOUCHKEY, HOOKSHOT, TOUCHMOVE, and SIDESHOW.

To appear legitimate, the file uses over 100 exports that match common system export names. However, the majority
all point to the same empty function. The malicious code has been seen located in exports LockClrVersion or
UsersRunDllW in different instances.

Figure 2: Malicious export alongside several of the dummy exports

When TOUCHSHIFT contains a second payload, it takes a single character command line option as its first argument
to determine which of the two payloads to execute.

4/18

Figure 3: Checking command line options

To unpack its payload(s), TOUCHSHIFT generates a decryption key by XOR encoding its second argument and the
first 16 characters of the legitimate executable’s file name.

For example, in one instance Mandiant observed the arguments -CortanaUIFilter, XOR encoded with the
hardcoded key 009WAYHb90687PXkS,and printfilterpipel,which was XOR encoded with the hardcoded key
.sV%58&.lypQ[$= and was loaded by the file printfilterpipelinesvc.exe. In another instance, the
argument used was --forkavlauncher and the loading file was C:\windows\Branding\Netplwiz.exe.

Once the code is unpacked, it is then loaded into a memory location created by a call to VirtualAlloc and
executed from there.

Figure 4: Beginning of unpacked payload in memory

Once the payload(s) has/have been executed, the main portion of TOUCHSHIFT will sleep for a period of time
allowing the payload(s) to continue executing.

TOUCHSHIFT-ing into Gear — Follow on payloads

TOUCHSHOT

5/18

TOUCHSHOT takes screenshots of the system on which it is running and saves them to a file to be retrieved by the
threat actor at a later time. TOUCHSHOT is configured to take a screenshot every three seconds, and then uses
ZLIB to compress the images. The compressed data is then appended to a file that it creates and continues
appending new screenshots to this file until the file reaches five megabytes in size, at which point it will create a new
file with the same naming convention. TOUCHSHOT was seen embedded in the same instance of TOUCHSHIFT as
TOUCHKEY (discussed later in the post).

TOUCHSHOT will create a file in the C:\Users\{user}\AppData\Roaming\Microsoft\Windows\Themes\
directory, and will name the file ~DM{####}P.dat, where the four numbers are pseudo-randomly generated. Once
TOUCHSHOT has generated the file name, it attempts to create a handle to the file. If the return value indicates that
the file does not exist, it will then create the file. This check is performed as part of a loop that continues until a new
file needs to be created. After each iteration of the loop, TOUCHSHOT will then take a screenshot, which is
appended to the staging file.

Figure 5: Generation of the directory path

Figure 6: Generation of file name with pseudo-random
numbers

https://advantage.mandiant.com/malware/malware--be93805b-2f6f-5192-95c5-2ddaf8069086

6/18

Figure 7: Creating a handle to the file or creating it

Figure 8: Taking a screenshot

TOUCHKEY

TOUCHKEY is a keylogger that captures keystrokes and clipboard data, both of which are encoded with a single-byte
XOR and saved to a file. As with TOUCHSHOT, these files need to be acquired by the threat actor through additional
means.

Figure 9: XOR’ing data with byte 0x62 before writing to the staging file

TOUCHKEY creates two files in the C:\Users\
{user}\AppData\Roaming\Microsoft\Windows\Templates\directory. The file name Normal.dostis used
for storing the captured keystrokes, while the file name Normal.docbis used for the clipboard data. The full paths
are then passed into their own thread, where the keystrokes or clipboard data will be captured and appended to their
respective files.

https://advantage.mandiant.com/malware/malware--de7f76ac-05bf-52e7-9da0-46a99589ef21

7/18

Figure 10: Path generation for the staging files

Figure 11: Adding file names to the full path and creating the threads

In one of the created threads, TOUCHKEY will open the clipboard and grab the data that is stored within it. In the
other thread, TOUCHKEY will set a hook into the keyboard, and record any keys that are pressed.

Figure 12: Capturing the clipboard data

Figure 13: Capturing keystrokes

HOOKSHOT

HOOKSHOT is a tunneler that leverages a statically linked implementation of OpenSSL to communicate back to its
C2. While it connects over TCP, it does not make use of a client certificate for encryption.

Figure 14: Example of OpenSSL statically linked in the file

HOOKSHOT takes an encoded argument containing two IP and port pairs, which it will leverage for communicating
with its C2.

https://advantage.mandiant.com/malware/malware--b32a4eed-a125-5535-aba5-54ad762f0e4e

8/18

Figure 15: Separating IP’s and ports

HOOKSHOT will then create a socket using these two IP addresses, and tunnel traffic across them utilizing TLSv1.0.

Figure 16: Socket creation

TOUCHMOVE

TOUCHMOVE is a loader that decrypts a configuration file and a payload, both of which must be on disk, and then
executes the payload. TOUCHMOVE generates an RC6 key to decrypt the two files by querying the system’s BIOS
date, version, manufacturer, and product name. Once decrypted, the results are XOR encoded with a hardcoded key.
If the generated RC6 key is incorrect, the configuration and payload files will not successfully decrypt, indicating that
UNC2970 compiles instances of TOUCHMOVE after having already conducted reconnaissance on the target victim
system. Once the RC6 key is successfully generated, a handle is created to the configuration file, and the decryption
process is conducted. If the configuration file is successfully decrypted, the payload’s full path is located within it, and
the same decryption process then occurs on the payload. Following this, the payload is executed.

9/18

Figure 17: Bios query strings

Figure 18: Creating a handle to the configuration file

Figure 19: Creating a handle to the payload

SIDESHOW

SIDESHOW is a backdoor written in C/C++ that communicates via HTTP POST requests with its C2 server. The
backdoor is multi-threaded, uses RC6 encryption, and supports at least 49 commands, which can be seen in Table 1.
Capabilities include arbitrary command execution (WMI capable); payload execution via process injection; service,
registry, scheduled task, and firewall manipulation; querying and updating Domain Controller settings; creating
password protected ZIP files; and more. SIDESHOW does not explicitly establish persistence; however, based on the
multitude of supported commands it may be commanded to establish persistence.

SIDESHOW derives a system-specific RC6 key using the same registry values as TOUCHMOVE and uses the
generated key to decrypt the same configuration file from disk that TOUCHMOVE decrypted. The decrypted
configuration file contains a list of C2 URLs to which SIDESHOW communicates using HTTP POST requests.
SIDESHOW iterates this C2 URL list and attempts to authenticate to each C2 URL until it is successful. Once
successful, SIDESHOW enters a state of command processing and sends additional HTTP POST requests to
retrieve commands. SIDESHOW attempts to use the system's default HTTP User-Agent string during C2
communications; however, if not available it uses the hard-coded HTTP User-Agent string:

Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/97.0.4692.99 Safari/537.36 Edg/97.0.1072.69

When communicating to its C2 server via HTTP POST requests, SIDESHOW forms a URI parameter string
consisting of a mix of randomly selected and hard-coded URI parameters.

Authentication requests use the following URI parameter string format:

1<param_1>=<hex_seed>&<param_2>=pAJ9dk4OVq85jxKWoNfw1AG2C&<param_3>=<16_random_hex_chars>

The first URI parameter value comes from SIDESHOW’s configuration and is used to seed the random function.

The second URI parameter value, pAJ9dk4OVq85jxKWoNfw1AG2C, is hardcoded and likely an authentication
credential.

The third URI parameter value, <16_random_hex_chars>, is a session identifier (<session_id>) used for future
communications and consists of two subcomponents:

1. <8_random_hex_based_on_seed>
2. <8_random_hex_based_on_tickcount>

10/18

The first URI parameter's value, <hex_seed>, is used as a random seed value to derive the first eight hexadecimal
characters (<8_random_hex_based_on_seed>), whereas the last eight hexadecimal characters
(<8_random_hex_based_on_tickcount>) are derived using the CPU's current tick count as the random seed
value. This results in the value <8_random_hex_based_on_seed> being deterministic, while
<8_random_hex_based_on_tickcount> is pseudo-random.

The following is an example authentication URI parameter string:

1pguid=A59&ssln=pAJ9dk4OVq85jxKWoNfw1AG2C&cup2key=184B280E341AE63F

Figure 20: Building of URI parameter string

SIDESHOW parses the response and considers it a successful authentication if it contains the string <!DOCTYPE
html>.

Command requests use the following URI parameter string format (notice that the <param_2> and <param_3> have
switched locations in the string).

1<param_1>=<5_random_digits>&<param_3>=2<session_id>&<param_2>=<6_random_digits>

Example command URI parameter string:

1other=37685&session=2184B280E341AE63F&page=593881

SIDESHOW parses the command response body and extracts data following the string <!DOCTYPE html>.
SIDESHOW then appears to Base64 decode and RC6 decrypt the extracted data. SIDESHOW responds to the
commands listed in Table 1 (commands are described on a best effort basis).

Figure 21: Switch statement following parsing of command

Table 1: Commands supported by SIDESHOW
Command
ID Description

00 Get lightweight system information and a few configuration details
01 Enumerate drives and list free space
02 List files in directory
03 Execute arbitrary command via CreateProccess() and return output

04
Likely zip directory to create password protected ZIP file with password
AtbsxjCiD2axc*ic[3</8Ad81!G./1kiThAfkgnw

05 Download file to system
06 Execute process
07 Execute process and spoof parent process identifier (PID)
08 Execute PE payload via process injection for specified PID
09 Execute PE payload via loading into malware's memory space
0A List running processes and loaded DLLs
0B Terminate process
0C Securely delete a file by first writing random data and then calling DeleteFile()
0D Connect to specified IP address and port -- use unknown
0E Not implemented
0F Set current directory
10 Timestomp a file using another file's timestamp
11 Update beacon interval

11/18

12 Update beacon interval and save configuration to disk
13 Clean up by securely deleting supporting files, registry values, services, and exit
14 Load configuration from disk
15 Update configuration and save to disk
16 Get size of all files in a directory
17 Get specified drive's free disk space
18 Suspend a process
19 Suspend a process
1A Load DLL in another process
1B Unload DLL in another process
1C Copy file to another location
1D Remove directory
1E Move file to another location
1F Execute shellcode payload via process injection for specified PID
20 Execute shellcode payload via loading into malware's memory space
21 Get networking configuration information
22 Query or modify settings on a Windows Domain Controller
23 Query or modify system's firewall settings
24 List active TCP and UDP connections
25 Ping a remote system via ICMP requests -- usage unknown
26 Query or modify system's registry
27 Query or modify system's services
28 Ping a remote system via ICMP requests -- usage unknown
29 Get domain and user account name for which the malware's process is running under
2A Execute WMI command
2B Resolve domain name via DNS query
2C Query or modify system's scheduled tasks
2D Get heavyweight system information
2E Get networking interface information
2F Create directory
30 List files in directory

Reaching for the Clouds: Intune with CLOUDBURST

In at least one investigation, Mandiant identified the threat actors leveraging Microsoft Intune, Microsoft's endpoint
management solution, to deploy malware to hosts in the environment. Mandiant suspects that this method of malware
deployment was used due to the absence of a VPN solution for remote machines. In order to remotely execute code,
the attackers leveraged the Microsoft Intune management extension (IME) to upload custom PowerShell scripts
containing malicious code to various hosts in the client environment. While conducting forensic analysis on a host,
Mandiant identified the following Microsoft IME related PowerShell script command line arguments:

"C:\Windows\System32\WindowsPowerShell\v1.0\powershell.exe" -NoProfile -executionPolicy bypass -

file "C:\Program Files (x86)\Microsoft Microsoft IME\Policies\Scripts\42fb3cca-48dd-4412-a11a-

245384544402_f391eded-82d3-4506-8bf4-9213f6f4d586.ps1

At the time of analysis, Mandiant was unable to acquire the PS1 file itself, however; Mandiant was able to acquire a
full copy of the PS1 file from local Microsoft IME logs identified on a host, located at:

C:\ProgramData\Microsoft\IntuneManagementExtension\Logs\IntuneManagementExtension-YYYYMMDD-

HHMMSS.log

The entry in the local logs appeared as follows:

<![LOG[[PowerShell] response payload is [{"AccountId":"[userGUID]","PolicyId":"f391eded-82d3-4506-8bf4-

9213f6f4d586","PolicyType":1,"DocumentSchemaVersion":"1.0","PolicyHash":"P23cVfMyHLECSGPt1T6YYcoxhCLWKS05jX5M

ukC3MIw=","PolicyBody":"$EnModule = \"[Base64_encoded_CLOUDBURST_payload]"\r\n$DeModule =

[System.Convert]::FromBase64CharArray($EnModule, 0, $EnModule.Length)\r\nSet-Content

\"C:\\ProgramData\\mscoree.dll\" -Value $DeModule -Encoding Byte\r\nCopy-Item

\"C:\\Windows\\System32\\PresentationHost.exe\" -Destination \"C:\\ProgramData\"\r\nStart-Process -

NoNewWindow -FilePath \"C:\\ProgramData\\PresentationHost.exe\" -ArgumentList \"-

embeddingObject\"\r\n","PolicyBodySize":null,"PolicyScriptParameters":null,"ContentSignature":"

[Base64_encoded_signing_certificate]","isTombStoned":false,"isRecurring":false,"isFullSync":false,"ExecutionContext

"InternalVersion":1,"EnforceSignatureCheck":false,"RunningMode":1,"RemediationScript":null,"RunRemediation":false,"

RemediateScriptHash":null,"RemediationScriptParameters":null,"ComplianceRules":null,"ExecutionFrequency":0,"

RetryCount":0,"BlockExecutionNotifications":false,"ModifiedTime":null,"Schedule":null,"IsFirstPartyScript":false,"T

"ScriptApplicabilityStateDueToAssignmentFilters":null,"AssignmentFilterIdToEvalStateMap":

{},"HardwareConfigurationMetadata":null}]]LOG]!><time="06:59:15.2941778" date="6-9-2022" component="IntuneManagemen

context="" type="1" thread="5" file="">

The malicious PowerShell script was used to decode the Base64 encoded CLOUDBURST payload and drop it on
disk as C:\ProgramData\mscoree.dll. The script would then write a copy of

https://learn.microsoft.com/en-us/mem/intune/apps/intune-management-extension
https://advantage.mandiant.com/malware/malware--7a150a64-6dbe-5f09-bf3f-1e438999a025

12/18

C:\Windows\System32\PresentationHost.exe to C:\ProgramData and execute it with the argument -
embeddingObject. PresentationHost.exe is a legitimate Windows binary used by UNC2970 to sideload
CLOUDBURST.

Upon execution, PresentationHost.exe would load the CLOUDBURST payload into memory. Upon further
analysis of the Microsoft IME endpoint logs, Mandiant identified a unique GUID, f391eded-82d3-4506-8bf4-
9213f6f4d586, in the PolicyID field, which is a "Unique identifier of the Policy in the data warehouse". The Intune
Data Warehouse provides insight and information about an enterprise mobile environment, such as historical Intune
data and Intune data refreshed on a daily occurence. The identified GUID also matched the GUID of the PowerShell
script file name and the GUID observed in an IME associated registry key.

When reviewing the Intune Tenant admin Audit logs, Mandiant identified the same GUID under the ObjectID field. The
Intune Tenant audit logs shows records of activities that generate a change in Intune, including create, update (edit),
delete, assign, and remote actions. The logs revealed that the threat actors used a previously compromised account
to perform a create, assign, patch, and finally a delete action of a Device Management Script, using the Target
Microsoft.Management.Services.Api.DeviceManagementScript and the GroupID f391eded-82d3-
4506-8bf4-9213f6f4d586.

Further analysis revealed that ObjectID GUIDs referenced in the Intune Tenant admin Audit logs maps to the ID of
Mobile App assignment groups.

At the time of analysis, the GroupID f391eded-82d3-4506-8bf4-9213f6f4d586, was no longer present in the
Intune Endpoint management admin center, and was likely deleted by the threat actors.

In order to determine malicious usage of Microsoft Intune, Mandiant performed the following analysis steps:

1. Analyzed AzureAD sign-in logs for evidence of suspicious logons to the Microsoft Intune application
Analyzed Microsoft Intune audit logs for evidence of unexpected deployments and performed the
following:

Utilized the GroupID GUID to search for the presence of the following endpoint artifacts:
1. HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\IntuneManagementExtension\Policies\

<UserGUID>\<suspicious ObjectID GUID>
2. C:\Program Files (x86)\Microsoft Microsoft IME\Policies\Scripts\

<UserGUID>_<suspicious ObjectID GUID>.ps1
2. For hosts that had the aforementioned artifacts, the following was performed:

Acquired the PS1 file(s) and analyzed for malicious code
Performed traditional endpoint analysis

Mandiant tracks the malware being distributed via InTune as CLOUDBURST. CLOUDBURST is a downloader written
in C that communicates via HTTP. The malware attempts to make itself look like a legitimate version of
mscoree.dll, but contains fake exports, the same way that TOUCHSHIFT uses fake exports. One variant of
CLOUDBURST made use of legitimate open-source software that was added as exports, in addition to the fake
exports. The actual export with malicious code is CorExitProcess. The CorExitProcessexport expects the
single argument -embeddingObject.

Figure 22: Comparing command line argument with -embeddingObject

Once the aforementioned command line argument has been verified, CLOUDBURST builds the domain as a stack
string, and sends out the two following requests to the C2 server:

hxxps://[c2domain]/wp-content/plugins/contact.php?gametype=

<random_dword>&type=O8Akm8aV09Nw412KMoWJd

hxxps://[c2domain]/wp-content/plugins/contact.php?gametype=tennis&type=k<random_dword>

Following the network connections, CLOUDBURST conducts a host survey, in which it will determine the Product
Name, Computer Name, and enumerate running processes.

https://endpoint.microsoft.com/#blade/Microsoft_Intune_DeviceSettings/TenantAdminMenu/auditing
https://endpoint.microsoft.com/#view/Microsoft_AAD_IAM/GroupsManagementMenuBlade/~/AllGroups

13/18

Figure 23: Calling functions to enumerate the host

Upon completion of the host enumeration, CLOUDBURST then downloads and executes shellcode from the C2
server. At this time, Mandiant was unable to recover and identify the purpose of the shellcode downloaded by
CLOUDBURST.

Figure 24: Allocating and populating memory space, and executing the shellcode

Outlook and Implications

The identified malware tools highlight continued malware development and deployment of new tools by UNC2970.
Although the group has previously targeted defense, media, and technology industries, the targeting of security
researchers suggests a shift in strategy or an expansion of its operations. Technical indicators and the group’s TTPs
link it to TEMP.Hermit, although this latest activity suggests the group is adapting their capabilities as more of their
targets move to cloud services. To learn more about how UNC2970 further enabled its operations, please see part
two of our research.

Campaign Tracking

Mandiant will continue to monitor UNC2970’s campaigns and intrusion operations and will provide notable and
dynamic updates regarding changes in tactics and techniques, the introduction of tools with new capabilities, or the
use of new infrastructure to carry out their mission.

For more insights into how Mandiant tracks this and similar campaigns, see our Threat Campaigns feature within
Mandiant Advantage Threat Intelligence.

Recommended Mitigations

Hardening Azure AD and Microsoft Intune

Mandiant has observed UNC2970 leverage weak identity controls in Azure AD combined with Microsoft Intune’s
endpoint management capabilities to effectively deploy malicious PowerShell scripts onto unsuspecting endpoints.

Increasing Azure AD identity protections and limiting access to Microsoft Intune is essential in mitigating the attacker
activity observed by Mandiant. Organizations should consider implementing the following hardening controls:

Cloud-Only Accounts: Organizations should utilize cloud-only accounts for privileged access within Azure AD (e.g.,
Global Admins, Intune Administrator) and never assign privileged access to synced accounts from on-premises
identity providers such as Active Directory. Additionally, admins should utilize a separate “daily-driver” account for
day-to-day activities such as sending email or web-browsing. Dedicated admin accounts should be utilized to carry
out administrative functions only.

Enforce Strong Multi-Factor Authentication Methods: Organizations should consider enforcing enhanced and
phishing-resistant Multi-Factor Authentication (MFA) methods for all users and administrators. Weak MFA methods
commonly include SMS, Voice (phone call), OTPs, or Push notifications and should be considered for removal. MFA
enhancements for non-privileged users should include contextual information regarding the MFA request such as
number-matching, application name, and geographic location. For privileged accounts, Mandiant recommends the
enforcement of hardware tokens or FIDO2 Security Keys as-well as requiring MFA per each sign-in regardless of
location (e.g., Trusted Network, Corporate VPN). As an initial roll out for enhanced MFA methods, organizations
should focus on all accounts with administrative privileges in Azure AD. Microsoft has additional information regarding
contextual MFA settings.

https://www.mandiant.com/resources/blog/lightshift-and-lightshow
https://advantage.mandiant.com/campaigns/campaign--a88d0ca3-6887-5024-ac17-b1682250710c
https://www.mandiant.com/resources/blog/attacker-visibility-threat-campaigns
https://www.mandiant.com/advantage/threat-intelligence
https://learn.microsoft.com/en-us/azure/active-directory/authentication/how-to-mfa-additional-context

14/18

Privileged Identity Management (PIM) Solution: Mandiant recommends that organizations consider utilizing a PIM
solution. A PIM solution should include a Just-In-Time (JIT) access capability which will provide access when
requested, for a specific duration of time, and should initiate an approval flow, prior to providing an account access to
a highly privileged role (e.g., Global Administrator or Intune Administrator).

Conditional Access Policies (CAPs) to Enforce Security Restrictions in Azure AD: A CAP allows organizations
to set requirements for accessing cloud apps such as Intune, based on various conditions including location and
device platform. Mandiant recommends that Organizations utilize CAPs to restrict Azure administrative functions to
only compliant and registered devices in Azure AD and only from a specific subset of trusted IPs or ranges. Microsoft
has more information on leveraging CAPs to access Cloud Apps.

Azure Identity Protection: Azure Identity Protection is a security feature within Azure Active Directory that allows
organizations to automate the detection and remediation of identity-based risks. Identity Protection analyzes user
account activity as-well as sign-in activity to identify potentially compromised accounts or unauthorized authentication
requests. Identity Protection data can be leveraged to enhance Conditional Access Policies by enforcing access
controls based on user or sign-in risk. Additionally, Identity Protection risk data should be exported to a Security
Information and Event Management (SIEM) solution for further correlation and analysis. Note: Azure Identity
Protection requires an Azure AD Premium P2 License.

Multi Admin Approval with Intune: To prevent unauthorized changes, organizations utilizing Intune should
implement the Multi Admin Approval feature. This feature enforces a multiple administrative approval process that
requires secondary admin approval before modifying or creating Script and App deployments. Note: As of February
2023, Multi Admin Approval is in Public Preview and does not yet support request notifications. Requests will need to
be manually communicated to expedite the approval workflow. Microsoft has more information regarding Multi Admin
Approval.

Additional Security Controls

Block Office Macros: While Microsoft has changed the default behavior of Office applications to block macros from
the internet, Mandiant still recommends Organizations proactively deploy policies to control and enforce the behavior
of office files containing macros. Microsoft has more information on using policies to manage how Office handles
macros.

Disable Disk Image Auto-Mount: Mandiant has observed UNC2970 utilize trojanized ISO files containing malicious
payloads to bypass security controls and trick victims into executing malware. On Windows systems, the option to
mount an ISO by “right-clicking” the file then selecting “Mount” from the context menu can be removed by deleting the
registry keys associated with image file types (.iso, .img, .vhd, .vhdx). Deleting these registry keys will also prevent a
user from auto-mounting an image file by “double-clicking” the file.

Enhance PowerShell Logging: Increase PowerShell logging to provide security engineers and investigators the
visibility needed to detect malicious activity and provide a historical record of how PowerShell was used on systems.
For additional details regarding enhancing PowerShell logging, please reference to the Mandiant blog post, “Greater
Visibility Through PowerShell Logging”.

Indicators of Compromise

IOC Signature
e97b13b7e91edeceeac876c3869cc4eb PLANKWALK
a9e30c16df400c3f24fc4e9d76db78ef PLANKWALK
f910ffb063abe31e87982bad68fd0d87 PLANKWALK
30358639af2ecc217bbc26008c5640a7 LIDSHIFT
41dcd8db4371574453561251701107bc LIDSHOT
866f9f205fa1d47af27173b5eb464363 TOUCHSHIFT
8c597659ede15d97914cb27512a55fc7 TOUCHSHIFT
a2109276dc704dedf481a4f6c8914c6e TOUCHSHIFT
3bf748baecfc24def6c0393bc2354771 TOUCHSHOT
91b6d6efa5840d6c1f10a72c66e925ce TOUCHKEY
300103aff7ab676a41e47ec3d615ba3f HOOKSHOT
49425d6dedb5f88bddc053cc8fd5f0f4 TOUCHMOVE
abd91676a814f4b50ec357ca1584567e SIDESHOW
05b6f459be513bf6120e9b2b85f6c844 CLOUDBURST
hxxp://webinternal.anyplex[.]com/images/query_image.jsp PLANKWALK C2
hxxp://www.fainstec[.]com/assets/js/jquery/jquery.php PLANKWALK C2
hxxps://ajayjangid[.]in/js/jquery/jquery.php PLANKWALK C2
hxxps://sede.lamarinadevalencia[.]com/tablonEdictal/layout/contentLayout.jsp PLANKWALK C2
hxxps://leadsblue[.]com/wp-content/wp-utility/index.php LIDSHOT C2

https://learn.microsoft.com/en-us/azure/active-directory/conditional-access/concept-conditional-access-cloud-apps
https://learn.microsoft.com/en-us/mem/intune/fundamentals/multi-admin-approval
https://learn.microsoft.com/en-us/deployoffice/security/internet-macros-blocked#use-policies-to-manage-how-office-handles-macros
https://gist.github.com/wdormann/fca29e0dcda8b5c0472e73e10c78c3e7
https://www.mandiant.com/resources/blog/greater-visibility

15/18

hxxps://toptradenews[.]com/wp-content/themes/themes.php SIDESHOW C2
hxxp://mantis.quick.net[.]pl/library/securimage/index.php SIDESHOW C2
hxxp://www.keewoom.co[.]kr/prod_img/201409/prod.php SIDESHOW C2
hxxp://abba-servicios[.]mx/wordpress/wp-content/themes/config.php SIDESHOW C2
hxxp://www.ruscheltelefonia[.]com.br/public/php/index.php SIDESHOW C2
hxxps://olidhealth[.]com/wp-includes/php-compat/compat.php CLOUDBURST C2
hxxps://doug[.]org/wp-includes/admin.php CLOUDBURST C2
hxxps://crickethighlights[.]today/wp-content/plugins/contact.php CLOUDBURST C2

Mandiant Security Validation Actions
Organizations can validate their security controls using the following actions with Mandiant Security Validation.

VID Name
A105-491 Command and Control - QUESTDOWN, Exfiltration, Variant #1
A105-492 Command and Control - QUESTDOWN, Exfiltration, Variant #2
A105-493 Command and Control - QUESTDOWN, Next Stage Download Attempt, Variant #1
A105-494 Command and Control - QUESTDOWN, Status, Variant #1
A105-507 Phishing Email - Malicious Attachment, PLANKWALK Downloader, Variant #1
A105-508 Phishing Email - Malicious Attachment, QUESTDOWN Dropper, Variant #1
A105-514 Protected Theater - QUESTDOWN, Execution, Variant #1
S100-218 Malicious Activity Scenario - Campaign 22-046, QUESTDOWN Infection

Signatures

PLANKWALK

rule M_Hunt_APT_PLANKWALK_Code_String {

 meta:

 author = "Mandiant"

 description = "Detects a format string containing code and token found in PLANKWALK"

 strings:

 $hex = { 63 6F 64 65 [1-6] 3D 25 64 26 [1-6] 75 73 65 72 [1-6] 3D 25 73 26 [1-6] 74 6F 6B 65

}

 condition:

 (uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550) and $hex

}

LIDSHIFT

rule M_APT_Loader_Win_LIDSHIFT_1 {

 meta:

 author = "Mandiant"

 description = "Detects LIDSHIFT implant"

 strings:

 $anchor1 = "%s:%s:%s" ascii

 $encloop = { 83 ?? 3F 72 ?? EB ?? 8D ?? ?? B8 ?? 41 10 04 F7 ?? 8B ?? 2B ?? D1 ?? 03 ??

C1 ?? 05 6B ?? 3F 2B ?? 42 0F ?? ?? ?? 41 ?? ?? }

 condition:

 uint16(0) == 0x5a4d and all of them

}

LIDSHOT

rule M_APT_Loader_Win_LIDSHOT_1 {

 meta:

 author = "Mandiant"

 description = "Detects LIDSHOT implant"

https://www.mandiant.com/advantage/security-validation

16/18

 strings:

$code1 = { 4C 89 6D ?? 4C 89 6D ?? C7 45 ?? 01 23 45 67 C7 45 ?? 89 AB CD EF C7 45 ?? FE DC BA 98

C7 45 ?? 76 54 32 10 4C 89 6C 24 ?? 48 C7 45 ?? 0F 00 00 00 C6 44 24 ?? 00 }

 $code2 = { B8 1F 85 EB 51 41 F7 E8 C1 FA 03 8B CA C1 E9 1F 03 D1 6B CA 19 }

 $code3 = { C7 45 ?? 30 6B 4C 6C 66 C7 45 ?? 55 00 }

 condition:

 uint16(0) == 0x5a4d and all of them

}

CLOUDBURST

rule M_APT_Loader_Win_CLOUDBURST_1 {

 meta:

 author = "Mandiant"

 strings:

$anchor1 = "Microsoft Enhanced Cryptographic Provider v1.0" ascii wide

$code1 = { 74 79 70 }

$code2 = { 65 71 75 69 }

$code3 = { 62 6F 78 69 }

$code4 = { E8 ?? ?? ?? ?? FF C6 B8 99 99 99 99 F7 EE D1 FA 8B C2 C1 E8 1F 03 D0 8D 04 16 8D 34

90 85 F6 75 ?? }

$str1 = "%s%X"

 condition:

 uint16(0) == 0x5a4d and all of them

}

TOUCHSHIFT

rule M_DropperMemonly_TOUCHSHIFT_1 {

 meta:

 author = "Mandiant"

 description = "Hunting rule for TOUCHSHIFT"

 strings:

 $p00_0 = {0943??eb??ff43??b0??eb??e8[4]c700[4]e8[4]32c0}

 $p00_1 = {4c6305[4]ba[4]4c8b0d[4]488b0d[4]ff15[4]4c6305[4]ba[4]4c8b0d[4]488b0d}

 condition:

 uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and

 (

 ($p00_0 in (70000..90000) and $p00_1 in (0..64000))

)

}

SIDESHOW

rule M_APT_Backdoor_Win_SIDESHOW_1 {

 meta:

 author = "Mandiant"

 description = "Detects string deobfuscation function in SIDESHOW, may also detect other

variants of malware from the same actor"

 strings:

 $code1 = { 41 0F B6 ?? 33 ?? 48 ?? ?? 0F 1F 80 00 00 00 00 3A ?? 74 ?? FF ?? 48 FF ??

83 ?? 48 72 ?? EB ?? 41 0F ?? ?? 2B ?? ?? 39 8E E3 38 83 ?? 48 F7 ?? C1 ?? 04 8D ?? ?? C1 ?? 03 2B

?? ?? 39 8E E3 38 }

17/18

 condition:

 uint16(0) == 0x5a4d and (all of them)

}

TOUCHKEY

rule M_Hunting_TOUCHKEY {

 meta:

 author = "Mandiant"

 description = "Hunting rule For TOUCHKEY"

 strings:

 $a1 = "Normal.dost"

 $a2 = "Normal.docb"

 $c1 = "[SELECT]" ascii wide

 $c2 = "[SLEEP]" ascii wide

 $c3 = "[LSHIFT]" ascii wide

 $c4 = "[RSHIFT]" ascii wide

 $c5 = "[ENTER]" ascii wide

 $c6 = "[SPACE]" ascii wide

 condition:

 (uint16(0) == 0x5A4D) and uint32(uint32(0x3C)) == 0x00004550

 and filesize < 200KB and (5 of ($c*)) and $a1 and $a2

}

TOUCHSHOT

rule M_Hunting_TOUCHSHOT {

 meta:

 author = "Mandiant"

 description = "Hunting rule For TOUCHSHOT"

 strings:

 $path = "%s\\Microsoft\\Windows\\Themes\\" wide

 $format = "%04d%02d%02d-%02d%02d%02d"

 $s1 = "EnumDisplaySettingsExW" ascii

 $s2 = "GetSystemMetrics" ascii

 $s3 = "GetDC" ascii

 $s5 = "ReleaseDC" ascii

 condition:

 (uint16(0) == 0x5A4D) and uint32(uint32(0x3C)) == 0x00004550

 and filesize < 200KB and (3 of ($s*)) and $path and $format

}

HOOKSHOT

rule M_Hunting_HOOKSHOT {

 meta:

 author = "autopatt"

 description = "Hunting rule for HOOKSHOT"

 strings:

 $p00_0 = {8bb1[4]408873??85f675??488b81[4]488b88[4]4885c974??e8}

18/18

 $p00_1 = {8bf3488bea85db0f84[4]4c8d2d[4]66904c8d4424??8bd6488bcd}

 condition:

 uint16(0) == 0x5A4D and uint32(uint32(0x3C)) == 0x00004550 and

 (

 ($p00_0 in (470000..490000) and $p00_1 in (360000..380000))

)

}

Acknowledgements

Special thanks to John Wolfram, Rich Reece, Colby Lahaie, Dan Kelly, Joe Pisano, Jeffery Johnson, Fred Plan, Omar
ElAhdan, Renato Fontana, Daniel Kennedy, and all the members of Mandiant Intelligence and Consulting that
supported these investigations. We would also like to thank Lexie Aytes for creating Mandiant Security Validation
(MSV) actions, as well as Michael Barnhart, Jake Nicastro, Geoff Ackerman, and Dan Perez for their technical review
and feedback.

