
1/15

January 25, 2022

Watering hole deploys new macOS malware, DazzleSpy, in Asia
welivesecurity.com/2022/01/25/watering-hole-deploys-new-macos-malware-dazzlespy-asia

On November 11 , Google TAG published a blogpost about watering-hole attacks leading to exploits for
the Safari web browser running on macOS. ESET researchers had been investigating this campaign the
week before that publication, uncovering additional details about the targets and malware used to
compromise its victims. Here we provide a breakdown of the WebKit exploit used to compromise Mac
users and an analysis of the payload, which is a new malware family targeting macOS. But first, let’s look
at how victims came into contact with the malicious code in the first place.

Targets

It was reported by Felix Aimé from SEKOIA.IO that one of the websites used to propagate the exploits
was a fake website targeting Hong Kong activists. We can read on its home page “Liberate Hong Kong,
the revolution of our times”. The very recent registration date of the fightforhk[.]com domain, October 19 ,
2021, and the fact that the website is no longer accessible, supports that idea. We could also confirm that
the Internet Archive cached a copy of the web page on November 13 . This copy includes the malicious
iframe, as seen in Figure 1.

th

th

th

https://www.welivesecurity.com/2022/01/25/watering-hole-deploys-new-macos-malware-dazzlespy-asia/?utm_source=Twitter&utm_medium=cpc&utm_campaign=WLS_watering_hole&utm_term=WLS_watering_hole&utm_content=blog
https://blog.google/threat-analysis-group/analyzing-watering-hole-campaign-using-macos-exploits/
https://twitter.com/felixaime/status/1459452296321024003
https://archive.org/
https://www.welivesecurity.com/wp-content/uploads/2022/01/Figure-1.-fightforhk.com-as-archived-by-the-Wayback-Machine-on-November-13th.png

2/15

Figure 1. fightforhk[.]com, as archived by the Wayback Machine on November 13th

ESET researchers found another website, this time legitimate but compromised, that also distributed the
same exploit during the few months prior to the Google TAG publication: the online, Hong Kong, pro-
democracy radio station D100. As seen in Figure 2, an iframe was injected into pages served by
bc.d100[.]net – the section of the website used by subscribers – between September 30 and November
4 2021.

Both distribution methods have something in common: they attract visitors from Hong Kong with pro-
democracy sympathies. It seems that they were the primary target of this threat.

Figure 2. Excerpt of https://bc.d100[.]net/Product/Subscription on November 4th 2021

The exploit chain

As seen in Figure 3, the page hosted on the malicious amnestyhk[.]org domain checks for the installed
macOS version and redirects to the next stage if the browser is running on macOS 10.15.2 or newer.

Figure 3. Content of the defaultaa.html page on amnestyhk[.]org

The next stage, named 4ba29d5b72266b28.html (see Figure 4) simply loads the JavaScript containing
the exploit code – mac.js.

th

th

https://en.wikipedia.org/wiki/D100_Radio
https://www.welivesecurity.com/wp-content/uploads/2022/01/Figure-2.-Excerpt-of-https-bc.d100.-net-Product-Subscription-on-November-4th-2021.png
https://www.welivesecurity.com/wp-content/uploads/2022/01/Figure-3.-Content-of-the-defaultaa.html-page-on-amnestyhk.org_.png

3/15

Figure 4. Content of the 4ba29d5b72266b28.html page

Note that the script tag to load caps.js has been commented out. The previous version of the exploit
loaded Capstone.js from that file, while in the new version, Capstone.js is prepended to the exploit code
in mac.js.

The WebKit exploit

The exploit used to gain code execution in the browser is quite complex and had more than 1,000 lines of
code once formatted nicely. It’s interesting to note that some code, which suggests the vulnerability could
also have been exploited on iOS and even on PAC-enabled (Pointer Authentication Code) devices such
as the iPhone XS and newer, has been commented out, as seen in Figure 5.

Figure 5. Excerpt of the JavaScript exploit containing comments about how to target iOS and PAC-enabled devices

We have confirmed that the patch identified by Google TAG does fix the vulnerability. While it is possible
this vulnerability was assigned CVE-2021-1789, we couldn’t confirm due to the lack of publicly available
technical details. Below we outline our understanding of how the vulnerability affects Safari versions prior
to 14.1.

The exploit implements two primitives to gain memory read and write access: one to leak the address of
an object (addrof) and one to create a fake JavaScript object from a given memory address (fakeobj).
Using these two functions, the exploit creates two arrays of different types that overlap in memory, and
thus is able to set a value in one of them that is treated as a pointer when accessed using the other. The
technique is well described by Samuel Groß in his multiple publications on the subject. Below we explain
the vulnerability that made the leakage of object addresses possible.

https://www.welivesecurity.com/wp-content/uploads/2022/01/Figure-4.-Content-of-the-4ba29d5b72266b28.html-page.png
https://alexaltea.github.io/capstone.js/
https://developer.arm.com/documentation/102433/0100/Return-oriented-programming
https://www.welivesecurity.com/wp-content/uploads/2022/01/Figure-5.-Excerpt-of-the-JavaScript-exploit-containing-comments-about-how-to-target-iOS-and-PAC-enabled-devices.png
https://github.com/WebKit/WebKit/commit/f4e35a4796f9570c860d39f2701b2a8213f2e10a#diff-cc796f83ce6dd05d2337dcccb59527826a3bdf8cfa3faa686af7b67a1af9bd39
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-1789
http://www.phrack.org/issues/70/3.html#article
https://googleprojectzero.blogspot.com/2020/09/jitsploitation-one.html

4/15

The exploit relies on a side effect caused by modifying an object property to be accessible via a “getter”
function while enumerating the object’s properties in JIT-compiled code. The JavaScript engine
erroneously speculates that the value of the property is cached in an array and is not the result of calling
the getter function. We have extracted the relevant part of the code that enables the addrof primitive,
which you can see in Figure 6. Comments starting with (e)r are from ESET Research.

5/15

https://www.welivesecurity.com/wp-content/uploads/2022/01/Figure-6.-Commented-excerpt-of-the-exploit-enabling-the-leak-of-object-addresses.png

6/15

Figure 6. Commented excerpt of the exploit enabling the leak of object addresses

The first corruption happening here is the result of bar(vic). The function will return a pointer to a JSCell
object (to be more precise, a GetterSetter), which should never be accessible from the JavaScript code.
Here is the result of describe(bar(vic)) in a JavaScriptCore console:

Cell: 0x7fffb34dc080 (0x7ffff38cc4c8:[0x3af5, GetterSetter, {}, NonArray, Leaf]), StructureID: 15093

This JSCell is then converted to a JSObject by calling the JavaScript Object function. Internally, this
results in calling the JSCell’s toObject method. There is no implementation for converting a GetterSetter
to a JSObject and the code will eventually fall back and assume its type is a Symbol. The GetterSetter will
erroneously be cast to a Symbol. You may have noticed the assertion that the cell type is a Symbol before
performing the cast in the code; however, the ASSERT macro in WebKit is compiled out of release builds.

In memory, the location of getter[0] is the same as this corrupted symbol’s value. Thus, reassigning a
value to getter[0] will change the value of the symbol. Its value is fetched from JavaScript using its
toString method.

The updated JavaScriptCore code now checks whether the object contains properties with GetterSetter
after the property enumeration, before considering whether the object’s attribute can be accessed
“quickly”.

Detailing the fake object creation would require an article of its own. In short, it abuses the same bug,
although this time the object is manipulated in a way that the JIT-compiled code accesses an item that is
out-of-bounds and returns an address that was carefully sprayed on the heap before the fetch.

The rest of the code allows bypassing mitigations, such as the Gigacage, and loads the next stage.

As explained by Google TAG, the JavaScript loads a Mach-O executable file in memory. The rudimentary
loader does not implement importing symbols from external libraries; instead, the addresses of dlopen
and dlsym are patched into the loaded Mach-O. These can then be used from the executable to
dynamically load and get the addresses of functions from external libraries.

Privilege escalation to root

Now that code execution has been gained, the next stage is a Mach-O that is loaded into memory and
executed. This Mach-O exploits a local privilege escalation vulnerability to run the next stage as root. Our
examination confirms Google’s analysis that the exploited vulnerability was described by Xinru Chi and
Tielei Wang in a presentation at zer0con 2021, but it was also presented in more details at MOSEC 2021
by Tielei Wang. The vulnerability has been assigned CVE-2021-30869. Figure 7 shows a call to a function
Tielei Wang called adjust_port_type in his last presentation. This function, responsible for changing the
internal type of a Mach port, is implemented the same way in the Mach-O as was presented at MOSEC.
Changing the type of a Mach port shouldn’t be possible unless a vulnerability exists.

https://www.welivesecurity.com/wp-content/uploads/2022/01/Figure-6.-Commented-excerpt-of-the-exploit-enabling-the-leak-of-object-addresses.png
https://github.com/WebKit/WebKit/blob/3453222bf9861631d4b2f984bc8609ba1ef3f855/Source/JavaScriptCore/runtime/GetterSetter.h#L43
https://github.com/WebKit/WebKit/blob/3453222bf9861631d4b2f984bc8609ba1ef3f855/Source/JavaScriptCore/runtime/JSCell.cpp#L178
https://tc39.es/ecma262/#sec-symbol-objects
https://webkit.org/blog/5397/a-guide-to-assertion-macros-in-webkit/
https://github.com/WebKit/WebKit/blob/f4e35a4796f9570c860d39f2701b2a8213f2e10a/Source/JavaScriptCore/runtime/Structure.cpp#L1489
https://labs.f-secure.com/archive/some-brief-notes-on-webkit-heap-hardening/
https://github.com/wangtielei/Slides/blob/main/zer0con21.pdf
https://github.com/wangtielei/Slides/blob/main/mosec21.pdf
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2021-30869
https://www.welivesecurity.com/wp-content/uploads/2022/01/Figure-7.-Altering-the-port-type-from-IKOT_NAMED_ENTRY-to-IKOT_HOST_PRIV-to-gain-access-to-special-privileged-Mach-ports.png

7/15

Figure 7. Altering the port type from IKOT_NAMED_ENTRY to IKOT_HOST_PRIV to gain access to special (privileged)
Mach ports

To summarize, the Mach-O does the following:

1. Downloads a file from the URL supplied as an argument
2. Decrypts this file using AES-128-EBC and TEA with a custom delta
3. Writes the resulting file to $TMPDIR/airportpaird and makes it executable
4. Uses the privilege escalation exploit to remove the com.apple.quarantineattribute from the file to

avoid asking the user to confirm the launch of the unsigned executable
5. Uses the same privilege escalation to launch the next stage with root privileges

The decrypted payload is where our analysis differs the most from what was described by Google TAG:
the payload delivered to vulnerable visitors to the D100 site was new macOS malware we named
DazzleSpy.

DazzleSpy

DazzleSpy is a full-featured backdoor that provides attackers a large set of functionalities to control, and
exfiltrate files from, a compromised computer. Our sample is a Mach-O binary file compiled for x86_64
CPU architecture.

Persistence

In order to persist on the compromised device, the malware adds a Property List file (plist; see Figure 8)
named com.apple.softwareupdate.plist to the LaunchAgents folder. The malware executable file is named
softwareupdate and saved in the $HOME/.local/ folder.

https://www.welivesecurity.com/wp-content/uploads/2022/01/Figure-8.-Property-List-file-in-LaunchAgents-folder.png

8/15

Figure 8. Property List file in LaunchAgents folder

C&C communications

DazzleSpy connects to a hardcoded C&C server; the IP address and port found in the sample we
decrypted was 88.218.192[.]128:5633. At first, the malware performs a TLS handshake, then uses a
custom protocol to exchange JSON objects to deliver commands from the C&C server to compromised
Macs. DazzleSpy’s binary contains an X.509 certificate used as a certificate authority (CA). It verifies that
the server’s certificate is issued by that authority. In practice, the same self-signed certificate is used for
both the CA and the C&C server. The technique protects the malware’s communications from potential
eavesdropping by refusing to send data if end-to-end encryption is not possible.

Table 1 contains the list of commands supported by DazzleSpy. The first column is the name of the
command that must be present in the JSON object received from the C&C server; many support optional
or mandatory parameters.

Table 1. DazzleSpy C&C commands

Command
name Purpose

heartbeat Sends heartbeat response.

info Collects information about compromised computer, including:
 • Hardware UUID and Mac serial number

 • Username
 • Information about disks and their sizes

 • macOS version
 • Current date and time

 • Wi-Fi SSID
 • IP addresses

 • Malware binary path and MD5 hash of the main executable
 • Malware version

 • System Integrity Protection status
 • Current privileges

 • Whether it’s possible to use CVE-2019-8526 to dump the keychain

searchFile Searches for the specified file on the compromised computer.

scanFiles Enumerates files in Desktop, Downloads, and Documents folders.

cmd Executes the supplied shell command.

restartCMD Restarts shell session.

restart Depending on the supplied parameter: restarts C&C command session, shell
session or RDP session, or cleans possible malware traces (fsck_hfs.log file and
application logs).

processInfo Enumerates running processes.

keychain Dumps the keychain using a CVE-2019-8526 exploit if the macOS version is lower
than 10.14.4. The public KeySteal implementation is used.

downloadFileInfo Enumerates the supplied folder, or provides creation and modification timestamps
and SHA-1 hash for a supplied filename.

downloadFile Exfiltrates a file from the supplied path.

file File operations: provides information, renames, removes, moves, or runs a file at
the supplied path.

uninstall Deletes itself from the compromised computer.

https://support.apple.com/en-us/HT209600
https://github.com/LinusHenze/Keysteal

9/15

Command
name Purpose

RDPInfo Provides information about a remote screen session.

RDP Starts or ends a remote screen session.

mouseEvent Provides mouse events for a remote screen session.

acceptFileInfo Prepares for file transfer (creates the folder at the supplied path, changes file
attributes if it exists).

acceptFile Writes the supplied file to disk. With additional parameters, updates itself or writes
files required for exploiting the CVE-2019-8526 vulnerability.

socks5 Starts or ends SOCKS5 session (not implemented).

recoveryInfo These seem like file recovery functions that involve scanning a partition. These
functions do not seem to work and are probably still in development; they contain
lots of hardcoded values.recovery

Artifacts

While analyzing the DazzleSpy binary we found a number of interesting artifacts that might suggest an
internal name for the malware and the authors’ origin.

In several places (for example, see Figure 9) the malware refers to osxrk and the string 1.1.0 seems likely
to be an internal version number.

Figure 9. Possible internal name and version number of the DazzleSpy malware

Moreover, it seems DazzleSpy’s authors were not so concerned about operational security as they have
left the username wangping in paths embedded in the binary. Figure 10 contains paths that reveal this
username and internal module names.

https://www.welivesecurity.com/wp-content/uploads/2022/01/Figure-9.-Possible-internal-name-and-version-number-of-the-DazzleSpy-malware.png

10/15

Figure 10. Paths embedded in the DazzleSpy binary

Once the malware obtains the current date and time on a compromised computer, as you see in Figure
11, it converts the obtained date to the Asia/Shanghai time zone (aka China Standard Time), before
sending it to the C&C server.

https://www.welivesecurity.com/wp-content/uploads/2022/01/Figure-10.-Paths-embedded-in-the-DazzleSpy-binary.png
https://www.welivesecurity.com/wp-content/uploads/2022/01/Figure-11.-Decompiled-code-of-the-getSystemDate-function.png

11/15

Figure 11. Decompiled code of the getSystemDate function

In addition, it should be noted that the DazzleSpy malware contains a number of internal messages in
Chinese, for example as seen in Figure 12.

Figure 12. Internal error message in Chinese

Conclusion

Given the complexity of the exploits used in this campaign, we asses that the group behind this operation
has strong technical capabilities. While there is information published online about the local privilege
escalation (LPE) vulnerability used here, we couldn’t find anything about the specific WebKit vulnerability
used to gain code execution in Safari. It’s also interesting that end-to-end encryption is enforced in
DazzleSpy and it won’t communicate with its C&C server if anyone tries to eavesdrop on the unencrypted
transmission by inserting a TLS-inspection proxy between the compromised system and the C&C server.

The watering-hole operations this group has pursued show that its targets are likely to be politically
active, pro-democracy individuals in Hong Kong. This campaign has similarities with one from 2020
where LightSpy iOS malware (described by TrendMicro and Kaspersky) was distributed the same way,
using iframe injection on websites for Hong Kong citizens leading to a WebKit exploit. We cannot confirm
at this point whether both campaigns are from the same group, but ESET Research will continue to track
and report on similar malicious activities.

Indicators of Compromise (IoCs)

Samples

SHA-1 Filename
ESET detection
name Description

F3772A23595C0B51AE32D8E7D601ACBE530C7E97 mac.js JS/Exploit.Agent.NQK JavaScript
code with
WebKit
exploit
launching
an LPE.

95889E0EF3D31367583DD31FB5F25743FE92D81D N/A OSX/Exploit.Agent.C Mach-O file
with LPE
launching
next stage.

https://www.welivesecurity.com/wp-content/uploads/2022/01/Figure-12.-Internal-error-message-in-Chinese.png
https://www.trendmicro.com/en_us/research/20/c/operation-poisoned-news--hong-kong-users-targeted-with-mobile-ma.html
https://securelist.com/ios-exploit-chain-deploys-lightspy-malware/96407/

12/15

SHA-1 Filename
ESET detection
name Description

EE0678E58868EBD6603CC2E06A134680D2012C1B server.enc OSX/DazzleSpy DazzleSpy
Mach-O
after
decryption
of
server.enc.

Filenames

$HOME/Library/LaunchAgents/com.apple.softwareupdate.plist
$HOME/.local/softwareupdate
$HOME/.local/security.zip
$HOME/.local/security/keystealDaemon
$HOME/.local/security/libkeystealClient.dylib

Network

URLs of Safari exploit

https://amnestyhk[.]org/ss/defaultaa.html
https://amnestyhk[.]org/ss/4ba29d5b72266b28.html
https://amnestyhk[.]org/ss/mac.js
https://amnestyhk[.]org/ss/server.enc

DazzleSpy C&C server

88.218.192[.]128:5633

DazzleSpy CA certificate

SHA-256: 1F862B89CC5557F8309A6739DF30DC4AB0865668193FDFF70BA93F05D4F8C8B8

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Certificate:

Data:

Version: 1 (0x0)

Serial Number: 10557282746731470350 (0x928300b9284a1e0e)

Signature Algorithm: sha256WithRSAEncryption

Issuer: C=11, ST=11, L=11, O=11, OU=11, CN=11/emailAddress=11@qq.com

Validity

Not Before: May 18 07:26:17 2021 GMT

Not After : May 16 07:26:17 2031 GMT

Subject: C=11, ST=11, L=11, O=11, OU=11, CN=11/emailAddress=11@qq.com

 Subject Public Key Info:

Public Key Algorithm: rsaEncryption

Public-Key: (2048 bit)

Modulus: …

13/15

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

Exponent: 65537 (0x10001)

Signature Algorithm: sha256WithRSAEncryption

-----BEGIN CERTIFICATE-----

MIIDTDCCAjQCCQCSgwC5KEoeDjANBgkqhkiG9w0BAQsFADBoMQswCQYDVQQGEwIx

MTELMAkGA1UECAwCMTExCzAJBgNVBAcMAjExMQswCQYDVQQKDAIxMTELMAkGA1UE

CwwCMTExCzAJBgNVBAMMAjExMRgwFgYJKoZIhvcNAQkBFgkxMUBxcS5jb20wHhcN

MjEwNTE4MDcyNjE3WhcNMzEwNTE2MDcyNjE3WjBoMQswCQYDVQQGEwIxMTELMAkG

A1UECAwCMTExCzAJBgNVBAcMAjExMQswCQYDVQQKDAIxMTELMAkGA1UECwwCMTEx

CzAJBgNVBAMMAjExMRgwFgYJKoZIhvcNAQkBFgkxMUBxcS5jb20wggEiMA0GCSqG

SIb3DQEBAQUAA4IBDwAwggEKAoIBAQDFfrP+LbCk9KhPH2gQ3V5lBWCpuM+yzBzn

ofL2RJiTMedP467Js4wzrP+qCkXs9STaOZCvYRFaCmfY9bG7PsrgqG90OHfVkttG

5xIdEpd5XPl+GYl/48ridpE7mgw+KO0oRxoyUO1if9nRXvHNGmx0C3i9Rb6ahynv

dEBAZVxeX20fDHMr0dvVe4TKst9g5W02o31zU54mx2f7m2Kgit+n+UsDA/uBRF/c

GcWsvQFVlcguFmBDt58t98BO5nEmI3iDEfUi8FTf2HVSS0LAYC83IkwZyWpML9Jn

uVg67KFKprNMmzBxDK0eDa9ZHObohj3iscM3IYXlCnicbOLYTCvRAgMBAAEwDQYJ

KoZIhvcNAQELBQADggEBAAvkJC5Fi8+Kz8roBhzCY3ayPLMMMj49aHGU/JDLZwsh

WSng5/eY7LrGkTqP0tKay/rrxQvyMeZftvB0DMCbxu0vndK/jTqruxS+ZXDkqyOb

ykU0Z6TqRZ/ltgcK9ii4R6PgUEynrJVZHtUHDtemulpHgPRjkFDA4emOui1kFdNT

gnUr0vgh12KlVNAm64UVh9kkneCTFZtYeCAGNw5kFknv5OgsjcaueqCsm3a3dxFq

7JqReIV1WDx+QEBXgM4itvQRY+d5pv5eOlz8sBzxFR7+Gh/Q9aJoPL+ZX7kouMEU

bKwsEwNCrWZWQu41ghFi/8MdqBxb2Nb9H4gCupqKdiI=

-----END CERTIFICATE-----

MITRE ATT&CK techniques

This table was built using version 10 of the MITRE ATT&CK framework.

Tactic ID Name Description

Resource
Development

T1583.001 Acquire
Infrastructure:
Domains

Domain names such as amnestyhq[.]org were
acquired to use on compromised web servers.

T1583.004 Acquire
Infrastructure: Server

Servers (or virtual servers) were rented to serve
WebKit exploits and used as C&C servers for
DazzleSpy.

T1584.004 Compromise
Infrastructure: Server

A legitimate website was compromised to add an
iframe loading malicious JavaScript code.

T1587.001 Develop Capabilities:
Malware

DazzleSpy is macOS malware developed to steal
information from its victims.

https://attack.mitre.org/resources/versions/
https://attack.mitre.org/versions/v10/techniques/T1583/001
https://attack.mitre.org/versions/v10/techniques/T1583/004
https://attack.mitre.org/versions/v10/techniques/T1584/004
https://attack.mitre.org/versions/v10/techniques/T1587/001/

14/15

Tactic ID Name Description

T1587.003 Develop Capabilities:
Digital Certificates

DazzleSpy verifies the authenticity of its C&C
server using an X.509 certificate.

T1587.004 Develop Capabilities:
Exploits

Undocumented Safari exploit was used to
compromise the targets.

T1608.004 Stage Capabilities:
Drive-by Target

This operation compromised a website that is
likely to be visited by its targets, to distribute
malware.

Initial Access T1189 Drive-by
Compromise

The compromised website served the exploit to
visitors using Safari on a Mac.

Execution T1569 System Services The exploit sends Mach messages to launchd to
remove the quarantine flag and to kuncd to launch
the malware.

Persistence T1543.001 Create or Modify
System Process:
Launch Agent

DazzleSpy persists by installing a Launch Agent.

Privilege
Escalation

T1068 Exploitation for
Privilege Escalation

An LPE exploit for macOS is used to elevate
privileges to root.

Defense
Evasion

T1620 Reflective Code
Loading

The LPE exploit downloading the next stage is
loaded and executed in memory only.

Credential
Access

T1555.001 Credentials from
Password Stores:
Keychain

DazzleSpy can steal credentials from the macOS
keychain.

Discovery T1083 File and Directory
Discovery

DazzleSpy can be used to enumerate files in
specific folders.

T1057 Process Discovery DazzleSpy can obtain the list of running
processes.

T1082 System Information
Discovery

DazzleSpy can obtain the macOS version.

T1016 System Network
Configuration
Discovery

DazzleSpy can obtain the IP address and Wi-Fi
SSID.

T1033 System Owner/User
Discovery

DazzleSpy can obtain the current username from
a compromised Mac.

T1124 System Time
Discovery

DazzleSpy can obtain the system time on a
compromised Mac.

Collection T1005 Data from Local
System

DazzleSpy can search for documents on the
compromised system.

T1113 Screen Capture DazzleSpy has the ability to record screen activity.

Command
and Control

T1071 Application Layer
Protocol

DazzleSpy uses a custom JSON-based protocol
for its C&C communications.

T1132.001 Data Encoding:
Standard Encoding

DazzleSpy uses base64 to encode parts of its
C&C communications.

T1573 Encrypted Channel DazzleSpy uses TLS encryption.

https://attack.mitre.org/versions/v10/techniques/T1587/003/
https://attack.mitre.org/versions/v10/techniques/T1587/004/
https://attack.mitre.org/versions/v10/techniques/T1608/004/
https://attack.mitre.org/versions/v10/techniques/T1189/
https://attack.mitre.org/versions/v10/techniques/T1569/
https://attack.mitre.org/versions/v10/techniques/T1543/001/
https://attack.mitre.org/versions/v10/techniques/T1068/
https://attack.mitre.org/versions/v10/techniques/T1620/
https://attack.mitre.org/versions/v10/techniques/T1555/001/
https://attack.mitre.org/versions/v10/techniques/T1083/
https://attack.mitre.org/versions/v10/techniques/T1057/
https://attack.mitre.org/versions/v10/techniques/T1082/
https://attack.mitre.org/versions/v10/techniques/T1016/
https://attack.mitre.org/versions/v10/techniques/T1033/
https://attack.mitre.org/versions/v10/techniques/T1124/
https://attack.mitre.org/versions/v10/techniques/T1005/
https://attack.mitre.org/versions/v10/techniques/T1113/
https://attack.mitre.org/versions/v10/techniques/T1071/
https://attack.mitre.org/versions/v10/techniques/T1132/001/
https://attack.mitre.org/versions/v10/techniques/T1573/

15/15

Tactic ID Name Description

T1571 Non-Standard Port DazzleSpy uses TCP port 5633.

Exfiltration T1041 Exfiltration Over C2
Channel

DazzleSpy exfiltrates data over its C&C
communications channel.

25 Jan 2022 - 11:30AM

https://attack.mitre.org/versions/v10/techniques/T1571/
https://attack.mitre.org/versions/v10/techniques/T1041/

