Backdoored Client from Mongolian CA MonPass

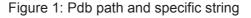
b decoded.avast.io/luigicamastra/backdoored-client-from-mongolian-ca-monpass

July 1, 2021

Introduction

We discovered an installer downloaded from the official website of MonPass, a major certification authority (CA) in Mongolia in East Asia that was backdoored with Cobalt Strike binaries. We immediately notified MonPass on 22 April 2021 of our findings and encouraged them to address their compromised server and notify those who downloaded the backdoored client.

We have confirmed with MonPass that they have taken steps to address these issues and are now presenting our analysis.


Our analysis beginning in April 2021 indicates that a public web server hosted by MonPass was breached potentially eight separate times: we found eight different webshells and backdoors on this server. We also found that the MonPass client available for download from 8 February 2021 until 3 March 2021 was backdoored.

This research provides analysis of relevant backdoored installers and other samples that we found occurring in the wild. Also during our investigation we observed relevant research from NTT Ltd so some technical details or IoCs may overlap.

All the samples are highly similar and share the same pdb path:

C:\Users\test\Desktop\fishmaster\x64\Release\fishmaster.pdb **and the string**: Bidenhappyhappy .

1	ABCE	DEFGHI	JKLMI	NOP	QRSTL	JVWXY	Zabco	defg	hijklmn	opqrstuv	wxyz012	345678	9+/	=
	ΗE	EAD			GΕ	Т	%2X		Bidenha	ppyhappy	happy	coun	t:%d,si	ize:%d⊠
s	< ^	۵.	ñ●	/J	_\<		¶r⊾<`	•	13		80			
			ÇВ	@©	ÉE	3 @⊜	ÿΒ	@©	Ha @⊜					
			ê	`				@) <u>8</u> I			۲		@
	C:\	\Users	\test	t∖De	eskto	op∖fi	shma	ster	\x64\Re	lease\fi	shmaste	er.pdb	!	

Technical details

The malicious installer is an unsigned PE file. It starts by downloading the legitimate version of the installer from the MonPass official website. This legitimate version is dropped to the C:\Users\Public\ folder and executed under a new process. This guarantees that the installer behaves as expected, meaning that a regular user is unlikely to notice anything suspicious.

Additional similar installers were also found in the wild, with SHA256 hashes: e2596f015378234d9308549f08bcdca8eadbf69e488355cddc9c2425f77b7535 and f21a9c69bfca6f0633ba1e669e5cf86bd8fc55b2529cd9b064ff9e2e129525e8.

Figure 2: This image is not as innocent as it may seem.

The attackers decided to use steganography to transfer shellcode to their victims. On execution, the malware downloads a bitmap image file from http://download.google-images[.]ml:8880/download/37.bmp as shown in **figure 2**.

The download is performed slightly unusually in two HTTP requests. The first request uses the HEAD method to retrieve the Content-Length, followed by a second GET request to actually download the image. After the picture is downloaded, the malware extracts the encrypted payload as follows. The hidden data is expected to be up to 0x76C bytes. Starting with the 3rd byte in image data it copies each 4th byte. The resulting data represents an ASCII string of hexadecimal characters which is later decoded into their respective binary values. These bytes are then XOR decrypted using the hardcoded key miat_mg, resulting in a Cobalt-Strike beacon.

We have seen multiple versions of this backdoored installer, each with slightly modified decryptors.

In version (f21a9c69bfca6f0633ba1e669e5cf86bd8fc55b2529cd9b064ff9e2e129525e8) the XOR decryption was stripped.

In the version (e2596f015378234d9308549f08bcdca8eadbf69e488355cddc9c2425f77b7535) basic anti-analysis tricks were stripped. In Figure 3, you can see different time stamps and the same rich headers.

Count of sections 6	Machine AMD64
Symbol table 00000000[0000000]	Fri Feb 26 08:16:23 2021
Size of optional header 00F0	Magic optional header 020B
Linker version 14.28	OS version 6.00
Image version 0.00	Subsystem version 6.00
Entry point 00003360	Size of code 00002E00
Size of init data 0005CE00	Size of uninit data 00000000
Size of image 00064000	Size of header 00000400
Base of code 00001000	
Image base 00000001`40000000	Subsystem GUI
Section alignment 00001000	File alignment 00000200
Stack 00000000`00100000	Heap 0000000`00100000
Stack commit 00000000`00001000	Heap commit 00000000`00001000
Checksum 0000000	Number of dirs 16

• Count of sections 6	Machine AMD64
Symbol table 00000000[0000000]	Mon Mar 01 08:56:04 2021
Size of optional header 00F0	Magic optional header 020B
Linker version 14.28	OS version 6.00
Image version 0.00	Subsystem version 6.00
Entry point 000032C0	Size of code 00002E00
Size of init data 0005CE00	Size of uninit data 00000000
Size of image 00064000	Size of header 00000400
Base of code 00001000	
Image base 00000001`40000000	Subsystem GUI
Section alignment 00001000	File alignment 00000200
Stack 0000000`00100000	Heap 00000000`00100000
Stack commit 00000000`00001000	Heap commit 00000000`00001000
Checksum 0000000	Number of dirs 16

Figure 3: Timestamps

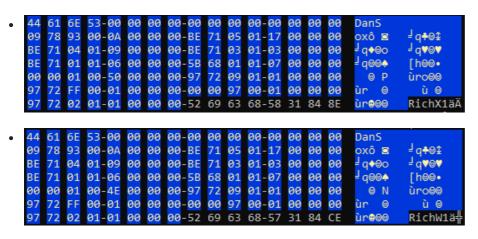
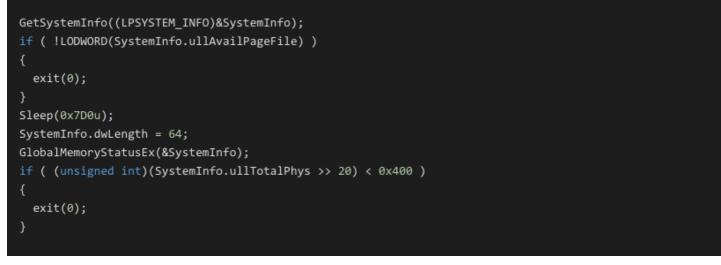



Figure 4: Rich header.

In the backdoored installer we also observed some basic anti-analysis techniques used in an attempt to avoid detection. In particular, we observed checks for the number of processors using the *GetSystemInfo* function, the amount of physical memory using the *GlobalMemoryStatusEx* function and the disk capacity using the IOCTL_DISK_GET_DRIVE_GEOMETRY IOCTL call. If any of the obtained values are suspiciously low, the malware terminates immediately.

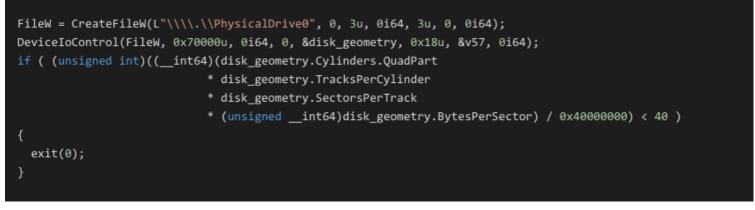


Figure 6: Anti-analysis technique testing for disk capacity

One of the samples (9834945A07CF20A0BE1D70A8F7C2AA8A90E625FA86E744E539B5FE3676EF14A9) used a different known technique to execute shellcode. First it is decoded from a list of UUIDs with *UuidFromStringA* API, then it is executed using *EnumSystemLanguageGroupsA*.

Figure 7:Decoding list from UUIDs and executing shellcode.

After we found a backdoored installer in one of our customers, we commenced hunting for additional samples in VT and in our user-base, to determine if there were more backdoored installers observed in the wild. In VT we found some interesting hits:

\bigcirc	🕢 No s	⊘ No security vendors flagged this file as malicious										
2 × Community √ Score	Browser_p	ec3ad283a9a0b130 olugin (8).exe assembly invalid-rid		edda855f883a3a4ff78	5514f97	107.00 KB Size	2021-03-12 18:11:52 UTC 1 month ago	EXE				
DETECTION	DETAILS	RELATIONS	CONTENT	SUBMISSIONS	COMMUNITY							

Figure 8: VT hit

We analyzed the sample and found out that the sample was very similar to infected installers found in our customers. The sample contained anti-analysis techniques using the same XOR decryption and also contained similar C2 server addresses (hxxp://download.google-

images.ml:8880/download/x37.bmp) as observed in previous backdoored installers. The sample also contained references to the link (hxxps://webplus-cn-hongkong-s-

5faf81e0d937f14c9ddbe5a0.oss-cn-hongkong.aliyuncs[.]com/Silverlight_ins.exe) and the file
path C:\users\public\Silverlight_ins.exe ; however these did not appear to be in use. The
sample name is also unusual - Browser_plugin (8).exe - we speculate that this may be a test
sample uploaded by the actor.

In VT we saw another hash

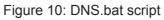
(4a43fa8a3305c2a17f6a383fb68f02515f589ba112c6e95f570ce421cc690910) again with the name Browser_plugin.exe. According to VT this sample has been downloaded from hxxps://jquerycode.ml/Download/Browser_Plugin.exe. It was downloading a PDF from hxxp://37.61.205.212:8880/dow/Aili.pdf PDF file Aili.pdf.

一、个人基	本情况 Pe	ersonal	Parti	culars							
T NN		e 知	女	民族 Race	越南	年齢 Age		28			
身份证号 272160266 ID No.			9E 9447.4		婚姻状况 Marital S	- 単 -		单身			
身高 Height	158cm		47 公斤		出生日期 Date Of Birth		1993/07/29		9		
最高学历 Educational	大学本和	大学本科		外语程度 Foreign language		英语基本交流		本交流			
联系电话 Contact Pho	ne				QQ NO. :						
护照号 Passport No		С	569269	2694 户籍所		地	定管县同奈省越		同奈省越	南国	
护照有效期 Passport Ex	piry	2	028/07	7/16	现住址 Present /	Address	定	司县曾	学县同奈省越南国		
何年月何年月 YY/MM—YY/MM 2011 年2015 年				在何处学习 Educational Instituti 人文与社会科学大学				^{专业} Major 中国语文系		学历 Qualification 中	
三、工作经	历 Employ	yment Re	ecord(s)							
何年月 YY/MM—Y			在何处工作 Work Unit			任何职务 Position			主要工作内容 Main works		
2016	远东服	装公	司(平	阳省) 翻译 现场翻译							
2018		康达太阳能有限公司 (胡志明市)			公司	翻译		翻译资料		译资料	
20182020			菲律宾			在线客服			接待客服		
四、职业技能 Occupational Skills											
电脑基本	电脑基本										

Figure 9: Content of Aili.pdf.

Afterwards it has the similar functionalities as previously mentioned samples from VT. That means it was downloading and decrypting Cobalt strike beacon from hxxp://micsoftin.us:2086/dow/83.bmp

In our database we again found the similar sample but with the name Browser_plugin (1).exe. This sample was downloaded from <a href="https://www.hxp:///www.hxp:///www.hxp:///www.hxp:///www.hxp:///www.hxp:///www.hxp:///www.hxp:///www.hxp:///www.hxp:///www.hxp:///www.hxp:///www.hxp:///www.hxp:///www.hxp:///www.hxp:////www.hxp:////www.hxp:////www.hxp:////www.hxp:////www.hxp:////www.hxp:///www.hxp:////www.hxp:////www.hxp:////www.hxp:////www.hxp://///www.hy


Compromised Web server content

On the breached web server, where you were able to download backdoored installer we found two executables DNS.exe (456b69628caa3edf828f4ba987223812cbe5bbf91e6bbf167e21bef25de7c9d2) and again Browser_plugin.exe (5cebdb91c7fc3abac1248deea6ed6b87fde621d0d407923de7e1365ce13d6dbe).

DNS.exe

It downloads from (hxxp://download.google-images.ml:8880/download/DNSs.bat) C&C server bat file, that is saved in C:\users\public\DNS.bat . It contains this script:

0 <mark>echo</mark> .off
ipconfig./flushdns
mshta.vbscript:msgbox("清除成功请重新启动客户端",64,"DNS.Cleared.successfully")(window.close)
close

In the second part of the instance, it contains the similar functionality and the same address of C&C server as the backdoored installer that we mentioned earlier.

Browser_plugin.exe

(5cebdb91c7fc3abac1248deea6ed6b87fde621d0d407923de7e1365ce13d6dbe)

This sample is very similar to this one

(4a43fa8a3305c2a17f6a383fb68f02515f589ba112c6e95f570ce421cc690910) with the same address of C&C server, but it doesn't download any additional document.

C&C server analysis

We checked the malicious web server hxxps://jquery-code.ml , from where

(4A43FA8A3305C2A17F6A383FB68F02515F589BA112C6E95F570CE421CC690910)

Browser_plugin.exe has been downloading. The malicious web server looks identical to the legitimate

one https://code.jquery.com/ the difference is the certificate. The legitimate server https://code.jquery.com is signed by Sectigo Limited while the malicious server is signed by Cloudflare, Inc.

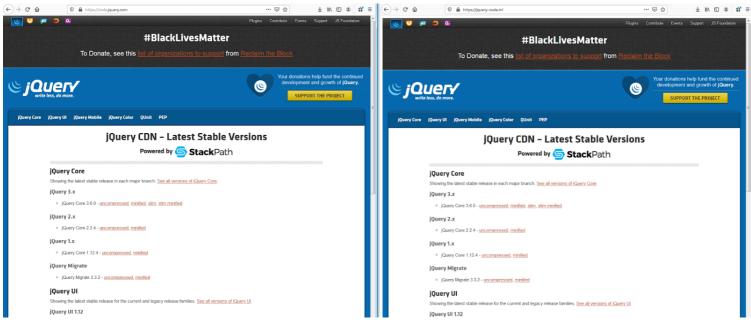


Figure 11: Comparing two sites

Conclusion

This blog post outlines our findings regarding the MonPass client backdoored with Cobalt Strike.

In our research we found additional variants on VirusTotal in addition to those we found on the compromised MonPass web server.

In our analysis of the compromised client and variants, we've shown that the malware was using steganography to decrypt Cobalt Strike beacon.

At this time, we're not able to make attribution of these attacks with an appropriate level of confidence. However it's clear that the attackers clearly intended to spread malware to users in Mongolia by compromising a trustworthy source, which in this case is a CA in Mongolia.

Most importantly, anyone that has downloaded the MonPass client **between 8 February 2021 until 3 March 2021** should take steps to look for and remove the client and the backdoor it installed.

I would like to thank Jan Rubín for helping me with this research.

Timeline of communication:

- March 24. 2021 Discovered backdoored installer
- April 8. 2021 Initial contact with Monpass through MN CERT/CC providing findings.
- April 20. 2021 MonPass shared a forensic image of an infected web server with Avast Threat Labs.

- April 22. 2021 Avast provided information about the incident and findings from the forensics image in a call with MonPass and MN CERT/CC.
- May 3. 2021 Avast followed up with MonPass in email. No response.
- May 10. 2021 Avast sent additional follow up email.
- June 4, 2021 MonPass replied asking for information already provided on April 22, 2021.
- June 14. 2021 Follow up from Avast to MonPass, no response
- June 29, 2021 Final email to MonPass indicating our plans to publish with a draft of the blog for feedback.
- June 29, 2021 Information from MonPass indicating they've resolved the issues and notified affected customers.
- July 1, 2021 Blog published.

Indicators of Compromise (IoC)

- Repository: https://github.com/avast/ioc/tree/master/MpIncident
- List of SHA-256: https://github.com/avast/ioc/blob/master/MpIncident/samples.sha256

date & time (UTC)	SHA256								
Feb 3, 2021 07:17:14	28e050d086e7d055764213ab95104a0e7319732c041f947207229ec7dfcd72c8								
Feb 26, 2021 07:16:23	f21a9c69bfca6f0633ba1e669e5cf86bd8fc55b2529cd9b064ff9e2e129525e8								
Mar 1, 2021 07:56:04	e2596f015378234d9308549f08bcdca8eadbf69e488355cddc9c2425f77b7535								
Mar 4, 2021 02:22:53	456b69628caa3edf828f4ba987223812cbe5bbf91e6bbf167e21bef25de7c9d2								
Mar 12, 2021 06:25:25	a7e9e2bec3ad283a9a0b130034e822c8b6dfd26dda855f883a3a4ff785514f97								
Mar 16, 2021 02:25:40	5cebdb91c7fc3abac1248deea6ed6b87fde621d0d407923de7e1365ce13d6dbe								
Mar 18, 2021 06:43:24	379d5eef082825d71f199ab8b9b6107c764b7d77cf04c2af1adee67b356b5c7a								
Mar 26, 2021 08:17:29	9834945a07cf20a0be1d70a8f7c2aa8a90e625fa86e744e539b5fe3676ef14a9								
Apr 6, 2021 03:11:40	4a43fa8a3305c2a17f6a383fb68f02515f589ba112c6e95f570ce421cc690910								

Timeline of compilation timestamps: