
1/15

October 5, 2021

UEFI threats moving to the ESP: Introducing ESPecter bootkit
welivesecurity.com/2021/10/05/uefi-threats-moving-esp-introducing-especter-bootkit

ESET researchers analyze a previously undocumented, real-world UEFI bootkit that persists on the EFI System

Partition (ESP). The bootkit, which we’ve named ESPecter, can bypass Windows Driver Signature Enforcement

to load its own unsigned driver, which facilitates its espionage activities. Alongside Kaspersky’s recent discovery

of the unrelated FinSpy bootkit, it is now safe to say that real-world UEFI threats are no longer limited to SPI

flash implants, as used by Lojax.

The days of UEFI (Unified Extensible Firmware Interface) living in the shadows of the legacy BIOS are gone for

good. As a leading technology embedded into chips of modern computers and devices, it plays a crucial role in

securing the pre-OS environment and loading the operating system. And it’s no surprise that such a widespread

technology has also become a tempting target for threat actors in their search for ultimate persistence.

In the last few years, we have seen proofs of concept examples of UEFI bootkits (DreamBoot, EfiGuard), leaked

documents (DerStarke, QuarkMatter) and even leaked source code (Hacking Team Vector EDK), suggesting the

existence of real UEFI malware either in the form of SPI flash implants or ESP implants. Despite all of the above,

only three real-world cases of UEFI malware have been discovered so far (LoJax, discovered by our team in

2018, MosaicRegressor, discovered by Kaspersky in 2019, and most recently the FinSpy bootkit, whose analysis

was just published by Kaspersky). While the first two fall in the category of SPI flash implants, the last falls in

the ESP implants category, and surprisingly, it’s not alone there.

Today, we describe our recent discovery of ESPecter, just the second real-world case of a UEFI bootkit persisting

on the ESP in the form of a patched Windows Boot Manager to be analyzed. ESPecter was encountered on a

compromised machine along with a user-mode client component with keylogging and document-stealing

functionalities, which is why we believe ESPecter is mainly used for espionage. Interestingly, we traced the roots

of this threat back to at least 2012, previously operating as a bootkit for systems with legacy BIOSes. Despite

ESPecter’s long existence, its operations and upgrade to UEFI went unnoticed and have not been documented

until now. Note that the only similarity between ESPecter and the Kaspersky FinSpy find is that they share the

UEFI boot manager compromise approach.

https://www.welivesecurity.com/2021/10/05/uefi-threats-moving-esp-introducing-especter-bootkit/
https://securelist.com/finspy-unseen-findings/104322/
https://www.welivesecurity.com/2018/09/27/lojax-first-uefi-rootkit-found-wild-courtesy-sednit-group/
https://github.com/quarkslab/dreamboot
https://github.com/Mattiwatti/EfiGuard
https://wikileaks.org/ciav7p1/cms/page_26968082.html
https://wikileaks.org/ciav7p1/cms/page_26968082.html
https://github.com/hackedteam/vector-edk
https://www.welivesecurity.com/wp-content/uploads/2018/09/ESET-LoJax.pdf
https://securelist.com/mosaicregressor/98849/


2/15

Figure 1. Comparison of the Legacy Boot flow (left) and UEFI boot flow (right) on Windows (Vista and newer) systems

By patching the Windows Boot Manager, attackers achieve execution in the early stages of the system boot

process (see Figure 1), before the operating system is fully loaded. This allows ESPecter to bypass Windows

Driver Signature Enforcement (DSE) in order to execute its own unsigned driver at system startup. This driver

then injects other user-mode components into specific system processes to initiate communication with

ESPecter’s C&C server and to allow the attacker to take control of the compromised machine by downloading

and running additional malware or executing C&C commands.

Even though Secure Boot stands in the way of executing untrusted UEFI binaries from the ESP, over the last few

years we have been witness to various UEFI firmware vulnerabilities affecting thousands of devices that allow

disabling or bypassing Secure Boot (e.g. VU#758382, VU#976132, VU#631788, …). This shows that securing

UEFI firmware is a challenging task and that the way various vendors apply security policies and use UEFI

services is not always ideal.

Previously, we have reported multiple malicious EFI samples in the form of simple, single-purpose UEFI

applications without extensive functionality. These observations, along with the concurrent discovery of the

ESPecter and FinFisher bootkits, both fully functional UEFI bootkits, show that threat actors are not relying

only on UEFI firmware implants when it comes to pre-OS persistence, but also are trying to take advantage of

disabled Secure Boot to execute their own ESP implants.

We were not able to attribute ESPecter to any known threat actor, but the Chinese debug messages in the

associated user-mode client component (as seen in Figure 2) leads us to believe with a low confidence that an

unknown Chinese-speaking threat actor is behind ESPecter. At this point, we don’t know how it was distributed.

https://www.welivesecurity.com/wp-content/uploads/2021/10/Figure-1.-Comparison-of-the-Legacy-Boot-flow-left-and-UEFI-boot-flow-right-on-Windows-Vista-and-newer-systems.png
https://www.kb.cert.org/vuls/id/758382
https://www.kb.cert.org/vuls/id/976132
https://www.kb.cert.org/vuls/id/631788
https://twitter.com/ESETresearch/status/1275770256389222400?s=20
https://securelist.com/finspy-unseen-findings/104322/


3/15

Figure 2. Example of Chinese debug messages in the user-mode client component

Evolution of the ESPecter bootkit

When we looked at our telemetry, we were able to date the beginnings of this bootkit back to at least 2012. At its

beginning, it used MBR (Master Boot Record) modification as its persistence method and its authors were

continuously adding support for new Windows OS versions. What is interesting is that the malware’s

components have barely changed over all these years and the differences between 2012 and 2020 versions are

not as significant as one would expect.

After all the years of insignificant changes, those behind ESPecter apparently decided to move their malware

from legacy BIOS systems to modern UEFI systems. They decided to achieve this by modifying a legitimate

Windows Boot Manager binary (bootmgfw.efi) located on the ESP while supporting multiple Windows versions

spanning Windows 7 through Windows 10 inclusive. As we mentioned earlier, this method has one drawback –

it requires that the Secure Boot feature be disabled in order to successfully boot with a modified boot manager.

However, it’s worth mentioning that the first Windows version supporting Secure Boot was Windows 8,

meaning that all previous versions are vulnerable to this persistence method.

For Windows OS versions that support Secure Boot, the attacker would need to disable it. For now, it’s unknown

how the ESPecter operators achieved this, but there are a few possible scenarios:

The attacker has physical access to the device (historically known as an “evil maid” attack) and manually

disables Secure Boot in the BIOS setup menu (it is common for the firmware configuration menu to still be

labeled and referred to as the “BIOS setup menu”, even on UEFI systems).

Secure Boot was already disabled on the compromised machine (e.g., user might dual-boot Windows and

other OSes that do not support Secure Boot).

Exploiting an unknown UEFI firmware vulnerability that allows disabling Secure Boot.

Exploiting a known UEFI firmware vulnerability in the case of an outdated firmware version or a no-

longer-supported product.

Technical analysis

During our investigation, we discovered several malicious components related to ESPecter:

Installers, only for the older MBR versions of the bootkit, whose purpose was to set up persistence on the

machine by rewriting the MBR of the boot device.

Boot code in the form of either a modified Windows Boot Manager (bootmgfw.efi) on UEFI systems or a

malicious MBR in the case of Legacy Boot systems.

A kernel-mode driver used to prepare the environment for the user-mode payloads and to load them in the

early stages of OS startup by injecting them into specific system processes.

User-mode payloads responsible for communication with the C&C, updating the C&C configuration and

executing C&C commands.

For the complete scheme of the ESPecter bootkit infection see Figure 3.



4/15

Figure 3. ESPecter bootkit components

Achieving persistence – UEFI boot

https://www.welivesecurity.com/wp-content/uploads/2021/10/Figure-3.-ESPecter-bootkit-components.png


5/15

On systems using UEFI Boot mode, ESPecter persistence is established by modifying the Windows Boot

Manager bootmgfw.efi and the fallback bootloader binary bootx64.efi, which are usually located in the ESP

directories \EFI\Microsoft\Boot\ and \EFI\Boot\, respectively. Modification of the bootloader includes adding

a new section called .efi to the PE, and changing the executable’s entry point address so program flow jumps to

the beginning of the added section, as seen in Figure 4.

Figure 4. Comparison of original (top) and modified (bottom) Windows Boot Manager (bootmgfw.efi)

Simplified boot chain

As shown in the scheme on the left in Figure 5, the boot process on UEFI systems (ignoring the firmware part)

starts with execution of the bootloader application located in the ESP. For the Windows OS, this is the Windows

Boot Manager binary (bootmgfw.efi) and its purpose is to find an installed operating system and transfer

execution to its OS kernel loader – winload.efi. Similar to the boot manager, the OS kernel loader is responsible

for the loading and execution of the next component in the boot chain – the Windows kernel (ntoskrnl.exe).

https://www.welivesecurity.com/wp-content/uploads/2021/10/Figure-4.-Comparison-of-original-top-and-modified-bottom-Windows-Boot-Manager-bootmgfw.efi_.png


6/15

Figure 5. Typical Windows UEFI boot flow (left) compared to the boot flow modified by ESPecter (right)

How does ESPecter modify the UEFI boot process?

In order to successfully drop its malicious payload, ESPecter needs to bypass integrity checks performed by the

Windows Boot Manager and the Windows kernel during the boot process. To do this, it looks for byte patterns

identifying the desired functions in memory and patches them accordingly.

Starting with the bootloader, in our case Windows Boot Manager (bootmgfw.efi), the bootkit begins by patching

the BmFwVerifySelfIntegrity function. This function is responsible for verification of the boot manager’s own

digital signature and is intended to prevent execution of a modified boot manager. In Figure 6 you can see how

ESPecter searches memory for BmFwVerifySelfIntegrity using various byte patterns (to support many

bootmgfw.efi versions) and modifies this function in a way that it always returns zero, indicating that

verification was successful.

As mentioned earlier, the bootloader’s main goal is to find an installed operating system and transfer execution

to its OS kernel loader. For the Windows Boot Manager, this happens in the

Archpx64TransferTo64BitApplicationAsm function; therefore, ESPecter looks for this function in order to catch

https://www.welivesecurity.com/wp-content/uploads/2021/10/Figure-5.-Typical-Windows-UEFI-boot-flow-left-compared-to-the-boot-flow-modified-by-ESPecter-right.png


7/15

the moment that the OS loader is loaded into memory, but still hasn’t been executed. If found, ESPecter patches

this function to insert its own detour function, which can easily modify the loaded OS loader in memory at the

right moment.

Figure 6. Hex-Rays decompiled code – searching for and patching the BmFwVerifySelfIntegrity function

Modification of the OS loader does not include patching of any integrity checks or other functionality. At this

stage it’s important for the bootkit to reallocate its code, because as a UEFI Application it will be unloaded from

memory after returning from its entry point function. For this purpose, it uses the BlImgAllocateImageBuffer or

BlMmAllocateVirtualPages function (depending on the pattern found). After this reallocation, the bootkit inserts

a detour (located in the previously allocated buffer) to the function responsible for transferring execution to the

OS kernel – OslArchTransferToKernel – so it can patch the Windows kernel in memory, once it is loaded but

before it is executed. The final stage of the bootkit’s boot code is responsible for disabling DSE by patching the

SepInitializeCodeIntegrity kernel function (see Figure 7 for details).

https://www.welivesecurity.com/wp-content/uploads/2021/10/Figure-6.-Hex-Rays-decompiled-code-%E2%80%93-searching-for-and-patching-the-BmFwVerifySelfIntegrity-function.png


8/15

Figure 7. Comparison of Hex-Rays decompiled SepInitializeCodeIntegrity function before (left) and after (right) it is patched

in memory

Interestingly, the boot code also patches the MiComputeDriverProtection kernel function. Even though this

function does not directly affect successful loading of the malicious driver, the bootkit does not proceed to the

driver dropping if it does not find and patch this function in kernel memory. We were not able to identify the

purpose of this second patch, but we assume this modified function may be used by other, as yet unknown,

ESPecter components.

\SystemRoot\System32\null.sys (driver)

\SystemRoot\Temp\syslog (encrypted configuration)

The configuration is used by the WinSys.dll user-mode component deployed by the kernel driver and consists of

a one-byte XOR key followed by the encrypted configuration data. To decrypt the configuration, WinSys.dll:

1. Base64 decodes the configuration data

2. XORs the data with the XOR key

3. Base64 decodes each value delimited by “|” separately

An example of a configuration dropped by the EFI version of ESPecter is presented in Figure 8. A full list of IP

addresses and domains from configurations embedded in the ESPecter bootkit samples that we have discovered

(both Legacy Boot and UEFI versions) is included in the IoCs section.

Figure 8. Decryption of configuration delivered by the EFI version of the ESPecter bootkit

https://www.welivesecurity.com/wp-content/uploads/2021/10/Figure-7.-Comparison-of-Hex-Rays-decompiled-SepInitializeCodeIntegrity-function-before-left-and-after-right-it-is-patched-in-memory.png
https://www.welivesecurity.com/wp-content/uploads/2021/10/Figure-8.-Decryption-of-configuration-delivered-by-the-EFI-version-of-the-ESPecter-bootkit.png


9/15

Achieving persistence – Legacy Boot

As already mentioned, there are ESPecter versions supporting UEFI, and others supporting Legacy Boot, modes.

In the case of Legacy Boot mode, persistence is achieved by the well-known technique of modifying the MBR

code located in the first physical sector of the disk drive; therefore, we won’t explain it in detail here, but will just

summarize it.

How does ESPecter modify the Legacy Boot process?

The malicious MBR first decrypts code previously copied to disk sectors 2, 3 and 4 by the installer, hooks the

real-mode INT13h (BIOS sector read-write services) interrupt handler and then passes execution to the original

MBR code, backed up to the second sector (sector 1) by the installer. Similar to other known MBR bootkits,

when the INT13h interrupt handler is invoked, hook code (located in sector 0) checks for service 0x02 (Read

sectors from drive) and 0x42 (Extended read sectors from drive) being handled in order to intercept loading of

bootmgr – the legacy version of the Windows Boot Manager. Note that ESPecter legacy versions do not need to

patch the BmFwVerifySelfIntegrity function in bootmgr, because the bootmgr binary wasn’t modified in any

way.

From this point, the functionality of the boot code is almost the same as in the UEFI version, resulting in

dropping the malicious driver (located contiguously on Track 0, starting at sector 6) into one of the following

locations, depending on the architecture:

\SystemRoot\System32\drivers\beep.sys (x86)

\SystemRoot\System32\drivers\null.sys (x64)

In this case, the encrypted configuration is not dropped to the syslog file but stays hidden in sector 5 of the

infected disk.

Figure 9. Modified disk scheme used by the legacy ESPecter version

Kernel-mode driver

The driver’s main purpose is to load user-mode payloads, set up the keylogger and, in the end, delete itself.

Setting up the keylogger is done in two steps:

At first, it creates a device named \Device\WebBK that exposes a function handling

IRP_MJ_DEVICE_CONTROL requests from the user-mode components. This function supports one

IOCTL (Input/Output Control) code (0x22C004), which can be used to trigger registration of an

asynchronous procedure call routine responsible for processing intercepted keystrokes.

Interception of keystrokes is done by setting up CompletionRoutine for IRP_MJ_READ requests for the

keyboard driver object \Device\KeyboardClass0.

When done, any process can start logging intercepted keystrokes by defining its own routine and passing it to

the created device object using the custom IOCTL 0x22C004.

By default, the driver tries to load two base payloads – WinSys.dll and Client.dll – which have the ability to

download and execute additional payloads. The first one, WinSys.dll, is an MPRESS-packed DLL embedded in

the driver’s binary in an encrypted form. The second one, Client.dll, is downloaded by the WinSys.dll to the file

https://en.wikipedia.org/wiki/INT_13H
https://www.welivesecurity.com/wp-content/uploads/2021/10/Figure-9.-Modified-disk-scheme-used-by-the-legacy-ESPecter-version.png
https://www.autohotkey.com/mpress/mpress_web.htm


10/15

\SystemRoot\Temp\memlog, also in an encrypted form, using the same encryption method – a simple one-byte

XOR with subtraction – but not the same keys. Both libraries are decrypted and dropped to the system directory

\SystemRoot\System32\ by the driver.

Execution of both WinSys.dll and Client.dll libraries is achieved by injecting them into svchost.exe and

winlogon.exe, respectively. To do this, the driver registers the image load callback routine NotifyRoutine using

PsSetLoadImageNotifyRoutine, which is used to execute:

The MainThread export from Client.dll, in context of the winlogon.exe process

The MainThread export from WinSys.dll, in context of the svchost.exe process

NotifyRoutine hooks the entry point of the winlogon.exe and svchost.exe process images in memory before being

executed; this hook is then responsible for loading and executing the appropriate payload DLL. As shown in

Figure 10, only the first svchost.exe or winlogon.exe image being loaded is processed by the routine.

Figure 10. Hex-Rays decompiled NotifyRoutine checking if svchost.exe or winlogon.exe is being loaded

User-mode components – WinSys.dll

WinSys.dll acts as a base update agent, which periodically contacts its C&C server in order to download or

execute additional payloads or execute simple commands. The C&C address, along with other values like

campaign ID, bootkit version, time between C&C communication attempts and active hours range, are located in

the configuration, which can be loaded from:

DefaultConfig value in HKLM\SYSTEM\CurrentControlSet\Control registry

\SystemRoot\Temp\syslog file

or directly from the specific disk sector (in the Legacy Boot version)

If both registry- and disk-stored configurations exist, the one from the registry is used.

C&C communication

WinSys.dll communicates with its C&C using HTTPS and the communication is initiated by sending an HTTP

GET request using the following URL format:

https://<ip>/Heart.aspx?ti=<drive_ID>&tn=<campaign_ID>&tg=<number>&tv=<malware_version>

where drive_ID is the MD5 hash of the serial number of the main system volume and the other parameters are

further information identifying this instance of the malware.

https://www.welivesecurity.com/wp-content/uploads/2021/10/Figure-10.-Hex-Rays-decompiled-NotifyRoutine-checking-if-svchost.exe-or-winlogon.exe-is-being-loaded.png


11/15

As a result, the C&C can respond with the command ID represented as a string, optionally followed by command

parameters. The full list of commands is available in Table 1.

Table 1. WinSys component C&C commands

Command ID Description URL

1 or 4 Exit. -

2 Upload various system info (CPU name, OS
version, memory size, ethernet MAC address,
list of installed software, etc.) to the
predefined URL using the HTTP POST.

https://<ip>/GetSysteminfo.aspx

3 Download or download and execute file into
one of the predefined locations (listed in IoCs
) from the predefined URL using HTTP GET.

https://<ip>/UpLoad.aspx?ti=<drive_ID>

5 Restart PC via ExitProcess (for Windows
Vista only).

N/A

6 Download new configuration from the
predefined URL using HTTP GET and save it
in the registry.

https://<ip>/ModifyIpaddr.aspx?ti=<drive_ID>

User-mode components – Client.dll

The second payload deployed by the malicious driver, if available, is Client.dll. It’s a backdoor that supports a

rich set of commands (Table 2) and contains various automatic data exfiltration capabilities including document

stealing, keylogging, and monitoring of the victim’s screen by periodically taking screenshots. All of the collected

data is stored in a hidden directory, with separate subdirectories for each data source – the full list of directory

paths used is available from our GitHub repository. Also note that interception of the keyboard is handled by the

driver and the client just needs to register its logging function by sending IOCTL 0x22C004 to the driver’s device

in order to save intercepted keystrokes to the file (Figure 11).

Figure 11. Client payload setting up keylogger function by sending IOCTL to the bootkit’s device driver

Configuration for the Client component should be located in an encrypted form in the file’s overlay. It contains

information such as the C&C address and port, flags indicating what data should be collected (keystrokes,

screenshots, files with specific extensions), time period for the screenshotting thread, maximum file size for

exfiltrated data and a list of file extensions.

C&C communication

The client sets its own communication channel with the C&C. For communication with the C&C, it uses the TCP

protocol with single-byte XOR encryption applied to non-null message bytes that are different from the key,

which was 0x66 in the campaign analyzed here. Communication is initiated by sending beacon messages to the

https://github.com/eset/malware-ioc/tree/master/especter
https://www.welivesecurity.com/wp-content/uploads/2021/10/Figure-11.-Client-payload-setting-up-keylogger-function-by-sending-IOCTL-to-the-bootkits-device-driver.png


12/15

IP:PORT pair specified in the configuration. This message contains the drive_ID value (the MD5 hash of the

serial number of the main system volume) along with a value specifying the type of message – that is, a

command request or the uploading of collected data.

After execution of the C&C command, the result is reported back to the C&C specifying the result code of the

executed operation, command ID and, interestingly, each such resulting report message contains a

watermark/tag representing the wide string WBKP located at offset 0x04, which makes it easier to identify this

malicious communication at the network level.

Table 2. List of Client C&C commands

Command ID Description

0x0000 Stop backdoor.

0x0064 Execute command line received from C&C and capture output using pipes.

0x00C8 Execute power commands logoff, power off, reboot, or shutdown, depending on the value of
this C&C command’s parameter.

0x012C Take screenshot of foreground window, full screenshot, or change automatic screenshotting
parameters, depending on the value of the parameter.

0x0190 Execute various file system operations.

0x01F4 Upload collected data and files.

0x0258 Execute various service-related commands.

0x02BC Execute various process-related commands.

0x0320 Modify configuration values.

0x0384 Stop/start keylogger, depending on the value of the parameter.

Conclusion

ESPecter shows that threat actors are relying not only on UEFI firmware implants when it comes to pre-OS

persistence and, despite the existing security mechanisms like UEFI Secure Boot, invest their time into creating

malware that would be easily blocked by such mechanisms, if enabled and configured correctly.

To keep safe against threats similar to the ESPecter bootkit, make sure that:

You always use the latest firmware version.

Your system is properly configured and Secure Boot is enabled.

You apply proper Privileged Account Management to help prevent adversaries from accessing privileged

accounts necessary for bootkit installation.

Indicators of Compromise (IoCs)

A comprehensive list of IoCs and samples can be found in our GitHub repository.

ESET detections

EFI/Rootkit.ESPecter

 
Win32/Rootkit.ESPecter

 
Win64/Rootkit.ESPecter

https://attack.mitre.org/mitigations/M1026
https://github.com/eset/malware-ioc/tree/master/especter


13/15

C&C IP addresses and domains from configurations

196.1.2[.]111

 
103.212.69[.]175

 
183.90.187[.]65

 
61.178.79[.]69

 
swj02.gicp[.]net

 
server.microsoftassistant[.]com

 
yspark.justdied[.]com

 
crystalnba[.]com

Legacy version installers

ABC03A234233C63330C744FDA784385273AF395B

 
DCD42B04705B784AD62BB36E17305B6E6414F033

 
656C263FA004BB3E6F3EE6EF6767D101869C7F7C

 
A8B4FE8A421C86EAE060BB8BF525EF1E1FC133B2

 
3AC6F9458A4A1A16390379621FDD230C656FC444

 
9F6DF0A011748160B0C18FB2B44EBE9FA9D517E9

 
2C22AE243FDC08B84B38D9580900A9A9E3823ACF

 
08077D940F2B385FBD287D84EDB58493136C8391

 
1D75BFB18FFC0B820CB36ACF8707343FA6679863

 
37E49DBCEB1354D508319548A7EFBD149BFA0E8D

 
7F501AEB51CE3232A979CCF0E11278346F746D1F

Compromised Windows Boot Manager

27AD0A8A88EAB01E2B48BA19D2AAABF360ECE5B8

 
8AB33E432C8BEE54AE759DFB5346D21387F26902

MITRE ATT&CK techniques

This table was built using version 9 of the MITRE ATT&CK framework.

 

Tactic ID Name Description

Execution T1106 Native API ESPecter leverages several Windows APIs: VirtualAlloc ,
WriteProcessMemory, and CreateRemoteThread for process
injection.

Persistence T1542.003 Pre-OS Boot: Bootkit ESPecter achieves persistence by infecting Windows Boot
Manager (bootmgfw.efi) located on the ESP, or by modifying
the MBR on Legacy Boot systems.

T1547 Boot or Logon
Autostart Execution

ESPecter replaces the legitimate null.sys or beep.sys driver
with its own malicious one in order to be executed on system
startup.

Defense
Evasion

T1055.001 Process Injection:
Dynamic-link Library
Injection

ESPecter’s driver injects its main user-mode components
into svchost.exe and winlogon.exe processes.

T1564.001 Hide Artifacts: Hidden
Files and Directories

ESPecter’s Client.dll component creates hidden directories
to store collected data.

https://attack.mitre.org/resources/versions/
https://attack.mitre.org/versions/v9/techniques/T1106/
https://attack.mitre.org/versions/v9/techniques/T1542/003/
https://attack.mitre.org/versions/v9/techniques/T1547/
https://attack.mitre.org/versions/v9/techniques/T1055/001/
https://attack.mitre.org/versions/v9/techniques/T1564/001/


14/15

Tactic ID Name Description

T1564.005 Hide Artifacts: Hidden
File System

ESPecter bootkit installers for Legacy Boot versions use
unallocated disk space located right after the MBR to store
its code, configuration and malicious driver.

T1140 Deobfuscate/Decode
Files or Information

ESPecter uses single-byte XOR with subtraction to decrypt
user-mode payloads.

T1562 Impair Defenses ESPecter patches Windows kernel function directly in
memory to disable DSE.

T1036.003 Masquerading:
Rename System
Utilities

ESPecter bootkit installers for Legacy Boot versions copy
cmd.exe to con1866.exe to evade detection.

T1112 Modify Registry ESPecter can use DefaultConfig value under
HKLM\SYSTEM\CurrentControlSet\Control to store
configuration.

T1601.001 Modify System Image:
Patch System Image

ESPecter patches various functions in Windows Boot
Manager, Windows OS loader and OS kernel directly in
memory during the boot process.

T1027.002 Obfuscated Files or
Information: Software
Packing

ESPecter’s WinSys.dll component is packed using the
MPRESS packer.

T1542.003 Pre-OS Boot: Bootkit ESPecter achieves persistence by modifying Windows Boot
Manager (bootmgfw.efi) located on the ESP or by modifying
the MBR on Legacy Boot systems.

T1553.006 Subvert Trust
Controls: Code
Signing Policy
Modification

ESPecter patches Windows kernel function
SepInitializeCodeIntegrity directly in memory to disable DSE.

T1497.003 Virtualization/Sandbox
Evasion: Time Based
Evasion

ESPecter’s WinSys.dll component can be configured to
postpone C&C communication after execution or to
communicate with the C&C only in a specified time range.

Credential
Access

T1056.001 Input Capture:
Keylogging

ESPecter has a keylogging capability.

Discovery T1010 Application Window
Discovery

ESPecter’s Client.dll component reports foreground window
names along with keylogger information to provide
application context.

T1083 File and Directory
Discovery

ESPecter’s Client.dll component can list file information for
specific directories.

T1120 Peripheral Device
Discovery

ESPecter’s Client.dll component detects the insertion of new
devices by listening for the WM_DEVICECHANGE window
message.

T1057 Process Discovery ESPecter’s Client.dll component can list running processes
and their loaded modules.

T1012 Query Registry ESPecter’s WinSys.dll component can check for installed
software under the Registry key
HKLM\Software\Microsoft\Windows\CurrentVersion\Uninstall.

https://attack.mitre.org/versions/v9/techniques/T1564/005/
https://attack.mitre.org/versions/v9/techniques/T1140/
https://attack.mitre.org/versions/v9/techniques/T1562/
https://attack.mitre.org/versions/v9/techniques/T1036/003/
https://attack.mitre.org/versions/v9/techniques/T1112/
https://attack.mitre.org/versions/v9/techniques/T1601/001/
https://attack.mitre.org/versions/v9/techniques/T1027/002/
https://attack.mitre.org/versions/v9/techniques/T1542/003/
https://attack.mitre.org/versions/v9/techniques/T1553/006/
https://attack.mitre.org/versions/v9/techniques/T1497/003/
https://attack.mitre.org/versions/v9/techniques/T1056/001/
https://attack.mitre.org/versions/v9/techniques/T1010/
https://attack.mitre.org/versions/v9/techniques/T1083/
https://attack.mitre.org/versions/v9/techniques/T1120/
https://attack.mitre.org/versions/v9/techniques/T1057/
https://attack.mitre.org/versions/v9/techniques/T1012/


15/15

Tactic ID Name Description

T1082 System Information
Discovery

ESPecter user-mode payloads can collect system
information from the victim’s machine.

T1124 System Time
Discovery

ESPecter’s WinSys.dll component can use GetLocalTime for
time discovery.

Collection T1119 Automated Collection ESPecter’s Client.dll component can automatically collect
screenshots, intercepted keystrokes and various files.

T1025 Data from Removable
Media

ESPecter’s Client.dll component can collect files with
specified extension from removable drives.

T1074.001 Data Staged: Local
Data Staging

ESPecter’s Client.dll component stores automatically
collected data into a hidden local directory.

T1056.001 Input Capture:
Keylogging

ESPecter has keylogging functionality.

T1113 Screen Capture ESPecter’s Client.dll component has screen capture
functionality.

Command
and Control

T1071.001 Application Layer
Protocol: Web
Protocols

ESPecter’s WinSys.dll component communicates with its
C&C server over HTTPS.

T1573.001 Encrypted Channel:
Symmetric
Cryptography

ESPecter’s Client.dll component encrypts C&C traffic using
single-byte XOR.

T1105 Ingress Tool Transfer ESPecter’s user-mode components can download additional
payloads from C&C.

T1104 Multi-Stage Channels ESPecter’s user-mode components use separate C&C
channels.

T1095 Non-Application Layer
Protocol

ESPecter’s Client.dll component uses TCP for C&C
communication.

Exfiltration T1020 Automated Exfiltration ESPecter’s Client.dll component creates a thread to
automatically upload collected data to the C&C.

T1041 Exfiltration Over C2
Channel

ESPecter exfiltrates data over the same channel used for
C&C.

T1029 Scheduled Transfer ESPecter’s Client.dll component is set to upload collected
data to the C&C every five seconds.

 

 

https://attack.mitre.org/versions/v9/techniques/T1082/
https://attack.mitre.org/versions/v9/techniques/T1124/
https://attack.mitre.org/versions/v9/techniques/T1119/
https://attack.mitre.org/versions/v9/techniques/T1025/
https://attack.mitre.org/versions/v9/techniques/T1074/001/
https://attack.mitre.org/versions/v9/techniques/T1056/001/
https://attack.mitre.org/versions/v9/techniques/T1113/
https://attack.mitre.org/versions/v9/techniques/T1071/001/
https://attack.mitre.org/versions/v9/techniques/T1573/001/
https://attack.mitre.org/versions/v9/techniques/T1105/
https://attack.mitre.org/versions/v9/techniques/T1104/
https://attack.mitre.org/versions/v9/techniques/T1095/
https://attack.mitre.org/versions/v9/techniques/T1020/
https://attack.mitre.org/versions/v9/techniques/T1041/
https://attack.mitre.org/versions/v9/techniques/T1029/

