
December 19, 2025

Stealth in Layers: Unmasking the Loader used in Targeted Email

Campaigns

 cyble.com/blog/stealth-in-layers-unmasking-loader-in-targeted-email-campaigns

Executive Summary

CRIL (Cyble Research and Intelligence Labs) has been tracking a sophisticated commodity loader utilized by multiple

high-capability threat actors. The campaign demonstrates a high degree of regional and sectoral specificity, primarily

targeting Manufacturing and Government organizations across Italy, Finland, and Saudi Arabia.

This campaign utilizes advanced tradecraft, employing a diverse array of infection vectors including weaponized Office

documents (exploiting CVE-2017-11882), malicious SVG files, and ZIP archives containing LNK shortcuts. Despite the

variety of delivery methods, all vectors leverage a unified commodity loader.

The operation’s sophistication is further evidenced by the use of steganography and the trojanization of open-source

libraries. Adding their stealth is a custom-engineered, four-stage evasion pipeline designed to minimize their forensic

footprint.

By masquerading as legitimate Purchase Order communications, these phishing attacks ultimately deliver Remote Access

Trojans (RATs) and Infostealers.

Our research confirms that identical loader artifacts and execution patterns link this campaign to a broader infrastructure

shared across multiple threat actors.

1/13

https://cyble.com/blog/stealth-in-layers-unmasking-loader-in-targeted-email-campaigns/
https://nvd.nist.gov/vuln/detail/cve-2017-11882


Figure 1 – Infection chain

Key Takeaways

Precision Targeting & Geographic Scope: The campaign specifically targets the Manufacturing and Industrial

sectors across Europe and the Middle East. The primary objective is the exfiltration of sensitive industrial data and

the compromise of high-value administrative credentials.

Versatile Malware Distribution: The loaders serve as a multi-functional distribution platform. They have been

observed delivering a variety of RATs (and information stealers, such as PureLog Stealer, Katz Stealer, DC Rat,

Async Rat, and Remcos). This indicates the loader is likely shared or sold across different threat actor groups.

Steganography & Infrastructure Abuse: To bypass traditional network security, the threat actors hosted image

files on legitimate delivery platforms. These images contain steganographically embedded payloads, allowing the

malicious code to slip past file-based detection systems by masquerading as benign traffic

Trojanization of Open-Source Libraries: The actors utilize a sophisticated “hybrid assembly” technique. By

appending malicious functions to trusted open-source libraries and recompiling them, the resulting files retain their

authentic appearance and functionality, making signature-based detection extremely difficult.

Four-Stage Evasion Pipeline: The infection chain is engineered to minimize forensic footprint. It employs a high-

velocity, four-stage process:

Script Obfuscation: To hide initial intent.

Steganographic Extraction: To pull the payload from images.

Reflective Loading: To run code directly in memory without touching the disk.

Process Injection: To hide malicious activity within legitimate system processes.

2/13

https://cyble.com/threat-actor-profiles/


Novel UAC Bypass Discovery: A unique User Account Control (UAC) bypass was identified in a recent sample.

The malware monitored system process creation events and opportunistically triggered UAC prompts during

legitimate launches, tricking the system or user into granting elevated privileges under the guise of a routine

operation.

Technical Analysis

To demonstrate the execution flow of this campaign, we analyzed the sample with the following SHA256 hash:

c1322b21eb3f300a7ab0f435d6bcf6941fd0fbd58b02f7af797af464c920040a.

Initial Infection vector

The campaign begins with targeted phishing emails sent to manufacturing organizations, masquerading as legitimate

Purchase Order communications from business partners (see Figure 2).

Figure 2 – Email with attachment

Extraction of the RAR archive reveals a first-stage malicious JavaScript payload, PO No 602450.js, masquerading as a

legitimate purchase order document.

Stage 1: JavaScript and PowerShell execution

The JavaScript file contains heavily obfuscated code with special characters that are stripped at runtime. The primary

obfuscation techniques involve split and join operations used to dynamically reconstruct malicious strings (see Figure 3).

3/13

https://cyble.com/knowledge-hub/what-is-malware/
https://cyble.com/resources/research-reports/
https://cyble.com/resources/research-reports/


Figure 3 – Obfuscated JS script

The de-obfuscated JavaScript creates a hidden PowerShell process using WMI objects (winmgmts:root\cimv2). It employs

multiple obfuscation layers, including base64 encoding and string manipulation, to evade detection, with a 5-second sleep

delay (see Figure 4).

Figure 4 – De-obfuscated JS script

4/13



Stage 2: Steganographic payload retrieval

The decoded PowerShell script functions as a second-stage loader, retrieving a malicious PNG file from Archive.org. This

image file contains a steganographically embedded base64-encoded .NET assembly hidden at the end of the file (see

Figure 5).

Figure 5 – Base64 decoded PowerShell script

Upon retrieval, the PowerShell script employs regular expression (regex) pattern matching to extract the malicious

payload using specific delimiters (“BaseStart-‘+’-BaseEnd”). The extracted assembly is then reflected in memory via

Reflection.Assembly::Load, invoking the “classlibrary1” namespace with the class name “class1” method “VAI”

This fileless execution technique ensures the final payload executes without writing to disk, significantly reducing detection

probability and complicating forensic analysis (see Figure 6).

Figure 6 – Base64 encoded content at the end of the PNG file

Stage 3: Weaponized TaskScheduler loader

The reflectively loaded .NET assembly serves as the third-stage loader, weaponizing the legitimate open-source

TaskScheduler library from GitHub. The threat actors appended malicious functions to the original library source code and

recompiled it, creating a trojanized assembly that retains all legitimate functionality while embedding malicious capabilities

(see Figure 7).

5/13

https://cyble.com/knowledge-hub/cyber-threat-actor-and-types/


Figure 7 – Classes present in Clean Task Scheduler (left) appended malicious content (right)

Upon execution, the malicious method receives the payload URL in reverse and base64-encoded format, along with DLL

path, DLL name, and CLR path parameters (see Figure 8).

Figure 8 – Decoded URL and payload

Stage 4: Process injection and payload execution

The weaponized loader creates a new suspended RegAsm.exe process and injects the decoded payload into its memory

space before executing it (see Figure 9). This process hollowing technique allows the malware to masquerade as a

legitimate Windows utility while executing malicious code.

Figure 9 – Injecting payload into RegAsm.exe

6/13



The loader downloads additional content that is similarly reversed and base64-encoded. After downloading, the loader

reverses the content, performs base64 decoding, and runs the resulting binary using either RegAsm or AddInProcess32,

injecting it into the target process.

Final payload: PureLog Stealer

The injected payload is an executable file containing PureLog Stealer embedded within its resource section. The stealer is

extracted using Triple DES decryption in CBC mode with PKCS7 padding, utilizing the provided key and IV parameters.

Following decryption, the data undergoes GZip decompression before the resulting payload, PureLog Stealer, is invoked

(see Figure 10).

Figure 10 – Triple DES decryption

PureLog Stealer is an information-stealing malware designed to exfiltrate sensitive data from compromised hosts,

including browser credentials, cryptocurrency wallet information, and comprehensive system details. The threat actor’s

command and control infrastructure operates at IP address 38.49.210[.]241.

PureLog Stealer steals the following from the victim’s machines:

7/13



Category Targeted Data Detail

Web Browsers Chromium-based

browsers

Data harvested from a wide range of Chromium-based browsers, including

stable, beta, developer, portable, and privacy-focused variants.

Firefox-based

browsers

Data extracted from Firefox and Firefox-derived browsers

Browser credentials Saved usernames and passwords associated with websites and web

applications

Browser cookies Session cookies, authentication tokens, and persistent cookies

Browser autofill

data

Autofill profiles, saved payment information, and form data.

Browser history Browsing history, visited URLs, download records, and visit metadata.

Search queries Stored browser search terms and normalized keyword data

Browser tokens Authentication tokens and associated email identifiers

Cryptocurrency

Wallets

Desktop wallets Wallet data from locally installed cryptocurrency wallet applications

Browser extension

wallets

Wallet data from browser-based cryptocurrency extensions

Wallet configuration Encrypted seed phrases, private keys, and wallet configuration files

Password Managers Browser-based

managers

Credentials stored in browser-integrated password management

extensions

Standalone

managers

Credentials and vault data from desktop password manager applications

Two-Factor

Authentication

2FA applications One-time password (OTP) secrets and configuration data from

authenticator applications

VPN Clients VPN credentials VPN configuration files, authentication tokens, and user credentials

Messaging

Applications

Instant messaging

apps

Account tokens, user identifiers, messages, and configuration files

Gaming platforms Authentication and account metadata related to gaming services

FTP Clients FTP credentials Stored FTP server credentials and connection configurations

Email Clients Desktop email

clients

Email account credentials, server configurations, and authentication tokens

System Information Hardware details CPU, GPU, memory, motherboard identifiers, and system serials

Operating system OS version, architecture, and product identifiers

Network

information

Public IP address and network-related metadata

Security software Installed security and antivirus product details

Tracing the Footprints: Shared Ecosystem

CRIL’s cross-campaign analysis reveals a striking uniformity of tradecraft, uncovering a persistent architectural blueprint

that serves as a common thread. Despite the deployment of diverse malware payloads, the delivery mechanism remains

constant.

8/13



This standardized methodology includes the use of steganography to conceal payloads within benign image files, the

application of string reversal combined with Base64 encoding for deep obfuscation, and the delivery of encoded payload

URLs directly to the loader. Furthermore, the actors consistently abuse legitimate .NET framework executables to facilitate

advanced process hollowing techniques.

This observation is also reinforced by research from Seqrite, Nextron Systems, and Zscaler, which documented identical

class naming conventions and execution patterns across a variety of malware families and operations.

The following code snippet illustrates the shared loader architecture observed across these campaigns (see Figure 11).

Figure 11 – Loader comparison and similarities

This consistency suggests that the loader might be part of a shared delivery framework used by multiple threat actors.

UAC Bypass

9/13

https://www.seqrite.com/blog/steganographic-campaign-distributing-malware/
https://www.nextron-systems.com/2025/05/23/katz-stealer-threat-analysis/
https://www.zscaler.com/blogs/security-research/blindeagle-targets-colombian-government-agency-caminho-and-dcrat


Notably, a recent sample revealed an LNK file employing similar obfuscation techniques, utilizing PowerShell to download

a VBS loader, along with an uncommon UAC bypass method. (see Figure 12)

Figure 12 – C# code inside an xml file

An uncommon UAC bypass technique is employed in later stages of the attack, where the malware monitors process

creation events and triggers a UAC prompt when a new process is launched, thereby enabling the execution of a

PowerShell process with elevated privileges after user approval (see Figure 13).

Figure 13 – UAC bypass using User response

Conclusion

Our research has uncovered a hybrid threat with striking uniformity of tradecraft, uncovering a persistent architectural

blueprint. This standardized methodology includes the use of steganography to conceal payloads within benign image

files, the application of string reversal combined with Base64 encoding for deep obfuscation, and the delivery of encoded

payload URLs directly to the loader. Furthermore, the actors consistently abuse legitimate .NET framework executables to

facilitate advanced process hollowing techniques.

10/13



The fact that multiple malware families leverage these class naming conventions as well as execution patterns across is

further testament to how potent this threat is to the target nations and sectors.

The discovery of a novel UAC bypass confirms that this is not a static threat, but an evolving operation with a dedicated

development cycle. Organizations, especially in the targeted regions, should treat “benign” image files and email

attachments with heightened scrutiny.

Recommendations

Deploy Advanced Email Security with Behavioral Analysis

Implement email security solutions with attachment sandboxing and behavioral analysis capabilities that can detect

obfuscated JavaScript, VBScript files, and malicious macros. Enable strict filtering for RAR/ZIP attachments and block

execution of scripts from email sources to prevent initial infection vectors targeting business workflows.

Implement Application Whitelisting and Script Execution Controls

Deploy application whitelisting policies to prevent unauthorized JavaScript and VBScript execution from user-accessible

directories. Enable PowerShell Constrained Language Mode and comprehensive logging to detect suspicious script

activity, particularly commands attempting to download remote content or perform reflective assembly loading. Restrict the

execution of legitimate system binaries from non-standard locations to prevent their abuse in living-off-the-land (LotL)

attacks.

Deploy EDR Solutions with Advanced Process Monitoring

Implement Endpoint Detection and Response (EDR) solutions that can detect sophisticated evasion techniques and

runtime anomalies, enabling effective protection against advanced threats. Configure EDR platforms to monitor for

process hollowing activities where legitimate signed Windows binaries are exploited to execute malicious payloads in

memory. Establish behavioral detection rules for fileless malware techniques, including reflective assembly loading and

suspicious parent-child process relationships that deviate from normal system behavior.

Monitor for Memory-Based Threats and Process Anomalies

Establish behavioral detection rules for fileless malware techniques, including reflective assembly loading, process

hollowing, and suspicious parent-child process relationships. Deploy memory analysis tools to identify code injection into

legitimate Windows processes, such as MSBuild.exe, RegAsm.exe, and AddInProcess32.exe, which are commonly

abused for malicious payload execution.

Strengthen Credential and Cryptocurrency Wallet Protection

Enforce multi-factor authentication across all critical systems and encourage users to store cryptocurrency assets in

hardware wallets rather than browser-based solutions. Implement monitoring for unauthorized access to browser

credential stores, password managers, and cryptocurrency wallet directories to detect potential data exfiltration attempts.

Implement Steganography Detection and Image Analysis Capabilities

Deploy specialized steganography detection tools that analyze image files for hidden malicious payloads embedded within

pixel data or metadata. Implement statistical analysis techniques to identify anomalies in image file entropy and bit

patterns that may indicate the presence of concealed executable code. Configure security solutions to perform deep

inspection of image formats, particularly PNG files, which are frequently exploited for embedding command-and-control

infrastructure or malicious scripts in covert communication channels.

11/13

https://cyble.com/knowledge-hub/what-is-edr/
https://cyble.com/solutions/endpoint-security-solution/
https://cyble.com/blog/multi-factor-authentication-mfa-is-a-part-of-your-cyber-hygiene/


MITRE Tactics, Techniques & Procedures

Tactic Technique Procedure

Initial Access

(TA0001)

Phishing: Spearphishing Attachment

(T1566.001)

Phishing emails with malicious attachments

masquerading as Purchase Orders

Initial Access

(TA0001)

Exploit Public-Facing Application (T1190) Exploitation of CVE-2017-11882 in Microsoft

Equation Editor

Execution (TA0002) User Execution: Malicious File (T1204.002) User opens JavaScript, VBScript, or LNK

files from archive attachments

Execution (TA0002) Command and Scripting Interpreter: JavaScript

(T1059.007)

Obfuscated JavaScript executes to download

second-stage payloads

Execution (TA0002) Command and Scripting Interpreter: PowerShell

(T1059.001)

A hidden PowerShell instance was spawned

to retrieve steganographic payloads

Execution (TA0002) Windows Management Instrumentation (T1047) WMI used to spawn hidden PowerShell

processes

Defense Evasion

(TA0005)

Obfuscated Files or Information (T1027) Multi-layer obfuscation using base64

encoding and string manipulation

Defense Evasion

(TA0005)

Steganography (T1027.003) Malicious payload hidden within PNG image

files

Defense Evasion

(TA0005)

Reflective Code Loading (T1620) The .NET assembly is reflectively loaded into

memory without disk writes

Defense Evasion

(TA0005)

Process Injection: Process Hollowing

(T1055.012)

Payload injected into legitimate Windows

system processes

Defense Evasion

(TA0005)

Masquerading: Match Legitimate Name or

Location (T1036.005)

Execution through legitimate Windows

utilities for evasion

Defense Evasion

(TA0005)

Abuse Elevation Control Mechanism: Bypass

User Account Control (T1548.002)

UAC bypass using process monitoring and a

user approval prompt

Defense Evasion

(TA0005)

Virtualization/Sandbox Evasion: Time-Based

Evasion (T1497.003)

5-second sleep delay to evade automated

sandbox analysis

Credential Access

(TA0006)

Unsecured Credentials: Credentials In Files

(T1552.001)

Extraction of credentials from browser

databases and configuration files

Credential Access

(TA0006)

Credentials from Password Stores: Credentials

from Web Browsers (T1555.003)

Harvesting saved passwords and cookies

from web browsers

Credential Access

(TA0006)

Credentials from Password Stores (T1555) Extraction of credentials from password

manager applications

Discovery (TA0007) System Information Discovery (T1082) Collection of hardware, OS, and network

information

Discovery (TA0007) Security Software Discovery (T1518.001) Enumeration of installed antivirus products

Collection (TA0009) Data from Local System (T1005) Collection of cryptocurrency wallets, VPN

configs, and email data

Collection (TA0009) Email Collection (T1114) Harvesting email credentials and

configurations from email clients

12/13

https://attack.mitre.org/tactics/TA0001/
https://attack.mitre.org/techniques/T1566/001/
https://attack.mitre.org/tactics/TA0001/
https://attack.mitre.org/techniques/T1190
https://attack.mitre.org/tactics/TA0002/
https://attack.mitre.org/techniques/T1204/002
https://attack.mitre.org/tactics/TA0002/
https://attack.mitre.org/techniques/T1059/007
https://attack.mitre.org/tactics/TA0002/
https://attack.mitre.org/techniques/T1059/001
https://attack.mitre.org/tactics/TA0002/
https://attack.mitre.org/techniques/T1047
https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/techniques/T1027
https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/techniques/T1027/003
https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/techniques/T1620
https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/techniques/T1055/012
https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/techniques/T1036/005
https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/techniques/T1548/002
https://attack.mitre.org/tactics/TA0005/
https://attack.mitre.org/techniques/T1497/003
https://attack.mitre.org/tactics/TA0006/
https://attack.mitre.org/techniques/T1552/001
https://attack.mitre.org/tactics/TA0006/
https://attack.mitre.org/techniques/T1555/003
https://attack.mitre.org/tactics/TA0006/
https://attack.mitre.org/techniques/T1555
https://attack.mitre.org/tactics/TA0007/
https://attack.mitre.org/techniques/T1082
https://attack.mitre.org/tactics/TA0007/
https://attack.mitre.org/techniques/T1518/001
https://attack.mitre.org/techniques/T1005
https://attack.mitre.org/tactics/TA0009/
https://attack.mitre.org/techniques/T1114


Command and

Control (TA0011)

Web Service (T1102) Abuse of Archive.org for payload hosting

Exfiltration (TA0010) Exfiltration Over C2 Channel (T1041) Data exfiltration to C2 server at

38.49.210.241

Indicators of Compromise (IOCs)

Indicator Type Comments

5c0e3209559f83788275b73ac3bcc61867ece6922afabe3ac672240c1c46b1d3 SHA-

256

Email

c1322b21eb3f300a7ab0f435d6bcf6941fd0fbd58b02f7af797af464c920040a SHA-

256

PO No 602450.rar

3dfa22389fe1a2e4628c2951f1756005a0b9effdab8de3b0f6bb36b764e2b84a SHA-

256

Microsoft.Win32.TaskScheduler.dll

 

bb05f1ef4c86620c6b7e8b3596398b3b2789d8e3b48138e12a59b362549b799d SHA-

256

PureLog Stealer

0f1fdbc5adb37f1de0a586e9672a28a5d77f3ca4eff8e3dcf6392c5e4611f914 SHA-

256

Zip file contains LNK

917e5c0a8c95685dc88148d2e3262af6c00b96260e5d43fe158319de5f7c313e SHA-

256

LNK File

hxxp://192[.]3.101[.]161/zeus/ConvertedFile[.]txt URL Base64 encoded payload

hxxps://pixeldrain[.]com/api/file/7B3Gowyz URL Base64 encoded payload

hxxp://dn710107.ca.archive[.]org/0/items/msi-pro-with-b-

64_20251208_1511/MSI_PRO_with_b64[.]png

URL PNG file

hxxps://ia801706.us.archive[.]org/25/items/msi-pro-with-b-

64_20251208/MSI_PRO_with_b64[.]png

URL PNG file

38.49.210[.]241 IP Purelog Stealer C&C

References:

https://www.zscaler.com/blogs/security-research/blindeagle-targets-colombian-government-agency-caminho-and-dcrat

https://www.seqrite.com/blog/steganographic-campaign-distributing-malware

https://www.nextron-systems.com/2025/05/23/katz-stealer-threat-analysis/

13/13

https://attack.mitre.org/tactics/TA0011/
https://attack.mitre.org/techniques/T1102
https://attack.mitre.org/tactics/TA0010/
https://attack.mitre.org/techniques/T1041
https://www.zscaler.com/blogs/security-research/blindeagle-targets-colombian-government-agency-caminho-and-dcrat
https://www.seqrite.com/blog/steganographic-campaign-distributing-malware
https://www.nextron-systems.com/2025/05/23/katz-stealer-threat-analysis/

