
Hyperloglog Datatypes in Riak

Zeeshan Lakhani

July 26, 2016

1 Getting Started

Hyperloglog (HLL) was conceived of by Flajolet et.al.[1] in 2007 as an im-
provement and extension on the Loglog[2] algorithm to tackle the Count-
distinct problem[3], or finding the number of distinct elements in a large
file and, later, a data stream. Or, as more properly stated in the quintessen-
tial 2007 paper:

“The purpose of this note is to present and analyse an efficient algorithm
for estimating the number of distinct elements, known as the cardinality, of
large data ensembles, which are referred to here as multisets and are usually
massive streams (read-once sequences). This problem has received a great
deal of attention over the past two decades, finding an ever growing number
of applications in networking and traffic monitoring, such as the detection
of worm propagation, of network attacks (e.g., by Denial of Service), and of
link-based spam on the web.”

1.1 Why HyperLogLog?

So, what’s a good use case for HLLs? One example would be to determine
the number of distinct search queries on google.com over a time period[4].

The goal of HLL is to estimate unique elements in large sets (large be-
ing beyond 109) and streams while also keeping memory low(er). Normally,
calculating the exact cardinality of a set requires an amount of memory pro-
portional to the cardinality when counting these unique items. With HLLs,
the trade off is less memory in exchange for approximated cardinality. Yo
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performance.

As per [4], the key requirements for a cardinality estimation algorithm are

1. Accuracy: For a fixed amount of memory, the algorithm should pro-
vide as accurate an estimate as possible. Especially for small cardinal-
ities, the results should be near exact.

2. Memory efficiency: The algorithm should use the available memory
efficiently and adapt its memory usage to the cardinality. That is, the
algorithm should use less than the user-specified maximum amount of
memory if the cardinality to be estimated is very small.

3. Estimate large cardinalities: Multisets with cardinalities well be-
yond 1 billion occur on a daily basis, and it is important that such large
cardinalities can be estimated with reasonable accuracy.

4. Practicality: The algorithm should be implementable and maintain-
able.

There are two generalized categories of cardinality observables [1]:

1. Bit-pattern observables: these are based on certain patterns of bits
occurring at the beginning of the (binary) S-values. For instance, ob-
serving in the stream S at the beginning of a string a bitpattern 0p−11
is more or less a likely indication that the cardinality n of S is at least
2p. HLL is an example of this category.

2. Order statistics observables: these are based on order statistics,
like the smallest (real) values, that appear in S. For instance, if X =
min(S), we may legitimately hope that n is roughly of the order of
1/X, since, as regards expectations, one has E(X) = 1/(n + 1).

2 The HyperLogLog Algorithm

The key components of the algorithm are

1. randomization achieved by a hash function, h, that is applied to every
element that is to be counted.
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2. As a hashed valued comes in, the first p, precision (4..16) bits are
used to determine which register (substream) we’ll use to store the
maximum number of leading zeros in the rest of the hash. The bit-
pattern observables in the HLL approach would be this maximum, i.e.
the longest run of zeros in the hash values (after the initial p bits).
m = 2p is the maximum number of hash values maintained.

3. stochastic averaging across the registers/substreams—divided m sub-
streams of Si (S meaning data elements), to reduce the large variability
of each single measurement.

4. To reduce dramatic outliers, a harmonic mean is used instead of a
arithmetic mean across the estimates, which tends strongly tward the
least elements of the list[5].

Here’s a visualization of the basic idea[6]:

Figure 1: p = 4; The bucket/register for the hashed value of 0100 is 8.

Figure 2: Storing 4 as the max number of leading zeros.

3



Figure 3: To reduce the large variability of single measurements, a stochastic
average is calculated across the registers. This is a simple example. A
normalized bias corrected harmonic mean of the estimations is actually used
for the final estimate.

The simplified formula that actually defines the HLL distinct-value (DV)
estimator[7] is

DVHLL = constant ∗m2 ∗

(
m∑
j=1

2−Rj

)−1

Rj is the longest run of zeroes in the jth bucket. The relative error is 1.04/
√
m

(m - number of counters). More information about the original algorithm
and it’s additional modifications can be found in [1].

2.1 HyperLogLog++

As per [4], going into production with requirements of estimating multisets of
cardinalities beyond 1 billion, there needed to be some changes to the known
HLL algorithm, hence HyperLogLog++.

The main changes we’ll take away for this exercise are

1. Use a 64-bit hash function instead of the original’s[1] 32-bit hash func-
tion with special range correction. Therefore, hash collisions only be-
come a problem if we reach a cardinality of 264, which is fine for many
real-world data sets.

2. HyperLogLog++ introduces a bias-correction which corrects for bias
using empirically determined data for cardinalities < 5m.
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3 HLL Datatypes in Riak

3.1 Hyper Library

Our HyperLogLogs (HLLs) are driven by GameAnalytics’ Erlang Hyper-
LogLog implementation[8] under the hood, which includes the bias correction
from [4] (mentioned in 2.1).

Currently, we are using the hyper binary option as a backend, which has
“fixed memory usage (6bits ∗ 2P ), fastest on insert, union, cardinality and
serialization. Best default choice.” 6 instead of 5 bits is mentioned due to
the increased-bit hash function.

The library gives us the ability to perform unions (looks like a merge),
be prescribed a precision, reduce precision, union varying-precisioned HLLs
(based on a union toward the reduced HLL), and compact the data struc-
ture’s buffer before the registers are needed/calculated from.

Here’s an example of what an insert and card-check looks like:

H = hyper:insert(<<"foo">>, hyper:insert(<<"qu">>, hyper:new(4))).

{hyper,4,

{hyper_binary,{dense,<<0,0,0,0,0,0,0,0,0,0,0,2>>,[{0,1}],1,16}}}

hyper:card(H).

2.136502281992361

3.2 Brief In-Riak Example

Ok. Here’s an example workflow with the Riak erlang-(pb)-client:

CMod = riakc_pb_socket,

Key = <<"Holy Diver">>,

Bucket = {<<"hll_bucket">>, <<"testbucket1">>},

S0 = riakc_hll:new(),

Item = <<"Jokes">>,

ok = CMod:update_type(

Pid, Bucket, Key, riakc_hll:to_op(

riakc_hll:add_element(Item, S0))
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).

{ok, S1} = CMod:fetch_type(Pid, Bucket, Key),

Items = [<<"are">>, <<"better">>, <<"explained">>],

ok = CMod:update_type(

Pid, Bucket, Key,

riakc_hll:to_op(riakc_hll:add_elements(Items, S1))

).

{ok, S2} = CMod:fetch_type(Pid, Bucket, Key),

riakc_hll:value(S2) =:= 4.

%% Add a redundant element

ok = CMod:update_type(

Pid, Bucket, Key, riakc_hll:to_op(

riakc_hll:add_element(Item, S2))

).

{ok, S3} = CMod:fetch_type(Pid, Bucket, Key),

riakc_hll:value(S3) =:= 4.

3.3 Testing within an Error Bound

%% @doc Standard Error is sigma 1.04/srqt(m), where m is the

%% # of registers. Deviations are related to margin of error away

%% from the actual cardinality in of percentils.

%% sigma = 65%, 2=95%, 3 =99%

margin_of_error(P, Deviations) ->

M = trunc(math:pow(2, P)),

Sigma = 1.04 / math:sqrt(M),

Sigma*Deviations.

%% @doc Check if Estimated Card from HllSet is within an acceptable

%% margin of error determined by m-registers and 3 deviations of

%% the standard error. Use a window of +1 to account for rounding

%% and extremely small cardinalities.

within_error_check(Card, HllSet, HllVal) ->
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case Card > 0 of

true ->

Precision = riak_kv_hll:precision(HllSet),

MarginOfError = margin_of_error(Precision, 3),

RelativeError = (abs(Card-HllVal)/Card),

%% Is the relative error within the margin of error times

%% the estimation *(andalso)* is the value difference less than

%% the actual cardinality times the margin of error

BoundCheck1 = RelativeError =< (MarginOfError * HllVal)+1,

BoundCheck2 = abs(HllVal-Card) =< (Card*MarginOfError)+1,

BoundCheck1 andalso BoundCheck2;

_ -> trunc(HllVal) == Card

end.

4 So?

So, HLL’s are a super useful way to count distinct elements in a set, stream,
multiset while also keeping memory and data structure byte-size down. Win!
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