Macros | Functions
p_polys.h File Reference
#include <omalloc/omalloc.h>
#include <misc/mylimits.h>
#include <misc/intvec.h>
#include <coeffs/coeffs.h>
#include <polys/monomials/monomials.h>
#include <polys/monomials/ring.h>
#include <polys/templates/p_MemAdd.h>
#include <polys/templates/p_MemCmp.h>
#include <polys/templates/p_Procs.h>
#include <polys/sbuckets.h>
#include <polys/nc/nc.h>

Go to the source code of this file.

Macros

#define pIfThen(cond, check)   do {if (cond) {check;}} while (0)
 
#define p_Test(p, r)   _p_Test(p, r, PDEBUG)
 
#define p_LmTest(p, r)   _p_LmTest(p, r, PDEBUG)
 
#define pp_Test(p, lmRing, tailRing)   _pp_Test(p, lmRing, tailRing, PDEBUG)
 
#define p_SetmComp   p_Setm
 
#define _p_LmCmpAction(p, q, r, actionE, actionG, actionS)
 
#define pDivAssume(x)   do {} while (0)
 
#define p_LmCmpAction(p, q, r, actionE, actionG, actionS)   _p_LmCmpAction(p, q, r, actionE, actionG, actionS)
 
#define p_LmEqual(p1, p2, r)   p_ExpVectorEqual(p1, p2, r)
 

Functions

poly p_Farey (poly p, number N, const ring r)
 
poly p_ChineseRemainder (poly *xx, number *x, number *q, int rl, CFArray &inv_cache, const ring R)
 
unsigned long p_GetShortExpVector (const poly a, const ring r)
 
unsigned long p_GetShortExpVector (const poly p, const poly pp, const ring r)
 p_GetShortExpVector of p * pp More...
 
BOOLEAN p_DivisibleByRingCase (poly f, poly g, const ring r)
 divisibility check over ground ring (which may contain zero divisors); TRUE iff LT(f) divides LT(g), i.e., LT(f)*c*m = LT(g), for some coefficient c and some monomial m; does not take components into account More...
 
poly p_One (const ring r)
 
int p_MinDeg (poly p, intvec *w, const ring R)
 
long p_DegW (poly p, const short *w, const ring R)
 
BOOLEAN p_OneComp (poly p, const ring r)
 return TRUE if all monoms have the same component More...
 
int p_IsPurePower (const poly p, const ring r)
 return i, if head depends only on var(i) More...
 
int p_IsUnivariate (poly p, const ring r)
 return i, if poly depends only on var(i) More...
 
int p_GetVariables (poly p, int *e, const ring r)
 set entry e[i] to 1 if var(i) occurs in p, ignore var(j) if e[j]>0 return #(e[i]>0) More...
 
poly p_ISet (long i, const ring r)
 returns the poly representing the integer i More...
 
poly p_NSet (number n, const ring r)
 returns the poly representing the number n, destroys n More...
 
void p_Vec2Polys (poly v, poly **p, int *len, const ring r)
 
void p_ShallowDelete (poly *p, const ring r)
 
poly p_Sub (poly a, poly b, const ring r)
 
poly p_Power (poly p, int i, const ring r)
 
BOOLEAN pIsMonomOf (poly p, poly m)
 
BOOLEAN pHaveCommonMonoms (poly p, poly q)
 
BOOLEAN p_LmCheckIsFromRing (poly p, ring r)
 
BOOLEAN p_LmCheckPolyRing (poly p, ring r)
 
BOOLEAN p_CheckIsFromRing (poly p, ring r)
 
BOOLEAN p_CheckPolyRing (poly p, ring r)
 
BOOLEAN p_CheckRing (ring r)
 
BOOLEAN _p_Test (poly p, ring r, int level)
 
BOOLEAN _p_LmTest (poly p, ring r, int level)
 
BOOLEAN _pp_Test (poly p, ring lmRing, ring tailRing, int level)
 
static unsigned pLength (poly a)
 
poly p_Last (const poly a, int &l, const ring r)
 
void p_Norm (poly p1, const ring r)
 
void p_Normalize (poly p, const ring r)
 
void p_ProjectiveUnique (poly p, const ring r)
 
void p_Content (poly p, const ring r)
 
void p_SimpleContent (poly p, int s, const ring r)
 
poly p_Cleardenom (poly p, const ring r)
 
void p_Cleardenom_n (poly p, const ring r, number &c)
 
int p_Size (poly p, const ring r)
 
poly p_Homogen (poly p, int varnum, const ring r)
 
BOOLEAN p_IsHomogeneous (poly p, const ring r)
 
static void p_Setm (poly p, const ring r)
 
p_SetmProc p_GetSetmProc (const ring r)
 
poly p_Subst (poly p, int n, poly e, const ring r)
 
static unsigned long p_SetComp (poly p, unsigned long c, ring r)
 
static void p_SetCompP (poly p, int i, ring r)
 
static void p_SetCompP (poly p, int i, ring lmRing, ring tailRing)
 
static long p_MaxComp (poly p, ring lmRing, ring tailRing)
 
static long p_MaxComp (poly p, ring lmRing)
 
static long p_MinComp (poly p, ring lmRing, ring tailRing)
 
static long p_MinComp (poly p, ring lmRing)
 
static poly pReverse (poly p)
 
void pEnlargeSet (poly **p, int length, int increment)
 
void p_String0 (poly p, ring lmRing, ring tailRing)
 print p according to ShortOut in lmRing & tailRing More...
 
char * p_String (poly p, ring lmRing, ring tailRing)
 
void p_Write (poly p, ring lmRing, ring tailRing)
 
void p_Write0 (poly p, ring lmRing, ring tailRing)
 
void p_wrp (poly p, ring lmRing, ring tailRing)
 
void p_String0Short (const poly p, ring lmRing, ring tailRing)
 print p in a short way, if possible More...
 
void p_String0Long (const poly p, ring lmRing, ring tailRing)
 print p in a long way More...
 
static long p_FDeg (const poly p, const ring r)
 
static long p_LDeg (const poly p, int *l, const ring r)
 
long p_WFirstTotalDegree (poly p, ring r)
 
long p_WTotaldegree (poly p, const ring r)
 
long p_WDegree (poly p, const ring r)
 
long pLDeg0 (poly p, int *l, ring r)
 
long pLDeg0c (poly p, int *l, ring r)
 
long pLDegb (poly p, int *l, ring r)
 
long pLDeg1 (poly p, int *l, ring r)
 
long pLDeg1c (poly p, int *l, ring r)
 
long pLDeg1_Deg (poly p, int *l, ring r)
 
long pLDeg1c_Deg (poly p, int *l, ring r)
 
long pLDeg1_Totaldegree (poly p, int *l, ring r)
 
long pLDeg1c_Totaldegree (poly p, int *l, ring r)
 
long pLDeg1_WFirstTotalDegree (poly p, int *l, ring r)
 
long pLDeg1c_WFirstTotalDegree (poly p, int *l, ring r)
 
BOOLEAN p_EqualPolys (poly p1, poly p2, const ring r)
 
BOOLEAN p_EqualPolys (poly p1, poly p2, const ring r1, const ring r2)
 same as the usual p_EqualPolys for polys belonging to equal rings More...
 
long p_Deg (poly a, const ring r)
 
static number p_SetCoeff (poly p, number n, ring r)
 
static long p_GetOrder (poly p, ring r)
 
static unsigned long p_AddComp (poly p, unsigned long v, ring r)
 
static unsigned long p_SubComp (poly p, unsigned long v, ring r)
 
static long p_GetExp (const poly p, const unsigned long iBitmask, const int VarOffset)
 get a single variable exponent : the integer VarOffset encodes: More...
 
static unsigned long p_SetExp (poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
 set a single variable exponent : VarOffset encodes the position in p->exp More...
 
static long p_GetExp (const poly p, const ring r, const int VarOffset)
 
static long p_SetExp (poly p, const long e, const ring r, const int VarOffset)
 
static long p_GetExp (const poly p, const int v, const ring r)
 get v^th exponent for a monomial More...
 
static long p_SetExp (poly p, const int v, const long e, const ring r)
 set v^th exponent for a monomial More...
 
static long p_IncrExp (poly p, int v, ring r)
 
static long p_DecrExp (poly p, int v, ring r)
 
static long p_AddExp (poly p, int v, long ee, ring r)
 
static long p_SubExp (poly p, int v, long ee, ring r)
 
static long p_MultExp (poly p, int v, long ee, ring r)
 
static long p_GetExpSum (poly p1, poly p2, int i, ring r)
 
static long p_GetExpDiff (poly p1, poly p2, int i, ring r)
 
static int p_Comp_k_n (poly a, poly b, int k, ring r)
 
static poly p_New (const ring, omBin bin)
 
static poly p_New (ring r)
 
static void p_LmFree (poly p, ring)
 
static void p_LmFree (poly *p, ring)
 
static poly p_LmFreeAndNext (poly p, ring)
 
static void p_LmDelete (poly p, const ring r)
 
static void p_LmDelete (poly *p, const ring r)
 
static poly p_LmDeleteAndNext (poly p, const ring r)
 
unsigned long p_GetMaxExpL (poly p, const ring r, unsigned long l_max=0)
 return the maximal exponent of p in form of the maximal long var More...
 
poly p_GetMaxExpP (poly p, ring r)
 return monomial r such that GetExp(r,i) is maximum of all monomials in p; coeff == 0, next == NULL, ord is not set More...
 
static unsigned long p_GetMaxExp (const unsigned long l, const ring r)
 
static unsigned long p_GetMaxExp (const poly p, const ring r)
 
static unsigned long p_GetTotalDegree (const unsigned long l, const ring r, const int number_of_exps)
 
static poly p_Copy_noCheck (poly p, const ring r)
 returns a copy of p (without any additional testing) More...
 
static poly p_Copy (poly p, const ring r)
 returns a copy of p More...
 
static poly p_Head (poly p, const ring r)
 
static poly p_Copy (poly p, const ring lmRing, const ring tailRing)
 
static void p_Delete (poly *p, const ring r)
 
static void p_Delete (poly *p, const ring lmRing, const ring tailRing)
 
static poly p_ShallowCopyDelete (poly p, const ring r, omBin bin)
 
static poly p_Add_q (poly p, poly q, const ring r)
 
static poly p_Add_q (poly p, poly q, int &lp, int lq, const ring r)
 like p_Add_q, except that if lp == pLength(lp) lq == pLength(lq) then lp == pLength(p+q) More...
 
static poly p_Mult_nn (poly p, number n, const ring r)
 
static poly p_Mult_nn (poly p, number n, const ring lmRing, const ring tailRing)
 
static poly pp_Mult_nn (poly p, number n, const ring r)
 
static BOOLEAN p_LmIsConstantComp (const poly p, const ring r)
 
static BOOLEAN p_LmIsConstant (const poly p, const ring r)
 
static poly pp_Mult_mm (poly p, poly m, const ring r)
 
static poly p_Mult_mm (poly p, poly m, const ring r)
 
static poly p_Minus_mm_Mult_qq (poly p, const poly m, const poly q, int &lp, int lq, const poly spNoether, const ring r)
 
static poly p_Minus_mm_Mult_qq (poly p, const poly m, const poly q, const ring r)
 
static poly pp_Mult_Coeff_mm_DivSelect (poly p, const poly m, const ring r)
 
static poly pp_Mult_Coeff_mm_DivSelect (poly p, int &lp, const poly m, const ring r)
 
static poly p_Neg (poly p, const ring r)
 
poly _p_Mult_q (poly p, poly q, const int copy, const ring r)
 Returns: p * q, Destroys: if !copy then p, q Assumes: pLength(p) >= 2 pLength(q) >=2. More...
 
static poly p_Mult_q (poly p, poly q, const ring r)
 
static poly pp_Mult_qq (poly p, poly q, const ring r)
 
static poly p_Plus_mm_Mult_qq (poly p, poly m, poly q, int &lp, int lq, const ring r)
 
static poly p_Plus_mm_Mult_qq (poly p, poly m, poly q, const ring r)
 
static poly p_Merge_q (poly p, poly q, const ring r)
 
static poly p_SortAdd (poly p, const ring r, BOOLEAN revert=FALSE)
 
static poly p_SortMerge (poly p, const ring r, BOOLEAN revert=FALSE)
 
static char * p_String (poly p, ring p_ring)
 
static void p_String0 (poly p, ring p_ring)
 
static void p_Write (poly p, ring p_ring)
 
static void p_Write0 (poly p, ring p_ring)
 
static void p_wrp (poly p, ring p_ring)
 
static void p_MemAdd_NegWeightAdjust (poly p, const ring r)
 
static void p_MemSub_NegWeightAdjust (poly p, const ring r)
 
static void p_ExpVectorCopy (poly d_p, poly s_p, const ring r)
 
static poly p_Init (const ring r, omBin bin)
 
static poly p_Init (const ring r)
 
static poly p_LmInit (poly p, const ring r)
 
static poly p_LmInit (poly s_p, const ring s_r, const ring d_r, omBin d_bin)
 
static poly p_LmInit (poly s_p, const ring s_r, const ring d_r)
 
static poly p_GetExp_k_n (poly p, int l, int k, const ring r)
 
static poly p_LmShallowCopyDelete (poly p, const ring r)
 
static void p_ExpVectorAdd (poly p1, poly p2, const ring r)
 
static void p_ExpVectorSum (poly pr, poly p1, poly p2, const ring r)
 
static void p_ExpVectorSub (poly p1, poly p2, const ring r)
 
static void p_ExpVectorAddSub (poly p1, poly p2, poly p3, const ring r)
 
static void p_ExpVectorDiff (poly pr, poly p1, poly p2, const ring r)
 
static BOOLEAN p_ExpVectorEqual (poly p1, poly p2, const ring r)
 
static long p_Totaldegree (poly p, const ring r)
 
static void p_GetExpV (poly p, int *ev, const ring r)
 
static void p_SetExpV (poly p, int *ev, const ring r)
 
static int p_LmCmp (poly p, poly q, const ring r)
 
static int p_LtCmp (poly p, poly q, const ring r)
 
static int p_LtCmpNoAbs (poly p, poly q, const ring r)
 
static int p_LtCmpOrdSgnDiffM (poly p, poly q, const ring r)
 
static int p_LtCmpOrdSgnDiffP (poly p, poly q, const ring r)
 
static int p_LtCmpOrdSgnEqM (poly p, poly q, const ring r)
 
static int p_LtCmpOrdSgnEqP (poly p, poly q, const ring r)
 
BOOLEAN p_ComparePolys (poly p1, poly p2, const ring r)
 returns TRUE if p1 is a skalar multiple of p2 assume p1 != NULL and p2 != NULL More...
 
static int p_Cmp (poly p1, poly p2, ring r)
 
static BOOLEAN _p_LmDivisibleByNoComp (poly a, poly b, const ring r)
 return: FALSE, if there exists i, such that a->exp[i] > b->exp[i] TRUE, otherwise (1) Consider long vars, instead of single exponents (2) Clearly, if la > lb, then FALSE (3) Suppose la <= lb, and consider first bits of single exponents in l: if TRUE, then value of these bits is la ^ lb if FALSE, then la-lb causes an "overflow" into one of those bits, i.e., la ^ lb != la - lb More...
 
static BOOLEAN _p_LmDivisibleByNoComp (poly a, const ring r_a, poly b, const ring r_b)
 
static BOOLEAN _p_LmDivisibleByNoCompPart (poly a, const ring r_a, poly b, const ring r_b, const int start, const int end)
 
static BOOLEAN _p_LmDivisibleByPart (poly a, const ring r_a, poly b, const ring r_b, const int start, const int end)
 
static BOOLEAN p_LmDivisibleByPart (poly a, poly b, const ring r, const int start, const int end)
 
static BOOLEAN _p_LmDivisibleBy (poly a, poly b, const ring r)
 
static BOOLEAN _p_LmDivisibleBy (poly a, const ring r_a, poly b, const ring r_b)
 
static BOOLEAN p_LmDivisibleByNoComp (poly a, poly b, const ring r)
 
static BOOLEAN p_LmDivisibleByNoComp (poly a, const ring ra, poly b, const ring rb)
 
static BOOLEAN p_LmDivisibleBy (poly a, poly b, const ring r)
 
static BOOLEAN p_DivisibleBy (poly a, poly b, const ring r)
 
static BOOLEAN p_DivisibleBy (poly a, const ring r_a, poly b, const ring r_b)
 
static BOOLEAN p_LmDivisibleBy (poly a, const ring r_a, poly b, const ring r_b)
 
static BOOLEAN p_LmShortDivisibleBy (poly a, unsigned long sev_a, poly b, unsigned long not_sev_b, const ring r)
 
static BOOLEAN p_LmShortDivisibleByNoComp (poly a, unsigned long sev_a, poly b, unsigned long not_sev_b, const ring r)
 
static BOOLEAN p_LmShortDivisibleBy (poly a, unsigned long sev_a, const ring r_a, poly b, unsigned long not_sev_b, const ring r_b)
 
static BOOLEAN p_IsConstantComp (const poly p, const ring r)
 
static BOOLEAN p_IsConstant (const poly p, const ring r)
 
static BOOLEAN p_IsOne (const poly p, const ring R)
 either poly(1) or gen(k)?! More...
 
static BOOLEAN p_IsConstantPoly (const poly p, const ring r)
 
static BOOLEAN p_IsUnit (const poly p, const ring r)
 
static BOOLEAN p_LmExpVectorAddIsOk (const poly p1, const poly p2, const ring r)
 
void p_Split (poly p, poly *r)
 
BOOLEAN p_HasNotCF (poly p1, poly p2, const ring r)
 
poly p_mInit (const char *s, BOOLEAN &ok, const ring r)
 
const char * p_Read (const char *s, poly &p, const ring r)
 
poly p_Divide (poly a, poly b, const ring r)
 
poly p_DivideM (poly a, poly b, const ring r)
 
poly p_Div_nn (poly p, const number n, const ring r)
 
void p_Lcm (const poly a, const poly b, poly m, const ring r)
 
poly p_LcmRat (const poly a, const poly b, const long lCompM, const ring r)
 
poly p_GetCoeffRat (poly p, int ishift, ring r)
 
void p_LmDeleteAndNextRat (poly *p, int ishift, ring r)
 
void p_ContentRat (poly &ph, const ring r)
 
poly p_Diff (poly a, int k, const ring r)
 
poly p_DiffOp (poly a, poly b, BOOLEAN multiply, const ring r)
 
int p_Weight (int c, const ring r)
 
poly p_PolyDiv (poly &p, const poly divisor, const BOOLEAN needResult, const ring r)
 assumes that p and divisor are univariate polynomials in r, mentioning the same variable; assumes divisor != NULL; p may be NULL; assumes a global monomial ordering in r; performs polynomial division of p by divisor: More...
 
BOOLEAN p_VectorHasUnitB (poly p, int *k, const ring r)
 
void p_VectorHasUnit (poly p, int *k, int *len, const ring r)
 
poly p_TakeOutComp1 (poly *p, int k, const ring r)
 
void p_TakeOutComp (poly *p, long comp, poly *q, int *lq, const ring r)
 
poly p_TakeOutComp (poly *p, int k, const ring r)
 
void p_DeleteComp (poly *p, int k, const ring r)
 
void pSetDegProcs (ring r, pFDegProc new_FDeg, pLDegProc new_lDeg=NULL)
 
void pRestoreDegProcs (ring r, pFDegProc old_FDeg, pLDegProc old_lDeg)
 
void p_SetModDeg (intvec *w, ring r)
 
poly pp_Jet (poly p, int m, const ring R)
 
poly p_Jet (poly p, int m, const ring R)
 
poly pp_JetW (poly p, int m, short *w, const ring R)
 
poly p_JetW (poly p, int m, short *w, const ring R)
 
poly n_PermNumber (const number z, const int *par_perm, const int OldPar, const ring src, const ring dst)
 
poly p_PermPoly (poly p, const int *perm, const ring OldRing, const ring dst, nMapFunc nMap, const int *par_perm=NULL, int OldPar=0, BOOLEAN use_mult=FALSE)
 
poly p_Series (int n, poly p, poly u, intvec *w, const ring R)
 
poly p_Invers (int n, poly u, intvec *w, const ring R)
 
int p_Var (poly mi, const ring r)
 
int p_LowVar (poly p, const ring r)
 the minimal index of used variables - 1 More...
 
void p_Shift (poly *p, int i, const ring r)
 shifts components of the vector p by i More...
 
int p_Compare (const poly a, const poly b, const ring R)
 
poly p_GcdMon (poly f, poly g, const ring r)
 polynomial gcd for f=mon More...
 
poly p_Div_mm (poly p, const poly m, const ring r)
 divide polynomial by monomial More...
 

Macro Definition Documentation

◆ _p_LmCmpAction

#define _p_LmCmpAction (   p,
  q,
  r,
  actionE,
  actionG,
  actionS 
)
Value:
p_MemCmp_LengthGeneral_OrdGeneral(p->exp, q->exp, r->CmpL_Size, r->ordsgn, \
actionE, actionG, actionS)
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
#define p_MemCmp_LengthGeneral_OrdGeneral(s1, s2, length, ordsgn, actionE, actionG, actionS)
Definition: p_MemCmp.h:719

Definition at line 1199 of file p_polys.h.

◆ p_LmCmpAction

#define p_LmCmpAction (   p,
  q,
  r,
  actionE,
  actionG,
  actionS 
)    _p_LmCmpAction(p, q, r, actionE, actionG, actionS)

Definition at line 1607 of file p_polys.h.

◆ p_LmEqual

#define p_LmEqual (   p1,
  p2,
  r 
)    p_ExpVectorEqual(p1, p2, r)

Definition at line 1611 of file p_polys.h.

◆ p_LmTest

#define p_LmTest (   p,
  r 
)    _p_LmTest(p, r, PDEBUG)

Definition at line 161 of file p_polys.h.

◆ p_SetmComp

#define p_SetmComp   p_Setm

Definition at line 239 of file p_polys.h.

◆ p_Test

#define p_Test (   p,
  r 
)    _p_Test(p, r, PDEBUG)

Definition at line 160 of file p_polys.h.

◆ pDivAssume

#define pDivAssume (   x)    do {} while (0)

Definition at line 1205 of file p_polys.h.

◆ pIfThen

#define pIfThen (   cond,
  check 
)    do {if (cond) {check;}} while (0)

Definition at line 154 of file p_polys.h.

◆ pp_Test

#define pp_Test (   p,
  lmRing,
  tailRing 
)    _pp_Test(p, lmRing, tailRing, PDEBUG)

Definition at line 162 of file p_polys.h.

Function Documentation

◆ _p_LmDivisibleBy() [1/2]

static BOOLEAN _p_LmDivisibleBy ( poly  a,
poly  b,
const ring  r 
)
inlinestatic

Definition at line 1742 of file p_polys.h.

1743 {
1744  if (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r))
1745  return _p_LmDivisibleByNoComp(a, b, r);
1746  return FALSE;
1747 }
const poly a
Definition: syzextra.cc:212
#define FALSE
Definition: auxiliary.h:94
#define p_GetComp(p, r)
Definition: monomials.h:72
static BOOLEAN _p_LmDivisibleByNoComp(poly a, poly b, const ring r)
return: FALSE, if there exists i, such that a->exp[i] > b->exp[i] TRUE, otherwise (1) Consider long v...
Definition: p_polys.h:1638
const ring r
Definition: syzextra.cc:208
const poly b
Definition: syzextra.cc:213

◆ _p_LmDivisibleBy() [2/2]

static BOOLEAN _p_LmDivisibleBy ( poly  a,
const ring  r_a,
poly  b,
const ring  r_b 
)
inlinestatic

Definition at line 1748 of file p_polys.h.

1749 {
1750  if (p_GetComp(a, r_a) == 0 || p_GetComp(a,r_a) == p_GetComp(b,r_b))
1751  return _p_LmDivisibleByNoComp(a, r_a, b, r_b);
1752  return FALSE;
1753 }
const poly a
Definition: syzextra.cc:212
#define FALSE
Definition: auxiliary.h:94
#define p_GetComp(p, r)
Definition: monomials.h:72
static BOOLEAN _p_LmDivisibleByNoComp(poly a, poly b, const ring r)
return: FALSE, if there exists i, such that a->exp[i] > b->exp[i] TRUE, otherwise (1) Consider long v...
Definition: p_polys.h:1638
const poly b
Definition: syzextra.cc:213

◆ _p_LmDivisibleByNoComp() [1/2]

static BOOLEAN _p_LmDivisibleByNoComp ( poly  a,
poly  b,
const ring  r 
)
inlinestatic

return: FALSE, if there exists i, such that a->exp[i] > b->exp[i] TRUE, otherwise (1) Consider long vars, instead of single exponents (2) Clearly, if la > lb, then FALSE (3) Suppose la <= lb, and consider first bits of single exponents in l: if TRUE, then value of these bits is la ^ lb if FALSE, then la-lb causes an "overflow" into one of those bits, i.e., la ^ lb != la - lb

Definition at line 1638 of file p_polys.h.

1639 {
1640  int i=r->VarL_Size - 1;
1641  unsigned long divmask = r->divmask;
1642  unsigned long la, lb;
1643 
1644  if (r->VarL_LowIndex >= 0)
1645  {
1646  i += r->VarL_LowIndex;
1647  do
1648  {
1649  la = a->exp[i];
1650  lb = b->exp[i];
1651  if ((la > lb) ||
1652  (((la & divmask) ^ (lb & divmask)) != ((lb - la) & divmask)))
1653  {
1655  return FALSE;
1656  }
1657  i--;
1658  }
1659  while (i>=r->VarL_LowIndex);
1660  }
1661  else
1662  {
1663  do
1664  {
1665  la = a->exp[r->VarL_Offset[i]];
1666  lb = b->exp[r->VarL_Offset[i]];
1667  if ((la > lb) ||
1668  (((la & divmask) ^ (lb & divmask)) != ((lb - la) & divmask)))
1669  {
1671  return FALSE;
1672  }
1673  i--;
1674  }
1675  while (i>=0);
1676  }
1677 /*#ifdef HAVE_RINGS
1678  pDivAssume(p_DebugLmDivisibleByNoComp(a, b, r) == n_DivBy(p_GetCoeff(b, r), p_GetCoeff(a, r), r->cf));
1679  return (!rField_is_Ring(r)) || n_DivBy(p_GetCoeff(b, r), p_GetCoeff(a, r), r->cf);
1680 #else
1681 */
1683  return TRUE;
1684 //#endif
1685 }
const poly a
Definition: syzextra.cc:212
#define FALSE
Definition: auxiliary.h:94
BOOLEAN p_DebugLmDivisibleByNoComp(poly a, poly b, ring r)
Definition: pDebug.cc:140
#define TRUE
Definition: auxiliary.h:98
const ring r
Definition: syzextra.cc:208
int i
Definition: cfEzgcd.cc:123
#define pDivAssume(x)
Definition: p_polys.h:1205
const poly b
Definition: syzextra.cc:213

◆ _p_LmDivisibleByNoComp() [2/2]

static BOOLEAN _p_LmDivisibleByNoComp ( poly  a,
const ring  r_a,
poly  b,
const ring  r_b 
)
inlinestatic

Definition at line 1687 of file p_polys.h.

1688 {
1689  int i=r_a->N;
1690  pAssume1(r_a->N == r_b->N);
1691 
1692  do
1693  {
1694  if (p_GetExp(a,i,r_a) > p_GetExp(b,i,r_b))
1695  return FALSE;
1696  i--;
1697  }
1698  while (i);
1699 /*#ifdef HAVE_RINGS
1700  return n_DivBy(p_GetCoeff(b, r_b), p_GetCoeff(a, r_a), r_a->cf);
1701 #else
1702 */
1703  return TRUE;
1704 //#endif
1705 }
const poly a
Definition: syzextra.cc:212
#define FALSE
Definition: auxiliary.h:94
#define TRUE
Definition: auxiliary.h:98
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int i
Definition: cfEzgcd.cc:123
#define pAssume1(cond)
Definition: monomials.h:179
const poly b
Definition: syzextra.cc:213

◆ _p_LmDivisibleByNoCompPart()

static BOOLEAN _p_LmDivisibleByNoCompPart ( poly  a,
const ring  r_a,
poly  b,
const ring  r_b,
const int  start,
const int  end 
)
inlinestatic

Definition at line 1708 of file p_polys.h.

1709 {
1710  int i=end;
1711  pAssume1(r_a->N == r_b->N);
1712 
1713  do
1714  {
1715  if (p_GetExp(a,i,r_a) > p_GetExp(b,i,r_b))
1716  return FALSE;
1717  i--;
1718  }
1719  while (i>=start);
1720 /*#ifdef HAVE_RINGS
1721  return n_DivBy(p_GetCoeff(b, r_b), p_GetCoeff(a, r_a), r_a->cf);
1722 #else
1723 */
1724  return TRUE;
1725 //#endif
1726 }
const poly a
Definition: syzextra.cc:212
#define FALSE
Definition: auxiliary.h:94
#define TRUE
Definition: auxiliary.h:98
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int i
Definition: cfEzgcd.cc:123
#define pAssume1(cond)
Definition: monomials.h:179
const poly b
Definition: syzextra.cc:213

◆ _p_LmDivisibleByPart()

static BOOLEAN _p_LmDivisibleByPart ( poly  a,
const ring  r_a,
poly  b,
const ring  r_b,
const int  start,
const int  end 
)
inlinestatic

Definition at line 1727 of file p_polys.h.

1728 {
1729  if (p_GetComp(a, r_a) == 0 || p_GetComp(a,r_a) == p_GetComp(b,r_b))
1730  return _p_LmDivisibleByNoCompPart(a, r_a, b, r_b,start,end);
1731  return FALSE;
1732 }
const poly a
Definition: syzextra.cc:212
#define FALSE
Definition: auxiliary.h:94
#define p_GetComp(p, r)
Definition: monomials.h:72
static BOOLEAN _p_LmDivisibleByNoCompPart(poly a, const ring r_a, poly b, const ring r_b, const int start, const int end)
Definition: p_polys.h:1708
const poly b
Definition: syzextra.cc:213

◆ _p_LmTest()

BOOLEAN _p_LmTest ( poly  p,
ring  r,
int  level 
)

Definition at line 322 of file pDebug.cc.

323 {
324  if (level < 0 || p == NULL) return TRUE;
325  poly pnext = pNext(p);
326  pNext(p) = NULL;
327  BOOLEAN test_res = _p_Test(p, r, level);
328  pNext(p) = pnext;
329  return test_res;
330 }
int level(const CanonicalForm &f)
return P p
Definition: myNF.cc:203
#define TRUE
Definition: auxiliary.h:98
const ring r
Definition: syzextra.cc:208
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
BOOLEAN _p_Test(poly p, ring r, int level)
Definition: pDebug.cc:211
polyrec * poly
Definition: hilb.h:10
int BOOLEAN
Definition: auxiliary.h:85

◆ _p_Mult_q()

poly _p_Mult_q ( poly  p,
poly  q,
const int  copy,
const ring  r 
)

Returns: p * q, Destroys: if !copy then p, q Assumes: pLength(p) >= 2 pLength(q) >=2.

Definition at line 271 of file p_Mult_q.cc.

272 {
273  assume(r != NULL);
274 #ifdef HAVE_RINGS
275  if (!nCoeff_is_Domain(r->cf))
276  return _p_Mult_q_Normal_ZeroDiv(p, q, copy, r);
277 #endif
278  int lp, lq, l;
279  poly pt;
280 
281  pqLength(p, q, lp, lq, MIN_LENGTH_BUCKET);
282 
283  if (lp < lq)
284  {
285  pt = p;
286  p = q;
287  q = pt;
288  l = lp;
289  lp = lq;
290  lq = l;
291  }
293  return _p_Mult_q_Normal(p, q, copy, r);
294  else
295  {
296  assume(lp == pLength(p));
297  assume(lq == pLength(q));
298  return _p_Mult_q_Bucket(p, lp, q, lq, copy, r);
299  }
300 }
CFArray copy(const CFList &list)
write elements of list into an array
return P p
Definition: myNF.cc:203
#define MIN_LENGTH_BUCKET
Definition: p_Mult_q.h:22
static poly _p_Mult_q_Normal_ZeroDiv(poly p, poly q, const int copy, const ring r)
Definition: p_Mult_q.cc:161
#define TEST_OPT_NOT_BUCKETS
Definition: options.h:100
const ring r
Definition: syzextra.cc:208
#define assume(x)
Definition: mod2.h:394
static poly _p_Mult_q_Normal(poly p, poly q, const int copy, const ring r)
Definition: p_Mult_q.cc:189
static unsigned pLength(poly a)
Definition: p_polys.h:189
BOOLEAN pqLength(poly p, poly q, int &lp, int &lq, const int min)
Definition: p_Mult_q.cc:27
static FORCE_INLINE BOOLEAN nCoeff_is_Domain(const coeffs r)
returns TRUE, if r is a field or r has no zero divisors (i.e is a domain)
Definition: coeffs.h:773
#define NULL
Definition: omList.c:10
static poly _p_Mult_q_Bucket(poly p, const int lp, poly q, const int lq, const int copy, const ring r)
Definition: p_Mult_q.cc:66
polyrec * poly
Definition: hilb.h:10
int l
Definition: cfEzgcd.cc:94

◆ _p_Test()

BOOLEAN _p_Test ( poly  p,
ring  r,
int  level 
)

Definition at line 211 of file pDebug.cc.

212 {
213  assume(r->cf !=NULL);
214 
215  if (PDEBUG > level) level = PDEBUG;
216  if (level < 0 || p == NULL) return TRUE;
217 
218  poly p_prev = NULL;
219 
220  #ifndef OM_NDEBUG
221  #ifndef X_OMALLOC
222  // check addr with level+1 so as to check bin/page of addr
223  _pPolyAssumeReturnMsg(omTestBinAddrSize(p, (omSizeWOfBin(r->PolyBin))*SIZEOF_LONG, level+1)
224  == omError_NoError, "memory error",p,r);
225  #endif
226  #endif
227 
229 
230  // this checks that p does not contain a loop: rather expensive O(length^2)
231  #ifndef OM_NDEBUG
232  if (level > 1)
234  #endif
235 
236  int ismod = p_GetComp(p, r) != 0;
237 
238  while (p != NULL)
239  {
240  // ring check
242  #ifndef OM_NDEBUG
243  #ifndef X_OMALLOC
244  // omAddr check
245  _pPolyAssumeReturnMsg(omTestBinAddrSize(p, (omSizeWOfBin(r->PolyBin))*SIZEOF_LONG, 1)
246  == omError_NoError, "memory error",p,r);
247  #endif
248  #endif
249  // number/coef check
250  _pPolyAssumeReturnMsg(p->coef != NULL || (n_GetChar(r->cf) >= 2), "NULL coef",p,r);
251 
252  #ifdef LDEBUG
253  _pPolyAssumeReturnMsg(n_Test(p->coef,r->cf),"coeff err",p,r);
254  #endif
255  _pPolyAssumeReturnMsg(!n_IsZero(p->coef, r->cf), "Zero coef",p,r);
256 
257  // check for valid comp
258  _pPolyAssumeReturnMsg(p_GetComp(p, r) >= 0 && (p_GetComp(p, r)<65000), "component out of range ?",p,r);
259  // check for mix poly/vec representation
260  _pPolyAssumeReturnMsg(ismod == (p_GetComp(p, r) != 0), "mixed poly/vector",p,r);
261 
262  // special check for ringorder_s/S
263  if ((r->typ!=NULL) && (r->typ[0].ord_typ == ro_syzcomp))
264  {
265  long c1, cc1, ccc1, ec1;
266  sro_ord* o = &(r->typ[0]);
267 
268  c1 = p_GetComp(p, r);
269  if (o->data.syzcomp.Components!=NULL)
270  {
271  cc1 = o->data.syzcomp.Components[c1];
272  ccc1 = o->data.syzcomp.ShiftedComponents[cc1];
273  }
274  else { cc1=0; ccc1=0; }
275  _pPolyAssumeReturnMsg(c1 == 0 || cc1 != 0, "Component <-> TrueComponent zero mismatch",p,r);
276  _pPolyAssumeReturnMsg(c1 == 0 || ccc1 != 0,"Component <-> ShiftedComponent zero mismatch",p,r);
277  ec1 = p->exp[o->data.syzcomp.place];
278  //pPolyAssumeReturnMsg(ec1 == ccc1, "Shifted comp out of sync. should %d, is %d");
279  if (ec1 != ccc1)
280  {
281  dPolyReportError(p,r,"Shifted comp out of sync. should %d, is %d",ccc1,ec1);
282  return FALSE;
283  }
284  }
285 
286  // check that p_Setm works ok
287  if (level > 0)
288  {
289  poly p_should_equal = p_DebugInit(p, r, r);
290  _pPolyAssumeReturnMsg(p_ExpVectorEqual(p, p_should_equal, r), "p_Setm field(s) out of sync",p,r);
291  p_LmFree(p_should_equal, r);
292  }
293 
294  // check order
295  if (p_prev != NULL)
296  {
297  int cmp = p_LmCmp(p_prev, p, r);
298  if (cmp == 0)
299  {
300  _pPolyAssumeReturnMsg(0, "monoms p and p->next are equal", p_prev, r);
301  }
302  else
303  _pPolyAssumeReturnMsg(p_LmCmp(p_prev, p, r) == 1, "wrong order", p_prev, r);
304 
305  // check that compare worked sensibly
306  if (level > 1 && p_GetComp(p_prev, r) == p_GetComp(p, r))
307  {
308  int i;
309  for (i=r->N; i>0; i--)
310  {
311  if (p_GetExp(p_prev, i, r) != p_GetExp(p, i, r)) break;
312  }
313  _pPolyAssumeReturnMsg(i > 0, "Exponents equal but compare different", p_prev, r);
314  }
315  }
316  p_prev = p;
317  pIter(p);
318  }
319  return TRUE;
320 }
int level(const CanonicalForm &f)
static poly p_DebugInit(poly p, ring src_ring, ring dest_ring)
Definition: pDebug.cc:194
#define FALSE
Definition: auxiliary.h:94
return P p
Definition: myNF.cc:203
#define omTestList(ptr, level)
Definition: omList.h:81
#define p_GetComp(p, r)
Definition: monomials.h:72
omError_t omTestBinAddrSize(void *addr, size_t size, int check_level)
Definition: omDebug.c:44
static FORCE_INLINE int n_GetChar(const coeffs r)
Return the characteristic of the coeff. domain.
Definition: coeffs.h:448
#define TRUE
Definition: auxiliary.h:98
BOOLEAN dPolyReportError(poly p, ring r, const char *fmt,...)
Definition: pDebug.cc:44
static void p_LmFree(poly p, ring)
Definition: p_polys.h:678
union sro_ord::@0 data
#define pIter(p)
Definition: monomials.h:44
#define pFalseReturn(cond)
Definition: monomials.h:147
BOOLEAN p_LmCheckIsFromRing(poly p, ring r)
Definition: pDebug.cc:71
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
#define assume(x)
Definition: mod2.h:394
#define PDEBUG
Definition: auxiliary.h:169
#define n_Test(a, r)
BOOLEAN n_Test(number a, const coeffs r)
Definition: coeffs.h:742
Definition: ring.h:226
static int p_LmCmp(poly p, poly q, const ring r)
Definition: p_polys.h:1467
int i
Definition: cfEzgcd.cc:123
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the zero element.
Definition: coeffs.h:468
BOOLEAN p_CheckRing(ring r)
Definition: pDebug.cc:127
#define NULL
Definition: omList.c:10
#define omSizeWOfBin(bin_ptr)
static BOOLEAN p_ExpVectorEqual(poly p1, poly p2, const ring r1, const ring r2)
Definition: p_polys.cc:4373
polyrec * poly
Definition: hilb.h:10
#define _pPolyAssumeReturnMsg(cond, msg, p, r)
Definition: monomials.h:132

◆ _pp_Test()

BOOLEAN _pp_Test ( poly  p,
ring  lmRing,
ring  tailRing,
int  level 
)

Definition at line 332 of file pDebug.cc.

333 {
334  if (PDEBUG > level) level = PDEBUG;
335  if (level < 0 || p == NULL) return TRUE;
336  if (pNext(p) == NULL || lmRing == tailRing) return _p_Test(p, lmRing, level);
337 
340 
341  // check that lm > Lm(tail)
342  if (level > 1)
343  {
344  poly lm = p;
345  poly tail = p_DebugInit(pNext(p), tailRing, lmRing);
346  poly pnext = pNext(lm);
347  pNext(lm) = tail;
348  BOOLEAN cmp = p_LmCmp(lm, tail, lmRing);
349  if (cmp != 1)
350  dPolyReportError(lm, lmRing, "wrong order: lm <= Lm(tail)");
351  p_LmFree(tail, lmRing);
352  pNext(lm) = pnext;
353  return (cmp == 1);
354  }
355  return TRUE;
356 }
int level(const CanonicalForm &f)
static poly p_DebugInit(poly p, ring src_ring, ring dest_ring)
Definition: pDebug.cc:194
BEGIN_NAMESPACE_SINGULARXX const ring lmRing
Definition: DebugPrint.h:30
return P p
Definition: myNF.cc:203
BEGIN_NAMESPACE_SINGULARXX const ring const ring tailRing
Definition: DebugPrint.h:30
#define TRUE
Definition: auxiliary.h:98
BOOLEAN dPolyReportError(poly p, ring r, const char *fmt,...)
Definition: pDebug.cc:44
static void p_LmFree(poly p, ring)
Definition: p_polys.h:678
BOOLEAN _p_LmTest(poly p, ring r, int level)
Definition: pDebug.cc:322
#define pFalseReturn(cond)
Definition: monomials.h:147
#define PDEBUG
Definition: auxiliary.h:169
static int p_LmCmp(poly p, poly q, const ring r)
Definition: p_polys.h:1467
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
BOOLEAN _p_Test(poly p, ring r, int level)
Definition: pDebug.cc:211
polyrec * poly
Definition: hilb.h:10
int BOOLEAN
Definition: auxiliary.h:85

◆ n_PermNumber()

poly n_PermNumber ( const number  z,
const int *  par_perm,
const int  OldPar,
const ring  src,
const ring  dst 
)

Definition at line 3873 of file p_polys.cc.

3874 {
3875 #if 0
3876  PrintS("\nSource Ring: \n");
3877  rWrite(src);
3878 
3879  if(0)
3880  {
3881  number zz = n_Copy(z, src->cf);
3882  PrintS("z: "); n_Write(zz, src);
3883  n_Delete(&zz, src->cf);
3884  }
3885 
3886  PrintS("\nDestination Ring: \n");
3887  rWrite(dst);
3888 
3889  /*Print("\nOldPar: %d\n", OldPar);
3890  for( int i = 1; i <= OldPar; i++ )
3891  {
3892  Print("par(%d) -> par/var (%d)\n", i, par_perm[i-1]);
3893  }*/
3894 #endif
3895  if( z == NULL )
3896  return NULL;
3897 
3898  const coeffs srcCf = src->cf;
3899  assume( srcCf != NULL );
3900 
3901  assume( !nCoeff_is_GF(srcCf) );
3902  assume( src->cf->extRing!=NULL );
3903 
3904  poly zz = NULL;
3905 
3906  const ring srcExtRing = srcCf->extRing;
3907  assume( srcExtRing != NULL );
3908 
3909  const coeffs dstCf = dst->cf;
3910  assume( dstCf != NULL );
3911 
3912  if( nCoeff_is_algExt(srcCf) ) // nCoeff_is_GF(srcCf)?
3913  {
3914  zz = (poly) z;
3915  if( zz == NULL ) return NULL;
3916  }
3917  else if (nCoeff_is_transExt(srcCf))
3918  {
3919  assume( !IS0(z) );
3920 
3921  zz = NUM((fraction)z);
3922  p_Test (zz, srcExtRing);
3923 
3924  if( zz == NULL ) return NULL;
3925  if( !DENIS1((fraction)z) )
3926  {
3927  if (!p_IsConstant(DEN((fraction)z),srcExtRing))
3928  WarnS("Not defined: Cannot map a rational fraction and make a polynomial out of it! Ignoring the denumerator.");
3929  }
3930  }
3931  else
3932  {
3933  assume (FALSE);
3934  WerrorS("Number permutation is not implemented for this data yet!");
3935  return NULL;
3936  }
3937 
3938  assume( zz != NULL );
3939  p_Test (zz, srcExtRing);
3940 
3941  nMapFunc nMap = n_SetMap(srcExtRing->cf, dstCf);
3942 
3943  assume( nMap != NULL );
3944 
3945  poly qq;
3946  if ((par_perm == NULL) && (rPar(dst) != 0 && rVar (srcExtRing) > 0))
3947  {
3948  int* perm;
3949  perm=(int *)omAlloc0((rVar(srcExtRing)+1)*sizeof(int));
3950  perm[0]= 0;
3951  for(int i=si_min(rVar(srcExtRing),rPar(dst));i>0;i--)
3952  perm[i]=-i;
3953  qq = p_PermPoly(zz, perm, srcExtRing, dst, nMap, NULL, rVar(srcExtRing)-1);
3954  omFreeSize ((ADDRESS)perm, (rVar(srcExtRing)+1)*sizeof(int));
3955  }
3956  else
3957  qq = p_PermPoly(zz, par_perm-1, srcExtRing, dst, nMap, NULL, rVar (srcExtRing)-1);
3958 
3959  if(nCoeff_is_transExt(srcCf)
3960  && (!DENIS1((fraction)z))
3961  && p_IsConstant(DEN((fraction)z),srcExtRing))
3962  {
3963  number n=nMap(pGetCoeff(DEN((fraction)z)),srcExtRing->cf, dstCf);
3964  qq=p_Div_nn(qq,n,dst);
3965  n_Delete(&n,dstCf);
3966  p_Normalize(qq,dst);
3967  }
3968  p_Test (qq, dst);
3969 
3970  return qq;
3971 }
static int si_min(const int a, const int b)
Definition: auxiliary.h:121
#define FALSE
Definition: auxiliary.h:94
static int rPar(const ring r)
(r->cf->P)
Definition: ring.h:590
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:583
poly p_Div_nn(poly p, const number n, const ring r)
Definition: p_polys.cc:1474
void * ADDRESS
Definition: auxiliary.h:115
void WerrorS(const char *s)
Definition: feFopen.cc:24
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
#define WarnS
Definition: emacs.cc:81
poly p_PermPoly(poly p, const int *perm, const ring oldRing, const ring dst, nMapFunc nMap, const int *par_perm, int OldPar, BOOLEAN use_mult)
Definition: p_polys.cc:3977
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
TRUE iff r represents an algebraic extension field.
Definition: coeffs.h:927
#define assume(x)
Definition: mod2.h:394
static BOOLEAN p_IsConstant(const poly p, const ring r)
Definition: p_polys.h:1876
The main handler for Singular numbers which are suitable for Singular polynomials.
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
Definition: coeffs.h:73
static FORCE_INLINE void n_Write(number n, const coeffs r, const BOOLEAN bShortOut=TRUE)
Definition: coeffs.h:595
static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
TRUE iff r represents a transcendental extension field.
Definition: coeffs.h:935
int i
Definition: cfEzgcd.cc:123
void PrintS(const char *s)
Definition: reporter.cc:284
void rWrite(ring r, BOOLEAN details)
Definition: ring.cc:236
static FORCE_INLINE BOOLEAN nCoeff_is_GF(const coeffs r)
Definition: coeffs.h:856
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
Definition: coeffs.h:725
#define p_Test(p, r)
Definition: p_polys.h:160
void p_Normalize(poly p, const ring r)
Definition: p_polys.cc:3672
#define NULL
Definition: omList.c:10
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of &#39;n&#39;
Definition: coeffs.h:455
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete &#39;p&#39;
Definition: coeffs.h:459
polyrec * poly
Definition: hilb.h:10
int perm[100]
#define omAlloc0(size)
Definition: omAllocDecl.h:211

◆ p_Add_q() [1/2]

static poly p_Add_q ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 877 of file p_polys.h.

878 {
879  assume( (p != q) || (p == NULL && q == NULL) );
880  int shorter;
881  return r->p_Procs->p_Add_q(p, q, shorter, r);
882 }
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
#define assume(x)
Definition: mod2.h:394
#define NULL
Definition: omList.c:10

◆ p_Add_q() [2/2]

static poly p_Add_q ( poly  p,
poly  q,
int &  lp,
int  lq,
const ring  r 
)
inlinestatic

like p_Add_q, except that if lp == pLength(lp) lq == pLength(lq) then lp == pLength(p+q)

Definition at line 885 of file p_polys.h.

886 {
887  assume( (p != q) || (p == NULL && q == NULL) );
888  int shorter;
889  poly res = r->p_Procs->p_Add_q(p, q, shorter, r);
890  lp = (lp + lq) - shorter;
891  return res;
892 }
return P p
Definition: myNF.cc:203
poly res
Definition: myNF.cc:322
const ring r
Definition: syzextra.cc:208
#define assume(x)
Definition: mod2.h:394
#define NULL
Definition: omList.c:10
polyrec * poly
Definition: hilb.h:10

◆ p_AddComp()

static unsigned long p_AddComp ( poly  p,
unsigned long  v,
ring  r 
)
inlinestatic

Definition at line 442 of file p_polys.h.

443 {
446  return __p_GetComp(p,r) += v;
447 }
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:207
#define __p_GetComp(p, r)
Definition: monomials.h:71
return P p
Definition: myNF.cc:203
#define pAssume2(cond)
Definition: monomials.h:201
const ring r
Definition: syzextra.cc:208
#define rRing_has_Comp(r)
Definition: monomials.h:274
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:37

◆ p_AddExp()

static long p_AddExp ( poly  p,
int  v,
long  ee,
ring  r 
)
inlinestatic

Definition at line 601 of file p_polys.h.

602 {
604  int e = p_GetExp(p,v,r);
605  e += ee;
606  return p_SetExp(p,v,e,r);
607 }
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:207
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:37
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent : VarOffset encodes the position in p->exp
Definition: p_polys.h:483

◆ p_CheckIsFromRing()

BOOLEAN p_CheckIsFromRing ( poly  p,
ring  r 
)

Definition at line 101 of file pDebug.cc.

102 {
103  while (p!=NULL)
104  {
106  pIter(p);
107  }
108  return TRUE;
109 }
return P p
Definition: myNF.cc:203
#define TRUE
Definition: auxiliary.h:98
#define pIter(p)
Definition: monomials.h:44
#define pFalseReturn(cond)
Definition: monomials.h:147
BOOLEAN p_LmCheckIsFromRing(poly p, ring r)
Definition: pDebug.cc:71
const ring r
Definition: syzextra.cc:208
#define NULL
Definition: omList.c:10

◆ p_CheckPolyRing()

BOOLEAN p_CheckPolyRing ( poly  p,
ring  r 
)

Definition at line 111 of file pDebug.cc.

112 {
113  #ifndef X_OMALLOC
114  pAssumeReturn(r != NULL && r->PolyBin != NULL);
115  #endif
116  return p_CheckIsFromRing(p, r);
117 }
return P p
Definition: myNF.cc:203
#define pAssumeReturn(cond)
Definition: monomials.h:86
const ring r
Definition: syzextra.cc:208
#define NULL
Definition: omList.c:10
BOOLEAN p_CheckIsFromRing(poly p, ring r)
Definition: pDebug.cc:101

◆ p_CheckRing()

BOOLEAN p_CheckRing ( ring  r)

Definition at line 127 of file pDebug.cc.

128 {
129  #ifndef X_OMALLOC
130  pAssumeReturn(r != NULL && r->PolyBin != NULL);
131  #endif
132  return TRUE;
133 }
#define TRUE
Definition: auxiliary.h:98
#define pAssumeReturn(cond)
Definition: monomials.h:86
const ring r
Definition: syzextra.cc:208
#define NULL
Definition: omList.c:10

◆ p_ChineseRemainder()

poly p_ChineseRemainder ( poly xx,
number *  x,
number *  q,
int  rl,
CFArray inv_cache,
const ring  R 
)

Definition at line 94 of file p_polys.cc.

95 {
96  poly r,h,hh;
97  int j;
98  poly res_p=NULL;
99  loop
100  {
101  /* search the lead term */
102  r=NULL;
103  for(j=rl-1;j>=0;j--)
104  {
105  h=xx[j];
106  if ((h!=NULL)
107  &&((r==NULL)||(p_LmCmp(r,h,R)==-1)))
108  r=h;
109  }
110  /* nothing found -> return */
111  if (r==NULL) break;
112  /* create the monomial in h */
113  h=p_Head(r,R);
114  /* collect the coeffs in x[..]*/
115  for(j=rl-1;j>=0;j--)
116  {
117  hh=xx[j];
118  if ((hh!=NULL) && (p_LmCmp(h,hh,R)==0))
119  {
120  x[j]=pGetCoeff(hh);
121  hh=p_LmFreeAndNext(hh,R);
122  xx[j]=hh;
123  }
124  else
125  x[j]=n_Init(0, R->cf);
126  }
127  number n=n_ChineseRemainderSym(x,q,rl,TRUE,inv_cache,R->cf);
128  for(j=rl-1;j>=0;j--)
129  {
130  x[j]=NULL; // n_Init(0...) takes no memory
131  }
132  if (n_IsZero(n,R->cf)) p_Delete(&h,R);
133  else
134  {
135  //Print("new mon:");pWrite(h);
136  p_SetCoeff(h,n,R);
137  pNext(h)=res_p;
138  res_p=h; // building res_p in reverse order!
139  }
140  }
141  res_p=pReverse(res_p);
142  p_Test(res_p, R);
143  return res_p;
144 }
loop
Definition: myNF.cc:98
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition: coeffs.h:542
#define TRUE
Definition: auxiliary.h:98
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
static number p_SetCoeff(poly p, number n, ring r)
Definition: p_polys.h:407
static poly p_Head(poly p, const ring r)
Definition: p_polys.h:812
const ring r
Definition: syzextra.cc:208
int j
Definition: myNF.cc:70
static FORCE_INLINE number n_ChineseRemainderSym(number *a, number *b, int rl, BOOLEAN sym, CFArray &inv_cache, const coeffs r)
Definition: coeffs.h:798
const ring R
Definition: DebugPrint.cc:36
static int p_LmCmp(poly p, poly q, const ring r)
Definition: p_polys.h:1467
static poly p_LmFreeAndNext(poly p, ring)
Definition: p_polys.h:698
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the zero element.
Definition: coeffs.h:468
static poly pReverse(poly p)
Definition: p_polys.h:330
#define p_Test(p, r)
Definition: p_polys.h:160
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:843
#define NULL
Definition: omList.c:10
Variable x
Definition: cfModGcd.cc:4023
#define pNext(p)
Definition: monomials.h:43
polyrec * poly
Definition: hilb.h:10
static Poly * h
Definition: janet.cc:978

◆ p_Cleardenom()

poly p_Cleardenom ( poly  p,
const ring  r 
)

Definition at line 2747 of file p_polys.cc.

2748 {
2749  if( p == NULL )
2750  return NULL;
2751 
2752  assume( r != NULL ); assume( r->cf != NULL ); const coeffs C = r->cf;
2753 
2754 #if CLEARENUMERATORS
2755  if( 0 )
2756  {
2757  CPolyCoeffsEnumerator itr(p);
2758 
2759  n_ClearDenominators(itr, C);
2760 
2761  n_ClearContent(itr, C); // divide out the content
2762 
2763  p_Test(p, r); n_Test(pGetCoeff(p), C);
2764  assume(n_GreaterZero(pGetCoeff(p), C)); // ??
2765 // if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2766 
2767  return p;
2768  }
2769 #endif
2770 
2771 
2772  number d, h;
2773 
2774  if (rField_is_Ring(r))
2775  {
2776  p_Content(p,r);
2777  if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2778  return p;
2779  }
2780 
2782  {
2783  if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2784  return p;
2785  }
2786 
2787  assume(p != NULL);
2788 
2789  if(pNext(p)==NULL)
2790  {
2791  if (!TEST_OPT_CONTENTSB
2792  && !rField_is_Ring(r))
2793  p_SetCoeff(p,n_Init(1,r->cf),r);
2794  else if(!n_GreaterZero(pGetCoeff(p),C))
2795  p = p_Neg(p,r);
2796  return p;
2797  }
2798 
2799  assume(pNext(p)!=NULL);
2800  poly start=p;
2801 
2802 #if 0 && CLEARENUMERATORS
2803 //CF: does not seem to work that well..
2804 
2805  if( nCoeff_is_Q(C) || nCoeff_is_Q_a(C) )
2806  {
2807  CPolyCoeffsEnumerator itr(p);
2808 
2809  n_ClearDenominators(itr, C);
2810 
2811  n_ClearContent(itr, C); // divide out the content
2812 
2813  p_Test(p, r); n_Test(pGetCoeff(p), C);
2814  assume(n_GreaterZero(pGetCoeff(p), C)); // ??
2815 // if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2816 
2817  return start;
2818  }
2819 #endif
2820 
2821  if(1)
2822  {
2823  h = n_Init(1,r->cf);
2824  while (p!=NULL)
2825  {
2826  n_Normalize(pGetCoeff(p),r->cf);
2827  d=n_NormalizeHelper(h,pGetCoeff(p),r->cf);
2828  n_Delete(&h,r->cf);
2829  h=d;
2830  pIter(p);
2831  }
2832  /* contains the 1/lcm of all denominators */
2833  if(!n_IsOne(h,r->cf))
2834  {
2835  p = start;
2836  while (p!=NULL)
2837  {
2838  /* should be: // NOTE: don't use ->coef!!!!
2839  * number hh;
2840  * nGetDenom(p->coef,&hh);
2841  * nMult(&h,&hh,&d);
2842  * nNormalize(d);
2843  * nDelete(&hh);
2844  * nMult(d,p->coef,&hh);
2845  * nDelete(&d);
2846  * nDelete(&(p->coef));
2847  * p->coef =hh;
2848  */
2849  d=n_Mult(h,pGetCoeff(p),r->cf);
2850  n_Normalize(d,r->cf);
2851  p_SetCoeff(p,d,r);
2852  pIter(p);
2853  }
2854  n_Delete(&h,r->cf);
2855  }
2856  n_Delete(&h,r->cf);
2857  p=start;
2858 
2859  p_Content(p,r);
2860 #ifdef HAVE_RATGRING
2861  if (rIsRatGRing(r))
2862  {
2863  /* quick unit detection in the rational case is done in gr_nc_bba */
2864  p_ContentRat(p, r);
2865  start=p;
2866  }
2867 #endif
2868  }
2869 
2870  if(!n_GreaterZero(pGetCoeff(p),C)) p = p_Neg(p,r);
2871 
2872  return start;
2873 }
return P p
Definition: myNF.cc:203
static FORCE_INLINE BOOLEAN n_IsOne(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the one element.
Definition: coeffs.h:472
static BOOLEAN rIsRatGRing(const ring r)
Definition: ring.h:415
#define TEST_OPT_CONTENTSB
Definition: options.h:121
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition: coeffs.h:542
static FORCE_INLINE void n_Normalize(number &n, const coeffs r)
inplace-normalization of n; produces some canonical representation of n;
Definition: coeffs.h:582
static FORCE_INLINE number n_NormalizeHelper(number a, number b, const coeffs r)
assume that r is a quotient field (otherwise, return 1) for arguments (a1/a2,b1/b2) return (lcm(a1...
Definition: coeffs.h:721
static FORCE_INLINE BOOLEAN nCoeff_is_Q(const coeffs r)
Definition: coeffs.h:840
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
static number p_SetCoeff(poly p, number n, ring r)
Definition: p_polys.h:407
static FORCE_INLINE BOOLEAN nCoeff_is_Q_a(const coeffs r)
Definition: coeffs.h:902
#define pIter(p)
Definition: monomials.h:44
static FORCE_INLINE number n_Mult(number a, number b, const coeffs r)
return the product of &#39;a&#39; and &#39;b&#39;, i.e., a*b
Definition: coeffs.h:640
void p_ContentRat(poly &ph, const ring r)
Definition: p_polys.cc:1697
static FORCE_INLINE void n_ClearContent(ICoeffsEnumerator &numberCollectionEnumerator, number &c, const coeffs r)
Computes the content and (inplace) divides it out on a collection of numbers number c is the content ...
Definition: coeffs.h:945
const ring r
Definition: syzextra.cc:208
#define TEST_OPT_INTSTRATEGY
Definition: options.h:105
This is a polynomial enumerator for simple iteration over coefficients of polynomials.
#define assume(x)
Definition: mod2.h:394
The main handler for Singular numbers which are suitable for Singular polynomials.
#define n_Test(a, r)
BOOLEAN n_Test(number a, const coeffs r)
Definition: coeffs.h:742
void p_Content(poly ph, const ring r)
Definition: p_polys.cc:2247
#define p_Test(p, r)
Definition: p_polys.h:160
static BOOLEAN rField_is_Zp(const ring r)
Definition: ring.h:495
static BOOLEAN rField_is_Ring(const ring r)
Definition: ring.h:477
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
static poly p_Neg(poly p, const ring r)
Definition: p_polys.h:1013
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete &#39;p&#39;
Definition: coeffs.h:459
static FORCE_INLINE BOOLEAN n_GreaterZero(number n, const coeffs r)
ordered fields: TRUE iff &#39;n&#39; is positive; in Z/pZ: TRUE iff 0 < m <= roundedBelow(p/2), where m is the long representing n in C: TRUE iff (Im(n) != 0 and Im(n) >= 0) or (Im(n) == 0 and Re(n) >= 0) in K(a)/<p(a)>: TRUE iff (n != 0 and (LC(n) > 0 or deg(n) > 0)) in K(t_1, ..., t_n): TRUE iff (LC(numerator(n) is a constant and > 0) or (LC(numerator(n) is not a constant) in Z/2^kZ: TRUE iff 0 < n <= 2^(k-1) in Z/mZ: TRUE iff the internal mpz is greater than zero in Z: TRUE iff n > 0
Definition: coeffs.h:498
polyrec * poly
Definition: hilb.h:10
static Poly * h
Definition: janet.cc:978
static FORCE_INLINE void n_ClearDenominators(ICoeffsEnumerator &numberCollectionEnumerator, number &d, const coeffs r)
(inplace) Clears denominators on a collection of numbers number d is the LCM of all the coefficient d...
Definition: coeffs.h:952

◆ p_Cleardenom_n()

void p_Cleardenom_n ( poly  p,
const ring  r,
number &  c 
)

Definition at line 2875 of file p_polys.cc.

2876 {
2877  const coeffs C = r->cf;
2878  number d, h;
2879 
2880  assume( ph != NULL );
2881 
2882  poly p = ph;
2883 
2884 #if CLEARENUMERATORS
2885  if( 0 )
2886  {
2887  CPolyCoeffsEnumerator itr(ph);
2888 
2889  n_ClearDenominators(itr, d, C); // multiply with common denom. d
2890  n_ClearContent(itr, h, C); // divide by the content h
2891 
2892  c = n_Div(d, h, C); // d/h
2893 
2894  n_Delete(&d, C);
2895  n_Delete(&h, C);
2896 
2897  n_Test(c, C);
2898 
2899  p_Test(ph, r); n_Test(pGetCoeff(ph), C);
2900  assume(n_GreaterZero(pGetCoeff(ph), C)); // ??
2901 /*
2902  if(!n_GreaterZero(pGetCoeff(ph),C))
2903  {
2904  ph = p_Neg(ph,r);
2905  c = n_InpNeg(c, C);
2906  }
2907 */
2908  return;
2909  }
2910 #endif
2911 
2912 
2913  if( pNext(p) == NULL )
2914  {
2915  if(!TEST_OPT_CONTENTSB)
2916  {
2917  c=n_Invers(pGetCoeff(p), C);
2918  p_SetCoeff(p, n_Init(1, C), r);
2919  }
2920  else
2921  {
2922  c=n_Init(1,C);
2923  }
2924 
2925  if(!n_GreaterZero(pGetCoeff(ph),C))
2926  {
2927  ph = p_Neg(ph,r);
2928  c = n_InpNeg(c, C);
2929  }
2930 
2931  return;
2932  }
2933  if (TEST_OPT_CONTENTSB) { c=n_Init(1,C); return; }
2934 
2935  assume( pNext(p) != NULL );
2936 
2937 #if CLEARENUMERATORS
2938  if( nCoeff_is_Q(C) || nCoeff_is_Q_a(C) )
2939  {
2940  CPolyCoeffsEnumerator itr(ph);
2941 
2942  n_ClearDenominators(itr, d, C); // multiply with common denom. d
2943  n_ClearContent(itr, h, C); // divide by the content h
2944 
2945  c = n_Div(d, h, C); // d/h
2946 
2947  n_Delete(&d, C);
2948  n_Delete(&h, C);
2949 
2950  n_Test(c, C);
2951 
2952  p_Test(ph, r); n_Test(pGetCoeff(ph), C);
2953  assume(n_GreaterZero(pGetCoeff(ph), C)); // ??
2954 /*
2955  if(!n_GreaterZero(pGetCoeff(ph),C))
2956  {
2957  ph = p_Neg(ph,r);
2958  c = n_InpNeg(c, C);
2959  }
2960 */
2961  return;
2962  }
2963 #endif
2964 
2965 
2966 
2967 
2968  if(1)
2969  {
2970  h = n_Init(1,r->cf);
2971  while (p!=NULL)
2972  {
2973  n_Normalize(pGetCoeff(p),r->cf);
2974  d=n_NormalizeHelper(h,pGetCoeff(p),r->cf);
2975  n_Delete(&h,r->cf);
2976  h=d;
2977  pIter(p);
2978  }
2979  c=h;
2980  /* contains the 1/lcm of all denominators */
2981  if(!n_IsOne(h,r->cf))
2982  {
2983  p = ph;
2984  while (p!=NULL)
2985  {
2986  /* should be: // NOTE: don't use ->coef!!!!
2987  * number hh;
2988  * nGetDenom(p->coef,&hh);
2989  * nMult(&h,&hh,&d);
2990  * nNormalize(d);
2991  * nDelete(&hh);
2992  * nMult(d,p->coef,&hh);
2993  * nDelete(&d);
2994  * nDelete(&(p->coef));
2995  * p->coef =hh;
2996  */
2997  d=n_Mult(h,pGetCoeff(p),r->cf);
2998  n_Normalize(d,r->cf);
2999  p_SetCoeff(p,d,r);
3000  pIter(p);
3001  }
3002  if (rField_is_Q_a(r))
3003  {
3004  loop
3005  {
3006  h = n_Init(1,r->cf);
3007  p=ph;
3008  while (p!=NULL)
3009  {
3010  d=n_NormalizeHelper(h,pGetCoeff(p),r->cf);
3011  n_Delete(&h,r->cf);
3012  h=d;
3013  pIter(p);
3014  }
3015  /* contains the 1/lcm of all denominators */
3016  if(!n_IsOne(h,r->cf))
3017  {
3018  p = ph;
3019  while (p!=NULL)
3020  {
3021  /* should be: // NOTE: don't use ->coef!!!!
3022  * number hh;
3023  * nGetDenom(p->coef,&hh);
3024  * nMult(&h,&hh,&d);
3025  * nNormalize(d);
3026  * nDelete(&hh);
3027  * nMult(d,p->coef,&hh);
3028  * nDelete(&d);
3029  * nDelete(&(p->coef));
3030  * p->coef =hh;
3031  */
3032  d=n_Mult(h,pGetCoeff(p),r->cf);
3033  n_Normalize(d,r->cf);
3034  p_SetCoeff(p,d,r);
3035  pIter(p);
3036  }
3037  number t=n_Mult(c,h,r->cf);
3038  n_Delete(&c,r->cf);
3039  c=t;
3040  }
3041  else
3042  {
3043  break;
3044  }
3045  n_Delete(&h,r->cf);
3046  }
3047  }
3048  }
3049  }
3050 
3051  if(!n_GreaterZero(pGetCoeff(ph),C))
3052  {
3053  ph = p_Neg(ph,r);
3054  c = n_InpNeg(c, C);
3055  }
3056 
3057 }
loop
Definition: myNF.cc:98
return P p
Definition: myNF.cc:203
static FORCE_INLINE BOOLEAN n_IsOne(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the one element.
Definition: coeffs.h:472
#define TEST_OPT_CONTENTSB
Definition: options.h:121
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition: coeffs.h:542
static BOOLEAN rField_is_Q_a(const ring r)
Definition: ring.h:531
static FORCE_INLINE void n_Normalize(number &n, const coeffs r)
inplace-normalization of n; produces some canonical representation of n;
Definition: coeffs.h:582
static FORCE_INLINE number n_NormalizeHelper(number a, number b, const coeffs r)
assume that r is a quotient field (otherwise, return 1) for arguments (a1/a2,b1/b2) return (lcm(a1...
Definition: coeffs.h:721
static FORCE_INLINE BOOLEAN nCoeff_is_Q(const coeffs r)
Definition: coeffs.h:840
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
static number p_SetCoeff(poly p, number n, ring r)
Definition: p_polys.h:407
static FORCE_INLINE BOOLEAN nCoeff_is_Q_a(const coeffs r)
Definition: coeffs.h:902
#define pIter(p)
Definition: monomials.h:44
static FORCE_INLINE number n_Mult(number a, number b, const coeffs r)
return the product of &#39;a&#39; and &#39;b&#39;, i.e., a*b
Definition: coeffs.h:640
static FORCE_INLINE void n_ClearContent(ICoeffsEnumerator &numberCollectionEnumerator, number &c, const coeffs r)
Computes the content and (inplace) divides it out on a collection of numbers number c is the content ...
Definition: coeffs.h:945
const ring r
Definition: syzextra.cc:208
This is a polynomial enumerator for simple iteration over coefficients of polynomials.
#define assume(x)
Definition: mod2.h:394
The main handler for Singular numbers which are suitable for Singular polynomials.
#define n_Test(a, r)
BOOLEAN n_Test(number a, const coeffs r)
Definition: coeffs.h:742
static FORCE_INLINE number n_Invers(number a, const coeffs r)
return the multiplicative inverse of &#39;a&#39;; raise an error if &#39;a&#39; is not invertible ...
Definition: coeffs.h:568
static FORCE_INLINE number n_InpNeg(number n, const coeffs r)
in-place negation of n MUST BE USED: n = n_InpNeg(n) (no copy is returned)
Definition: coeffs.h:561
#define p_Test(p, r)
Definition: p_polys.h:160
#define NULL
Definition: omList.c:10
static FORCE_INLINE number n_Div(number a, number b, const coeffs r)
return the quotient of &#39;a&#39; and &#39;b&#39;, i.e., a/b; raises an error if &#39;b&#39; is not invertible in r exceptio...
Definition: coeffs.h:619
#define pNext(p)
Definition: monomials.h:43
static poly p_Neg(poly p, const ring r)
Definition: p_polys.h:1013
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete &#39;p&#39;
Definition: coeffs.h:459
static FORCE_INLINE BOOLEAN n_GreaterZero(number n, const coeffs r)
ordered fields: TRUE iff &#39;n&#39; is positive; in Z/pZ: TRUE iff 0 < m <= roundedBelow(p/2), where m is the long representing n in C: TRUE iff (Im(n) != 0 and Im(n) >= 0) or (Im(n) == 0 and Re(n) >= 0) in K(a)/<p(a)>: TRUE iff (n != 0 and (LC(n) > 0 or deg(n) > 0)) in K(t_1, ..., t_n): TRUE iff (LC(numerator(n) is a constant and > 0) or (LC(numerator(n) is not a constant) in Z/2^kZ: TRUE iff 0 < n <= 2^(k-1) in Z/mZ: TRUE iff the internal mpz is greater than zero in Z: TRUE iff n > 0
Definition: coeffs.h:498
polyrec * poly
Definition: hilb.h:10
static Poly * h
Definition: janet.cc:978
static FORCE_INLINE void n_ClearDenominators(ICoeffsEnumerator &numberCollectionEnumerator, number &d, const coeffs r)
(inplace) Clears denominators on a collection of numbers number d is the LCM of all the coefficient d...
Definition: coeffs.h:952

◆ p_Cmp()

static int p_Cmp ( poly  p1,
poly  p2,
ring  r 
)
inlinestatic

Definition at line 1615 of file p_polys.h.

1616 {
1617  if (p2==NULL)
1618  return 1;
1619  if (p1==NULL)
1620  return -1;
1621  return p_LmCmp(p1,p2,r);
1622 }
const ring r
Definition: syzextra.cc:208
static int p_LmCmp(poly p, poly q, const ring r)
Definition: p_polys.h:1467
#define NULL
Definition: omList.c:10
END_NAMESPACE const void * p2
Definition: syzextra.cc:202

◆ p_Comp_k_n()

static int p_Comp_k_n ( poly  a,
poly  b,
int  k,
ring  r 
)
inlinestatic

Definition at line 635 of file p_polys.h.

636 {
637  if ((a==NULL) || (b==NULL) ) return FALSE;
640  pAssume2(k > 0 && k <= r->N);
641  int i=k;
642  for(;i<=r->N;i++)
643  {
644  if (p_GetExp(a,i,r) != p_GetExp(b,i,r)) return FALSE;
645  // if (a->exp[(r->VarOffset[i] & 0xffffff)] != b->exp[(r->VarOffset[i] & 0xffffff)]) return FALSE;
646  }
647  return TRUE;
648 }
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:207
const poly a
Definition: syzextra.cc:212
#define FALSE
Definition: auxiliary.h:94
#define TRUE
Definition: auxiliary.h:98
int k
Definition: cfEzgcd.cc:93
#define pAssume2(cond)
Definition: monomials.h:201
const ring r
Definition: syzextra.cc:208
const CanonicalForm CFMap CFMap & N
Definition: cfEzgcd.cc:49
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int i
Definition: cfEzgcd.cc:123
#define NULL
Definition: omList.c:10
const poly b
Definition: syzextra.cc:213

◆ p_Compare()

int p_Compare ( const poly  a,
const poly  b,
const ring  R 
)

Definition at line 4752 of file p_polys.cc.

4753 {
4754  int r=p_Cmp(a,b,R);
4755  if ((r==0)&&(a!=NULL))
4756  {
4757  number h=n_Sub(pGetCoeff(a),pGetCoeff(b),R->cf);
4758  /* compare lead coeffs */
4759  r = -1+n_IsZero(h,R->cf)+2*n_GreaterZero(h,R->cf); /* -1: <, 0:==, 1: > */
4760  n_Delete(&h,R->cf);
4761  }
4762  else if (a==NULL)
4763  {
4764  if (b==NULL)
4765  {
4766  /* compare 0, 0 */
4767  r=0;
4768  }
4769  else if(p_IsConstant(b,R))
4770  {
4771  /* compare 0, const */
4772  r = 1-2*n_GreaterZero(pGetCoeff(b),R->cf); /* -1: <, 1: > */
4773  }
4774  }
4775  else if (b==NULL)
4776  {
4777  if (p_IsConstant(a,R))
4778  {
4779  /* compare const, 0 */
4780  r = -1+2*n_GreaterZero(pGetCoeff(a),R->cf); /* -1: <, 1: > */
4781  }
4782  }
4783  return(r);
4784 }
static FORCE_INLINE number n_Sub(number a, number b, const coeffs r)
return the difference of &#39;a&#39; and &#39;b&#39;, i.e., a-b
Definition: coeffs.h:673
const poly a
Definition: syzextra.cc:212
static int p_Cmp(poly p1, poly p2, ring r)
Definition: p_polys.h:1615
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
const ring r
Definition: syzextra.cc:208
static BOOLEAN p_IsConstant(const poly p, const ring r)
Definition: p_polys.h:1876
const ring R
Definition: DebugPrint.cc:36
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the zero element.
Definition: coeffs.h:468
#define NULL
Definition: omList.c:10
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete &#39;p&#39;
Definition: coeffs.h:459
static FORCE_INLINE BOOLEAN n_GreaterZero(number n, const coeffs r)
ordered fields: TRUE iff &#39;n&#39; is positive; in Z/pZ: TRUE iff 0 < m <= roundedBelow(p/2), where m is the long representing n in C: TRUE iff (Im(n) != 0 and Im(n) >= 0) or (Im(n) == 0 and Re(n) >= 0) in K(a)/<p(a)>: TRUE iff (n != 0 and (LC(n) > 0 or deg(n) > 0)) in K(t_1, ..., t_n): TRUE iff (LC(numerator(n) is a constant and > 0) or (LC(numerator(n) is not a constant) in Z/2^kZ: TRUE iff 0 < n <= 2^(k-1) in Z/mZ: TRUE iff the internal mpz is greater than zero in Z: TRUE iff n > 0
Definition: coeffs.h:498
static Poly * h
Definition: janet.cc:978
const poly b
Definition: syzextra.cc:213

◆ p_ComparePolys()

BOOLEAN p_ComparePolys ( poly  p1,
poly  p2,
const ring  r 
)

returns TRUE if p1 is a skalar multiple of p2 assume p1 != NULL and p2 != NULL

Definition at line 4423 of file p_polys.cc.

4424 {
4425  number n,nn;
4426  pAssume(p1 != NULL && p2 != NULL);
4427 
4428  if (!p_LmEqual(p1,p2,r)) //compare leading mons
4429  return FALSE;
4430  if ((pNext(p1)==NULL) && (pNext(p2)!=NULL))
4431  return FALSE;
4432  if ((pNext(p2)==NULL) && (pNext(p1)!=NULL))
4433  return FALSE;
4434  if (pLength(p1) != pLength(p2))
4435  return FALSE;
4436  #ifdef HAVE_RINGS
4437  if (rField_is_Ring(r))
4438  {
4439  if (!n_DivBy(pGetCoeff(p1), pGetCoeff(p2), r->cf)) return FALSE;
4440  }
4441  #endif
4442  n=n_Div(pGetCoeff(p1),pGetCoeff(p2),r->cf);
4443  while ((p1 != NULL) /*&& (p2 != NULL)*/)
4444  {
4445  if ( ! p_LmEqual(p1, p2,r))
4446  {
4447  n_Delete(&n, r->cf);
4448  return FALSE;
4449  }
4450  if (!n_Equal(pGetCoeff(p1), nn = n_Mult(pGetCoeff(p2),n, r->cf), r->cf))
4451  {
4452  n_Delete(&n, r->cf);
4453  n_Delete(&nn, r->cf);
4454  return FALSE;
4455  }
4456  n_Delete(&nn, r->cf);
4457  pIter(p1);
4458  pIter(p2);
4459  }
4460  n_Delete(&n, r->cf);
4461  return TRUE;
4462 }
#define FALSE
Definition: auxiliary.h:94
#define pAssume(cond)
Definition: monomials.h:98
#define TRUE
Definition: auxiliary.h:98
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
#define pIter(p)
Definition: monomials.h:44
static FORCE_INLINE number n_Mult(number a, number b, const coeffs r)
return the product of &#39;a&#39; and &#39;b&#39;, i.e., a*b
Definition: coeffs.h:640
const ring r
Definition: syzextra.cc:208
static FORCE_INLINE BOOLEAN n_DivBy(number a, number b, const coeffs r)
test whether &#39;a&#39; is divisible &#39;b&#39;; for r encoding a field: TRUE iff &#39;b&#39; does not represent zero in Z:...
Definition: coeffs.h:787
static unsigned pLength(poly a)
Definition: p_polys.h:189
#define p_LmEqual(p1, p2, r)
Definition: p_polys.h:1611
static BOOLEAN rField_is_Ring(const ring r)
Definition: ring.h:477
#define NULL
Definition: omList.c:10
static FORCE_INLINE number n_Div(number a, number b, const coeffs r)
return the quotient of &#39;a&#39; and &#39;b&#39;, i.e., a/b; raises an error if &#39;b&#39; is not invertible in r exceptio...
Definition: coeffs.h:619
#define pNext(p)
Definition: monomials.h:43
static FORCE_INLINE BOOLEAN n_Equal(number a, number b, const coeffs r)
TRUE iff &#39;a&#39; and &#39;b&#39; represent the same number; they may have different representations.
Definition: coeffs.h:464
END_NAMESPACE const void * p2
Definition: syzextra.cc:202
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete &#39;p&#39;
Definition: coeffs.h:459

◆ p_Content()

void p_Content ( poly  p,
const ring  r 
)

Definition at line 2247 of file p_polys.cc.

2248 {
2249  assume( ph != NULL );
2250 
2251  assume( r != NULL ); assume( r->cf != NULL );
2252 
2253 
2254 #if CLEARENUMERATORS
2255  if( 0 )
2256  {
2257  const coeffs C = r->cf;
2258  // experimentall (recursive enumerator treatment) of alg. Ext!
2259  CPolyCoeffsEnumerator itr(ph);
2260  n_ClearContent(itr, r->cf);
2261 
2262  p_Test(ph, r); n_Test(pGetCoeff(ph), C);
2263  assume(n_GreaterZero(pGetCoeff(ph), C)); // ??
2264 
2265  // if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2266  return;
2267  }
2268 #endif
2269 
2270 
2271 #ifdef HAVE_RINGS
2272  if (rField_is_Ring(r))
2273  {
2274  if (rField_has_Units(r))
2275  {
2276  number k = n_GetUnit(pGetCoeff(ph),r->cf);
2277  if (!n_IsOne(k,r->cf))
2278  {
2279  number tmpGMP = k;
2280  k = n_Invers(k,r->cf);
2281  n_Delete(&tmpGMP,r->cf);
2282  poly h = pNext(ph);
2283  p_SetCoeff(ph, n_Mult(pGetCoeff(ph), k,r->cf),r);
2284  while (h != NULL)
2285  {
2286  p_SetCoeff(h, n_Mult(pGetCoeff(h), k,r->cf),r);
2287  pIter(h);
2288  }
2289 // assume( n_GreaterZero(pGetCoeff(ph),r->cf) );
2290 // if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2291  }
2292  n_Delete(&k,r->cf);
2293  }
2294  return;
2295  }
2296 #endif
2297  number h,d;
2298  poly p;
2299 
2300  if(TEST_OPT_CONTENTSB) return;
2301  if(pNext(ph)==NULL)
2302  {
2303  p_SetCoeff(ph,n_Init(1,r->cf),r);
2304  }
2305  else
2306  {
2307  assume( pNext(ph) != NULL );
2308 #if CLEARENUMERATORS
2309  if( nCoeff_is_Q(r->cf) )
2310  {
2311  // experimentall (recursive enumerator treatment) of alg. Ext!
2312  CPolyCoeffsEnumerator itr(ph);
2313  n_ClearContent(itr, r->cf);
2314 
2315  p_Test(ph, r); n_Test(pGetCoeff(ph), r->cf);
2316  assume(n_GreaterZero(pGetCoeff(ph), r->cf)); // ??
2317 
2318  // if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2319  return;
2320  }
2321 #endif
2322 
2323  n_Normalize(pGetCoeff(ph),r->cf);
2324  if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2325  if (rField_is_Q(r)||(getCoeffType(r->cf)==n_transExt)) // should not be used anymore if CLEARENUMERATORS is 1
2326  {
2327  h=p_InitContent(ph,r);
2328  p=ph;
2329  }
2330  else
2331  {
2332  h=n_Copy(pGetCoeff(ph),r->cf);
2333  p = pNext(ph);
2334  }
2335  while (p!=NULL)
2336  {
2337  n_Normalize(pGetCoeff(p),r->cf);
2338  d=n_SubringGcd(h,pGetCoeff(p),r->cf);
2339  n_Delete(&h,r->cf);
2340  h = d;
2341  if(n_IsOne(h,r->cf))
2342  {
2343  break;
2344  }
2345  pIter(p);
2346  }
2347  p = ph;
2348  //number tmp;
2349  if(!n_IsOne(h,r->cf))
2350  {
2351  while (p!=NULL)
2352  {
2353  //d = nDiv(pGetCoeff(p),h);
2354  //tmp = nExactDiv(pGetCoeff(p),h);
2355  //if (!nEqual(d,tmp))
2356  //{
2357  // StringSetS("** div0:");nWrite(pGetCoeff(p));StringAppendS("/");
2358  // nWrite(h);StringAppendS("=");nWrite(d);StringAppendS(" int:");
2359  // nWrite(tmp);Print(StringEndS("\n")); // NOTE/TODO: use StringAppendS("\n"); omFree(s);
2360  //}
2361  //nDelete(&tmp);
2362  d = n_ExactDiv(pGetCoeff(p),h,r->cf);
2363  p_SetCoeff(p,d,r);
2364  pIter(p);
2365  }
2366  }
2367  n_Delete(&h,r->cf);
2368  if (rField_is_Q_a(r))
2369  {
2370  // special handling for alg. ext.:
2371  if (getCoeffType(r->cf)==n_algExt)
2372  {
2373  h = n_Init(1, r->cf->extRing->cf);
2374  p=ph;
2375  while (p!=NULL)
2376  { // each monom: coeff in Q_a
2377  poly c_n_n=(poly)pGetCoeff(p);
2378  poly c_n=c_n_n;
2379  while (c_n!=NULL)
2380  { // each monom: coeff in Q
2381  d=n_NormalizeHelper(h,pGetCoeff(c_n),r->cf->extRing->cf);
2382  n_Delete(&h,r->cf->extRing->cf);
2383  h=d;
2384  pIter(c_n);
2385  }
2386  pIter(p);
2387  }
2388  /* h contains the 1/lcm of all denominators in c_n_n*/
2389  //n_Normalize(h,r->cf->extRing->cf);
2390  if(!n_IsOne(h,r->cf->extRing->cf))
2391  {
2392  p=ph;
2393  while (p!=NULL)
2394  { // each monom: coeff in Q_a
2395  poly c_n=(poly)pGetCoeff(p);
2396  while (c_n!=NULL)
2397  { // each monom: coeff in Q
2398  d=n_Mult(h,pGetCoeff(c_n),r->cf->extRing->cf);
2399  n_Normalize(d,r->cf->extRing->cf);
2400  n_Delete(&pGetCoeff(c_n),r->cf->extRing->cf);
2401  pGetCoeff(c_n)=d;
2402  pIter(c_n);
2403  }
2404  pIter(p);
2405  }
2406  }
2407  n_Delete(&h,r->cf->extRing->cf);
2408  }
2409  /*else
2410  {
2411  // special handling for rat. functions.:
2412  number hzz =NULL;
2413  p=ph;
2414  while (p!=NULL)
2415  { // each monom: coeff in Q_a (Z_a)
2416  fraction f=(fraction)pGetCoeff(p);
2417  poly c_n=NUM(f);
2418  if (hzz==NULL)
2419  {
2420  hzz=n_Copy(pGetCoeff(c_n),r->cf->extRing->cf);
2421  pIter(c_n);
2422  }
2423  while ((c_n!=NULL)&&(!n_IsOne(hzz,r->cf->extRing->cf)))
2424  { // each monom: coeff in Q (Z)
2425  d=n_Gcd(hzz,pGetCoeff(c_n),r->cf->extRing->cf);
2426  n_Delete(&hzz,r->cf->extRing->cf);
2427  hzz=d;
2428  pIter(c_n);
2429  }
2430  pIter(p);
2431  }
2432  // hzz contains the gcd of all numerators in f
2433  h=n_Invers(hzz,r->cf->extRing->cf);
2434  n_Delete(&hzz,r->cf->extRing->cf);
2435  n_Normalize(h,r->cf->extRing->cf);
2436  if(!n_IsOne(h,r->cf->extRing->cf))
2437  {
2438  p=ph;
2439  while (p!=NULL)
2440  { // each monom: coeff in Q_a (Z_a)
2441  fraction f=(fraction)pGetCoeff(p);
2442  NUM(f)=p_Mult_nn(NUM(f),h,r->cf->extRing);
2443  p_Normalize(NUM(f),r->cf->extRing);
2444  pIter(p);
2445  }
2446  }
2447  n_Delete(&h,r->cf->extRing->cf);
2448  }*/
2449  }
2450  }
2451  if(!n_GreaterZero(pGetCoeff(ph),r->cf)) ph = p_Neg(ph,r);
2452 }
static FORCE_INLINE number n_GetUnit(number n, const coeffs r)
in Z: 1 in Z/kZ (where k is not a prime): largest divisor of n (taken in Z) that is co-prime with k i...
Definition: coeffs.h:536
used for all transcendental extensions, i.e., the top-most extension in an extension tower is transce...
Definition: coeffs.h:39
return P p
Definition: myNF.cc:203
static FORCE_INLINE BOOLEAN n_IsOne(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the one element.
Definition: coeffs.h:472
#define TEST_OPT_CONTENTSB
Definition: options.h:121
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition: coeffs.h:542
static BOOLEAN rField_is_Q_a(const ring r)
Definition: ring.h:531
static FORCE_INLINE void n_Normalize(number &n, const coeffs r)
inplace-normalization of n; produces some canonical representation of n;
Definition: coeffs.h:582
int k
Definition: cfEzgcd.cc:93
static FORCE_INLINE number n_NormalizeHelper(number a, number b, const coeffs r)
assume that r is a quotient field (otherwise, return 1) for arguments (a1/a2,b1/b2) return (lcm(a1...
Definition: coeffs.h:721
static FORCE_INLINE BOOLEAN nCoeff_is_Q(const coeffs r)
Definition: coeffs.h:840
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
static number p_SetCoeff(poly p, number n, ring r)
Definition: p_polys.h:407
#define pIter(p)
Definition: monomials.h:44
static FORCE_INLINE number n_Mult(number a, number b, const coeffs r)
return the product of &#39;a&#39; and &#39;b&#39;, i.e., a*b
Definition: coeffs.h:640
static FORCE_INLINE void n_ClearContent(ICoeffsEnumerator &numberCollectionEnumerator, number &c, const coeffs r)
Computes the content and (inplace) divides it out on a collection of numbers number c is the content ...
Definition: coeffs.h:945
const ring r
Definition: syzextra.cc:208
This is a polynomial enumerator for simple iteration over coefficients of polynomials.
#define assume(x)
Definition: mod2.h:394
The main handler for Singular numbers which are suitable for Singular polynomials.
#define n_Test(a, r)
BOOLEAN n_Test(number a, const coeffs r)
Definition: coeffs.h:742
static FORCE_INLINE number n_Invers(number a, const coeffs r)
return the multiplicative inverse of &#39;a&#39;; raise an error if &#39;a&#39; is not invertible ...
Definition: coeffs.h:568
static number p_InitContent(poly ph, const ring r)
Definition: p_polys.cc:2514
static BOOLEAN rField_is_Q(const ring r)
Definition: ring.h:501
static FORCE_INLINE n_coeffType getCoeffType(const coeffs r)
Returns the type of coeffs domain.
Definition: coeffs.h:425
#define p_Test(p, r)
Definition: p_polys.h:160
static BOOLEAN rField_is_Ring(const ring r)
Definition: ring.h:477
#define NULL
Definition: omList.c:10
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of &#39;n&#39;
Definition: coeffs.h:455
used for all algebraic extensions, i.e., the top-most extension in an extension tower is algebraic ...
Definition: coeffs.h:36
#define pNext(p)
Definition: monomials.h:43
static FORCE_INLINE number n_ExactDiv(number a, number b, const coeffs r)
assume that there is a canonical subring in cf and we know that division is possible for these a and ...
Definition: coeffs.h:626
static FORCE_INLINE number n_SubringGcd(number a, number b, const coeffs r)
Definition: coeffs.h:692
static poly p_Neg(poly p, const ring r)
Definition: p_polys.h:1013
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete &#39;p&#39;
Definition: coeffs.h:459
static FORCE_INLINE BOOLEAN n_GreaterZero(number n, const coeffs r)
ordered fields: TRUE iff &#39;n&#39; is positive; in Z/pZ: TRUE iff 0 < m <= roundedBelow(p/2), where m is the long representing n in C: TRUE iff (Im(n) != 0 and Im(n) >= 0) or (Im(n) == 0 and Re(n) >= 0) in K(a)/<p(a)>: TRUE iff (n != 0 and (LC(n) > 0 or deg(n) > 0)) in K(t_1, ..., t_n): TRUE iff (LC(numerator(n) is a constant and > 0) or (LC(numerator(n) is not a constant) in Z/2^kZ: TRUE iff 0 < n <= 2^(k-1) in Z/mZ: TRUE iff the internal mpz is greater than zero in Z: TRUE iff n > 0
Definition: coeffs.h:498
polyrec * poly
Definition: hilb.h:10
static BOOLEAN rField_has_Units(const ring r)
Definition: ring.h:483
static Poly * h
Definition: janet.cc:978

◆ p_ContentRat()

void p_ContentRat ( poly ph,
const ring  r 
)

Definition at line 1697 of file p_polys.cc.

1700 {
1701  // init array of RatLeadCoeffs
1702  // poly p_GetCoeffRat(poly p, int ishift, ring r);
1703 
1704  int len=pLength(ph);
1705  poly *C = (poly *)omAlloc0((len+1)*sizeof(poly)); //rat coeffs
1706  poly *LM = (poly *)omAlloc0((len+1)*sizeof(poly)); // rat lead terms
1707  int *D = (int *)omAlloc0((len+1)*sizeof(int)); //degrees of coeffs
1708  int *L = (int *)omAlloc0((len+1)*sizeof(int)); //lengths of coeffs
1709  int k = 0;
1710  poly p = p_Copy(ph, r); // ph will be needed below
1711  int mintdeg = p_Totaldegree(p, r);
1712  int minlen = len;
1713  int dd = 0; int i;
1714  int HasConstantCoef = 0;
1715  int is = r->real_var_start - 1;
1716  while (p!=NULL)
1717  {
1718  LM[k] = p_GetExp_k_n(p,1,is, r); // need LmRat istead of p_HeadRat(p, is, currRing); !
1719  C[k] = p_GetCoeffRat(p, is, r);
1720  D[k] = p_Totaldegree(C[k], r);
1721  mintdeg = si_min(mintdeg,D[k]);
1722  L[k] = pLength(C[k]);
1723  minlen = si_min(minlen,L[k]);
1724  if (p_IsConstant(C[k], r))
1725  {
1726  // C[k] = const, so the content will be numerical
1727  HasConstantCoef = 1;
1728  // smth like goto cleanup and return(pContent(p));
1729  }
1730  p_LmDeleteAndNextRat(&p, is, r);
1731  k++;
1732  }
1733 
1734  // look for 1 element of minimal degree and of minimal length
1735  k--;
1736  poly d;
1737  int mindeglen = len;
1738  if (k<=0) // this poly is not a ratgring poly -> pContent
1739  {
1740  p_Delete(&C[0], r);
1741  p_Delete(&LM[0], r);
1742  p_Content(ph, r);
1743  goto cleanup;
1744  }
1745 
1746  int pmindeglen;
1747  for(i=0; i<=k; i++)
1748  {
1749  if (D[i] == mintdeg)
1750  {
1751  if (L[i] < mindeglen)
1752  {
1753  mindeglen=L[i];
1754  pmindeglen = i;
1755  }
1756  }
1757  }
1758  d = p_Copy(C[pmindeglen], r);
1759  // there are dd>=1 mindeg elements
1760  // and pmideglen is the coordinate of one of the smallest among them
1761 
1762  // poly g = singclap_gcd(p_Copy(p,r),p_Copy(q,r));
1763  // return naGcd(d,d2,currRing);
1764 
1765  // adjoin pContentRat here?
1766  for(i=0; i<=k; i++)
1767  {
1768  d=singclap_gcd(d,p_Copy(C[i], r), r);
1769  if (p_Totaldegree(d, r)==0)
1770  {
1771  // cleanup, pContent, return
1772  p_Delete(&d, r);
1773  for(;k>=0;k--)
1774  {
1775  p_Delete(&C[k], r);
1776  p_Delete(&LM[k], r);
1777  }
1778  p_Content(ph, r);
1779  goto cleanup;
1780  }
1781  }
1782  for(i=0; i<=k; i++)
1783  {
1784  poly h=singclap_pdivide(C[i],d, r);
1785  p_Delete(&C[i], r);
1786  C[i]=h;
1787  }
1788 
1789  // zusammensetzen,
1790  p=NULL; // just to be sure
1791  for(i=0; i<=k; i++)
1792  {
1793  p = p_Add_q(p, p_Mult_q(C[i],LM[i], r), r);
1794  C[i]=NULL; LM[i]=NULL;
1795  }
1796  p_Delete(&ph, r); // do not need it anymore
1797  ph = p;
1798  // aufraeumen, return
1799 cleanup:
1800  omFree(C);
1801  omFree(LM);
1802  omFree(D);
1803  omFree(L);
1804 }
#define D(A)
Definition: gentable.cc:123
static int si_min(const int a, const int b)
Definition: auxiliary.h:121
return P p
Definition: myNF.cc:203
poly singclap_gcd(poly f, poly g, const ring r)
destroys f and g
Definition: clapsing.cc:264
static long p_Totaldegree(poly p, const ring r)
Definition: p_polys.h:1430
int k
Definition: cfEzgcd.cc:93
poly singclap_pdivide(poly f, poly g, const ring r)
Definition: clapsing.cc:534
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition: p_polys.h:804
const ring r
Definition: syzextra.cc:208
#define omFree(addr)
Definition: omAllocDecl.h:261
static BOOLEAN p_IsConstant(const poly p, const ring r)
Definition: p_polys.h:1876
void p_LmDeleteAndNextRat(poly *p, int ishift, ring r)
Definition: p_polys.cc:1653
poly p_GetCoeffRat(poly p, int ishift, ring r)
Definition: p_polys.cc:1675
int i
Definition: cfEzgcd.cc:123
static unsigned pLength(poly a)
Definition: p_polys.h:189
void p_Content(poly ph, const ring r)
Definition: p_polys.cc:2247
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:843
#define NULL
Definition: omList.c:10
static poly p_GetExp_k_n(poly p, int l, int k, const ring r)
Definition: p_polys.h:1295
polyrec * poly
Definition: hilb.h:10
static poly p_Add_q(poly p, poly q, const ring r)
Definition: p_polys.h:877
static Poly * h
Definition: janet.cc:978
static poly p_Mult_q(poly p, poly q, const ring r)
Definition: p_polys.h:1020
#define omAlloc0(size)
Definition: omAllocDecl.h:211

◆ p_Copy() [1/2]

static poly p_Copy ( poly  p,
const ring  r 
)
inlinestatic

returns a copy of p

Definition at line 804 of file p_polys.h.

805 {
806  p_Test(p,r);
807  const poly pp = p_Copy_noCheck(p, r);
808  p_Test(pp,r);
809  return pp;
810 }
return P p
Definition: myNF.cc:203
poly pp
Definition: myNF.cc:296
static poly p_Copy_noCheck(poly p, const ring r)
returns a copy of p (without any additional testing)
Definition: p_polys.h:797
const ring r
Definition: syzextra.cc:208
#define p_Test(p, r)
Definition: p_polys.h:160
polyrec * poly
Definition: hilb.h:10

◆ p_Copy() [2/2]

static poly p_Copy ( poly  p,
const ring  lmRing,
const ring  tailRing 
)
inlinestatic

Definition at line 826 of file p_polys.h.

827 {
828  if (p != NULL)
829  {
830 #ifndef PDEBUG
831  if (tailRing == lmRing)
832  return p_Copy_noCheck(p, tailRing);
833 #endif
834  poly pres = p_Head(p, lmRing);
835  pNext(pres) = p_Copy_noCheck(pNext(p), tailRing);
836  return pres;
837  }
838  else
839  return NULL;
840 }
BEGIN_NAMESPACE_SINGULARXX const ring lmRing
Definition: DebugPrint.h:30
return P p
Definition: myNF.cc:203
BEGIN_NAMESPACE_SINGULARXX const ring const ring tailRing
Definition: DebugPrint.h:30
static poly p_Copy_noCheck(poly p, const ring r)
returns a copy of p (without any additional testing)
Definition: p_polys.h:797
static poly p_Head(poly p, const ring r)
Definition: p_polys.h:812
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
polyrec * poly
Definition: hilb.h:10

◆ p_Copy_noCheck()

static poly p_Copy_noCheck ( poly  p,
const ring  r 
)
inlinestatic

returns a copy of p (without any additional testing)

Definition at line 797 of file p_polys.h.

798 {
799  assume(r != NULL); assume(r->p_Procs != NULL); assume(r->p_Procs->p_Copy != NULL);
800  return r->p_Procs->p_Copy(p, r);
801 }
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
#define assume(x)
Definition: mod2.h:394
#define NULL
Definition: omList.c:10

◆ p_DecrExp()

static long p_DecrExp ( poly  p,
int  v,
ring  r 
)
inlinestatic

Definition at line 593 of file p_polys.h.

594 {
596  int e = p_GetExp(p,v,r);
597  pAssume2(e > 0);
598  e--;
599  return p_SetExp(p,v,e,r);
600 }
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:207
return P p
Definition: myNF.cc:203
#define pAssume2(cond)
Definition: monomials.h:201
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:37
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent : VarOffset encodes the position in p->exp
Definition: p_polys.h:483

◆ p_Deg()

long p_Deg ( poly  a,
const ring  r 
)

Definition at line 586 of file p_polys.cc.

587 {
589 // assume(p_GetOrder(a, r) == p_WTotaldegree(a, r)); // WRONG assume!
590  return p_GetOrder(a, r);
591 }
const poly a
Definition: syzextra.cc:212
const ring r
Definition: syzextra.cc:208
static long p_GetOrder(poly p, ring r)
Definition: p_polys.h:416
BOOLEAN p_LmCheckPolyRing(poly p, ring r)
Definition: pDebug.cc:119

◆ p_DegW()

long p_DegW ( poly  p,
const short *  w,
const ring  R 
)

Definition at line 689 of file p_polys.cc.

690 {
691  p_Test(p, R);
692  assume( w != NULL );
693  long r=-LONG_MAX;
694 
695  while (p!=NULL)
696  {
697  long t=totaldegreeWecart_IV(p,R,w);
698  if (t>r) r=t;
699  pIter(p);
700  }
701  return r;
702 }
return P p
Definition: myNF.cc:203
long totaldegreeWecart_IV(poly p, ring r, const short *w)
Definition: weight.cc:239
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
#define assume(x)
Definition: mod2.h:394
const ring R
Definition: DebugPrint.cc:36
#define p_Test(p, r)
Definition: p_polys.h:160
#define NULL
Definition: omList.c:10
const CanonicalForm & w
Definition: facAbsFact.cc:55

◆ p_Delete() [1/2]

static void p_Delete ( poly p,
const ring  r 
)
inlinestatic

Definition at line 843 of file p_polys.h.

844 {
845  assume( p!= NULL );
846  r->p_Procs->p_Delete(p, r);
847 }
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
#define assume(x)
Definition: mod2.h:394
#define NULL
Definition: omList.c:10

◆ p_Delete() [2/2]

static void p_Delete ( poly p,
const ring  lmRing,
const ring  tailRing 
)
inlinestatic

Definition at line 849 of file p_polys.h.

850 {
851  assume( p!= NULL );
852  if (*p != NULL)
853  {
854 #ifndef PDEBUG
855  if (tailRing == lmRing)
856  {
857  p_Delete(p, tailRing);
858  return;
859  }
860 #endif
861  if (pNext(*p) != NULL)
862  p_Delete(&pNext(*p), tailRing);
863  p_LmDelete(p, lmRing);
864  }
865 }
BEGIN_NAMESPACE_SINGULARXX const ring lmRing
Definition: DebugPrint.h:30
return P p
Definition: myNF.cc:203
BEGIN_NAMESPACE_SINGULARXX const ring const ring tailRing
Definition: DebugPrint.h:30
#define assume(x)
Definition: mod2.h:394
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:843
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
static void p_LmDelete(poly p, const ring r)
Definition: p_polys.h:706

◆ p_DeleteComp()

void p_DeleteComp ( poly p,
int  k,
const ring  r 
)

Definition at line 3480 of file p_polys.cc.

3481 {
3482  poly q;
3483 
3484  while ((*p!=NULL) && (p_GetComp(*p,r)==k)) p_LmDelete(p,r);
3485  if (*p==NULL) return;
3486  q = *p;
3487  if (p_GetComp(q,r)>k)
3488  {
3489  p_SubComp(q,1,r);
3490  p_SetmComp(q,r);
3491  }
3492  while (pNext(q)!=NULL)
3493  {
3494  if (p_GetComp(pNext(q),r)==k)
3495  p_LmDelete(&(pNext(q)),r);
3496  else
3497  {
3498  pIter(q);
3499  if (p_GetComp(q,r)>k)
3500  {
3501  p_SubComp(q,1,r);
3502  p_SetmComp(q,r);
3503  }
3504  }
3505  }
3506 }
return P p
Definition: myNF.cc:203
#define p_GetComp(p, r)
Definition: monomials.h:72
int k
Definition: cfEzgcd.cc:93
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
static unsigned long p_SubComp(poly p, unsigned long v, ring r)
Definition: p_polys.h:448
#define p_SetmComp
Definition: p_polys.h:239
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
static void p_LmDelete(poly p, const ring r)
Definition: p_polys.h:706
polyrec * poly
Definition: hilb.h:10

◆ p_Diff()

poly p_Diff ( poly  a,
int  k,
const ring  r 
)

Definition at line 1851 of file p_polys.cc.

1852 {
1853  poly res, f, last;
1854  number t;
1855 
1856  last = res = NULL;
1857  while (a!=NULL)
1858  {
1859  if (p_GetExp(a,k,r)!=0)
1860  {
1861  f = p_LmInit(a,r);
1862  t = n_Init(p_GetExp(a,k,r),r->cf);
1863  pSetCoeff0(f,n_Mult(t,pGetCoeff(a),r->cf));
1864  n_Delete(&t,r->cf);
1865  if (n_IsZero(pGetCoeff(f),r->cf))
1866  p_LmDelete(&f,r);
1867  else
1868  {
1869  p_DecrExp(f,k,r);
1870  p_Setm(f,r);
1871  if (res==NULL)
1872  {
1873  res=last=f;
1874  }
1875  else
1876  {
1877  pNext(last)=f;
1878  last=f;
1879  }
1880  }
1881  }
1882  pIter(a);
1883  }
1884  return res;
1885 }
const poly a
Definition: syzextra.cc:212
static poly last
Definition: hdegree.cc:1077
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition: coeffs.h:542
int k
Definition: cfEzgcd.cc:93
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
#define pIter(p)
Definition: monomials.h:44
poly res
Definition: myNF.cc:322
static FORCE_INLINE number n_Mult(number a, number b, const coeffs r)
return the product of &#39;a&#39; and &#39;b&#39;, i.e., a*b
Definition: coeffs.h:640
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
FILE * f
Definition: checklibs.c:9
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the zero element.
Definition: coeffs.h:468
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
static poly p_LmInit(poly p, const ring r)
Definition: p_polys.h:1258
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:228
#define pSetCoeff0(p, n)
Definition: monomials.h:67
static void p_LmDelete(poly p, const ring r)
Definition: p_polys.h:706
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete &#39;p&#39;
Definition: coeffs.h:459
static long p_DecrExp(poly p, int v, ring r)
Definition: p_polys.h:593
polyrec * poly
Definition: hilb.h:10

◆ p_DiffOp()

poly p_DiffOp ( poly  a,
poly  b,
BOOLEAN  multiply,
const ring  r 
)

Definition at line 1926 of file p_polys.cc.

1927 {
1928  poly result=NULL;
1929  poly h;
1930  for(;a!=NULL;pIter(a))
1931  {
1932  for(h=b;h!=NULL;pIter(h))
1933  {
1934  result=p_Add_q(result,p_DiffOpM(a,h,multiply,r),r);
1935  }
1936  }
1937  return result;
1938 }
const poly a
Definition: syzextra.cc:212
static poly p_DiffOpM(poly a, poly b, BOOLEAN multiply, const ring r)
Definition: p_polys.cc:1887
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
#define NULL
Definition: omList.c:10
polyrec * poly
Definition: hilb.h:10
static poly p_Add_q(poly p, poly q, const ring r)
Definition: p_polys.h:877
static Poly * h
Definition: janet.cc:978
const poly b
Definition: syzextra.cc:213
return result
Definition: facAbsBiFact.cc:76

◆ p_Div_mm()

poly p_Div_mm ( poly  p,
const poly  m,
const ring  r 
)

divide polynomial by monomial

Definition at line 1507 of file p_polys.cc.

1508 {
1509  p_Test(p, r);
1510  p_Test(m, r);
1511  poly result = p;
1512  poly prev = NULL;
1513  number n=pGetCoeff(m);
1514  while (p!=NULL)
1515  {
1516  number nc = n_Div(pGetCoeff(p),n,r->cf);
1517  n_Normalize(nc,r->cf);
1518  if (!n_IsZero(nc,r->cf))
1519  {
1520  p_SetCoeff(p,nc,r);
1521  prev=p;
1522  p_ExpVectorSub(p,m,r);
1523  pIter(p);
1524  }
1525  else
1526  {
1527  if (prev==NULL)
1528  {
1529  p_LmDelete(&result,r);
1530  p=result;
1531  }
1532  else
1533  {
1534  p_LmDelete(&pNext(prev),r);
1535  p=pNext(prev);
1536  }
1537  }
1538  }
1539  p_Test(result,r);
1540  return(result);
1541 }
return P p
Definition: myNF.cc:203
static FORCE_INLINE void n_Normalize(number &n, const coeffs r)
inplace-normalization of n; produces some canonical representation of n;
Definition: coeffs.h:582
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
static number p_SetCoeff(poly p, number n, ring r)
Definition: p_polys.h:407
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
int m
Definition: cfEzgcd.cc:119
static void p_ExpVectorSub(poly p1, poly p2, const ring r)
Definition: p_polys.h:1363
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the zero element.
Definition: coeffs.h:468
#define p_Test(p, r)
Definition: p_polys.h:160
#define NULL
Definition: omList.c:10
static FORCE_INLINE number n_Div(number a, number b, const coeffs r)
return the quotient of &#39;a&#39; and &#39;b&#39;, i.e., a/b; raises an error if &#39;b&#39; is not invertible in r exceptio...
Definition: coeffs.h:619
#define pNext(p)
Definition: monomials.h:43
static void p_LmDelete(poly p, const ring r)
Definition: p_polys.h:706
polyrec * poly
Definition: hilb.h:10
return result
Definition: facAbsBiFact.cc:76

◆ p_Div_nn()

poly p_Div_nn ( poly  p,
const number  n,
const ring  r 
)

Definition at line 1474 of file p_polys.cc.

1475 {
1476  pAssume(!n_IsZero(n,r->cf));
1477  p_Test(p, r);
1478  poly result = p;
1479  poly prev = NULL;
1480  while (p!=NULL)
1481  {
1482  number nc = n_Div(pGetCoeff(p),n,r->cf);
1483  if (!n_IsZero(nc,r->cf))
1484  {
1485  p_SetCoeff(p,nc,r);
1486  prev=p;
1487  pIter(p);
1488  }
1489  else
1490  {
1491  if (prev==NULL)
1492  {
1493  p_LmDelete(&result,r);
1494  p=result;
1495  }
1496  else
1497  {
1498  p_LmDelete(&pNext(prev),r);
1499  p=pNext(prev);
1500  }
1501  }
1502  }
1503  p_Test(result,r);
1504  return(result);
1505 }
return P p
Definition: myNF.cc:203
#define pAssume(cond)
Definition: monomials.h:98
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
static number p_SetCoeff(poly p, number n, ring r)
Definition: p_polys.h:407
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the zero element.
Definition: coeffs.h:468
#define p_Test(p, r)
Definition: p_polys.h:160
#define NULL
Definition: omList.c:10
static FORCE_INLINE number n_Div(number a, number b, const coeffs r)
return the quotient of &#39;a&#39; and &#39;b&#39;, i.e., a/b; raises an error if &#39;b&#39; is not invertible in r exceptio...
Definition: coeffs.h:619
#define pNext(p)
Definition: monomials.h:43
static void p_LmDelete(poly p, const ring r)
Definition: p_polys.h:706
polyrec * poly
Definition: hilb.h:10
return result
Definition: facAbsBiFact.cc:76

◆ p_Divide()

poly p_Divide ( poly  a,
poly  b,
const ring  r 
)

Definition at line 1461 of file p_polys.cc.

1462 {
1463  assume((p_GetComp(a,r)==p_GetComp(b,r)) || (p_GetComp(b,r)==0));
1464  int i;
1465  poly result = p_Init(r);
1466 
1467  for(i=(int)r->N; i; i--)
1468  p_SetExp(result,i, p_GetExp(a,i,r)- p_GetExp(b,i,r),r);
1469  p_SetComp(result, p_GetComp(a,r) - p_GetComp(b,r),r);
1470  p_Setm(result,r);
1471  return result;
1472 }
const poly a
Definition: syzextra.cc:212
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
Definition: p_polys.h:242
#define p_GetComp(p, r)
Definition: monomials.h:72
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
#define assume(x)
Definition: mod2.h:394
int i
Definition: cfEzgcd.cc:123
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent : VarOffset encodes the position in p->exp
Definition: p_polys.h:483
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:228
polyrec * poly
Definition: hilb.h:10
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1243
const poly b
Definition: syzextra.cc:213
return result
Definition: facAbsBiFact.cc:76

◆ p_DivideM()

poly p_DivideM ( poly  a,
poly  b,
const ring  r 
)

Definition at line 1547 of file p_polys.cc.

1548 {
1549  if (a==NULL) { p_Delete(&b,r); return NULL; }
1550  poly result=a;
1551  poly prev=NULL;
1552 #ifdef HAVE_RINGS
1553  number inv=pGetCoeff(b);
1554 #else
1555  number inv=n_Invers(pGetCoeff(b),r->cf);
1556 #endif
1557 
1558  while (a!=NULL)
1559  {
1560  if (p_DivisibleBy(b,a,r))
1561  {
1562  p_ExpVectorSub(a,b,r);
1563  prev=a;
1564  pIter(a);
1565  }
1566  else
1567  {
1568  if (prev==NULL)
1569  {
1570  p_LmDelete(&result,r);
1571  a=result;
1572  }
1573  else
1574  {
1575  p_LmDelete(&pNext(prev),r);
1576  a=pNext(prev);
1577  }
1578  }
1579  }
1580 #ifdef HAVE_RINGS
1581  if (n_IsUnit(inv,r->cf))
1582  {
1583  inv = n_Invers(inv,r->cf);
1584  p_Mult_nn(result,inv,r);
1585  n_Delete(&inv, r->cf);
1586  }
1587  else
1588  {
1589  result = p_Div_nn(result,inv,r);
1590  }
1591 #else
1592  result = p_Mult_nn(result,inv,r);
1593  n_Delete(&inv, r->cf);
1594 #endif
1595  p_Delete(&b, r);
1596  return result;
1597 }
static FORCE_INLINE BOOLEAN n_IsUnit(number n, const coeffs r)
TRUE iff n has a multiplicative inverse in the given coeff field/ring r.
Definition: coeffs.h:519
const poly a
Definition: syzextra.cc:212
poly p_Div_nn(poly p, const number n, const ring r)
Definition: p_polys.cc:1474
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
static BOOLEAN p_DivisibleBy(poly a, poly b, const ring r)
Definition: p_polys.h:1777
static FORCE_INLINE number n_Invers(number a, const coeffs r)
return the multiplicative inverse of &#39;a&#39;; raise an error if &#39;a&#39; is not invertible ...
Definition: coeffs.h:568
static void p_ExpVectorSub(poly p1, poly p2, const ring r)
Definition: p_polys.h:1363
static poly p_Mult_nn(poly p, number n, const ring r)
Definition: p_polys.h:895
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:843
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
static void p_LmDelete(poly p, const ring r)
Definition: p_polys.h:706
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete &#39;p&#39;
Definition: coeffs.h:459
polyrec * poly
Definition: hilb.h:10
const poly b
Definition: syzextra.cc:213
return result
Definition: facAbsBiFact.cc:76

◆ p_DivisibleBy() [1/2]

static BOOLEAN p_DivisibleBy ( poly  a,
poly  b,
const ring  r 
)
inlinestatic

Definition at line 1777 of file p_polys.h.

1778 {
1781 
1782  if (a != NULL && (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r)))
1783  return _p_LmDivisibleByNoComp(a,b,r);
1784  return FALSE;
1785 }
const poly a
Definition: syzextra.cc:212
#define FALSE
Definition: auxiliary.h:94
#define p_GetComp(p, r)
Definition: monomials.h:72
static BOOLEAN _p_LmDivisibleByNoComp(poly a, poly b, const ring r)
return: FALSE, if there exists i, such that a->exp[i] > b->exp[i] TRUE, otherwise (1) Consider long v...
Definition: p_polys.h:1638
const ring r
Definition: syzextra.cc:208
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:185
#define pIfThen1(cond, check)
Definition: monomials.h:187
#define NULL
Definition: omList.c:10
const poly b
Definition: syzextra.cc:213

◆ p_DivisibleBy() [2/2]

static BOOLEAN p_DivisibleBy ( poly  a,
const ring  r_a,
poly  b,
const ring  r_b 
)
inlinestatic

Definition at line 1786 of file p_polys.h.

1787 {
1788  pIfThen1(b!=NULL, p_LmCheckPolyRing1(b, r_b));
1789  pIfThen1(a!=NULL, p_LmCheckPolyRing1(a, r_a));
1790  if (a != NULL) {
1791  return _p_LmDivisibleBy(a, r_a, b, r_b);
1792  }
1793  return FALSE;
1794 }
const poly a
Definition: syzextra.cc:212
#define FALSE
Definition: auxiliary.h:94
static BOOLEAN _p_LmDivisibleBy(poly a, poly b, const ring r)
Definition: p_polys.h:1742
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:185
#define pIfThen1(cond, check)
Definition: monomials.h:187
#define NULL
Definition: omList.c:10
const poly b
Definition: syzextra.cc:213

◆ p_DivisibleByRingCase()

BOOLEAN p_DivisibleByRingCase ( poly  f,
poly  g,
const ring  r 
)

divisibility check over ground ring (which may contain zero divisors); TRUE iff LT(f) divides LT(g), i.e., LT(f)*c*m = LT(g), for some coefficient c and some monomial m; does not take components into account

Definition at line 1601 of file p_polys.cc.

1602 {
1603  int exponent;
1604  for(int i = (int)rVar(r); i>0; i--)
1605  {
1606  exponent = p_GetExp(g, i, r) - p_GetExp(f, i, r);
1607  if (exponent < 0) return FALSE;
1608  }
1609  return n_DivBy(pGetCoeff(g), pGetCoeff(f), r->cf);
1610 }
#define FALSE
Definition: auxiliary.h:94
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:583
g
Definition: cfModGcd.cc:4031
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
static FORCE_INLINE BOOLEAN n_DivBy(number a, number b, const coeffs r)
test whether &#39;a&#39; is divisible &#39;b&#39;; for r encoding a field: TRUE iff &#39;b&#39; does not represent zero in Z:...
Definition: coeffs.h:787
FILE * f
Definition: checklibs.c:9
int i
Definition: cfEzgcd.cc:123
int exponent(const CanonicalForm &f, int q)
int exponent ( const CanonicalForm & f, int q )

◆ p_EqualPolys() [1/2]

BOOLEAN p_EqualPolys ( poly  p1,
poly  p2,
const ring  r 
)

Definition at line 4359 of file p_polys.cc.

4360 {
4361  while ((p1 != NULL) && (p2 != NULL))
4362  {
4363  if (! p_LmEqual(p1, p2,r))
4364  return FALSE;
4365  if (! n_Equal(p_GetCoeff(p1,r), p_GetCoeff(p2,r),r->cf ))
4366  return FALSE;
4367  pIter(p1);
4368  pIter(p2);
4369  }
4370  return (p1==p2);
4371 }
#define FALSE
Definition: auxiliary.h:94
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
#define p_LmEqual(p1, p2, r)
Definition: p_polys.h:1611
#define NULL
Definition: omList.c:10
static FORCE_INLINE BOOLEAN n_Equal(number a, number b, const coeffs r)
TRUE iff &#39;a&#39; and &#39;b&#39; represent the same number; they may have different representations.
Definition: coeffs.h:464
#define p_GetCoeff(p, r)
Definition: monomials.h:57
END_NAMESPACE const void * p2
Definition: syzextra.cc:202

◆ p_EqualPolys() [2/2]

BOOLEAN p_EqualPolys ( poly  p1,
poly  p2,
const ring  r1,
const ring  r2 
)

same as the usual p_EqualPolys for polys belonging to equal rings

Definition at line 4397 of file p_polys.cc.

4398 {
4399  assume( r1 == r2 || rSamePolyRep(r1, r2) ); // will be used in rEqual!
4400  assume( r1->cf == r2->cf );
4401 
4402  while ((p1 != NULL) && (p2 != NULL))
4403  {
4404  // returns 1 if ExpVector(p)==ExpVector(q): does not compare numbers !!
4405  // #define p_LmEqual(p1, p2, r) p_ExpVectorEqual(p1, p2, r)
4406 
4407  if (! p_ExpVectorEqual(p1, p2, r1, r2))
4408  return FALSE;
4409 
4410  if (! n_Equal(p_GetCoeff(p1,r1), p_GetCoeff(p2,r2), r1->cf ))
4411  return FALSE;
4412 
4413  pIter(p1);
4414  pIter(p2);
4415  }
4416  return (p1==p2);
4417 }
#define FALSE
Definition: auxiliary.h:94
#define pIter(p)
Definition: monomials.h:44
#define assume(x)
Definition: mod2.h:394
BOOLEAN rSamePolyRep(ring r1, ring r2)
returns TRUE, if r1 and r2 represents the monomials in the same way FALSE, otherwise this is an analo...
Definition: ring.cc:1675
#define NULL
Definition: omList.c:10
static FORCE_INLINE BOOLEAN n_Equal(number a, number b, const coeffs r)
TRUE iff &#39;a&#39; and &#39;b&#39; represent the same number; they may have different representations.
Definition: coeffs.h:464
#define p_GetCoeff(p, r)
Definition: monomials.h:57
END_NAMESPACE const void * p2
Definition: syzextra.cc:202
static BOOLEAN p_ExpVectorEqual(poly p1, poly p2, const ring r1, const ring r2)
Definition: p_polys.cc:4373

◆ p_ExpVectorAdd()

static void p_ExpVectorAdd ( poly  p1,
poly  p2,
const ring  r 
)
inlinestatic

Definition at line 1334 of file p_polys.h.

1335 {
1336  p_LmCheckPolyRing1(p1, r);
1338 #if PDEBUG >= 1
1339  for (int i=1; i<=r->N; i++)
1340  pAssume1((unsigned long) (p_GetExp(p1, i, r) + p_GetExp(p2, i, r)) <= r->bitmask);
1341  pAssume1(p_GetComp(p1, r) == 0 || p_GetComp(p2, r) == 0);
1342 #endif
1343 
1344  p_MemAdd_LengthGeneral(p1->exp, p2->exp, r->ExpL_Size);
1346 }
#define p_GetComp(p, r)
Definition: monomials.h:72
const ring r
Definition: syzextra.cc:208
#define p_MemAdd_LengthGeneral(r, s, length)
Definition: p_MemAdd.h:173
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
static void p_MemAdd_NegWeightAdjust(poly p, const ring r)
Definition: p_polys.h:1215
int i
Definition: cfEzgcd.cc:123
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:185
END_NAMESPACE const void * p2
Definition: syzextra.cc:202
#define pAssume1(cond)
Definition: monomials.h:179

◆ p_ExpVectorAddSub()

static void p_ExpVectorAddSub ( poly  p1,
poly  p2,
poly  p3,
const ring  r 
)
inlinestatic

Definition at line 1379 of file p_polys.h.

1380 {
1381  p_LmCheckPolyRing1(p1, r);
1383  p_LmCheckPolyRing1(p3, r);
1384 #if PDEBUG >= 1
1385  for (int i=1; i<=r->N; i++)
1386  pAssume1(p_GetExp(p1, i, r) + p_GetExp(p2, i, r) >= p_GetExp(p3, i, r));
1387  pAssume1(p_GetComp(p1, r) == 0 ||
1388  (p_GetComp(p2, r) - p_GetComp(p3, r) == 0) ||
1389  (p_GetComp(p1, r) == p_GetComp(p2, r) - p_GetComp(p3, r)));
1390 #endif
1391 
1392  p_MemAddSub_LengthGeneral(p1->exp, p2->exp, p3->exp, r->ExpL_Size);
1393  // no need to adjust in case of NegWeights
1394 }
#define p_GetComp(p, r)
Definition: monomials.h:72
#define p_MemAddSub_LengthGeneral(r, s, t, length)
Definition: p_MemAdd.h:312
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int i
Definition: cfEzgcd.cc:123
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:185
END_NAMESPACE const void * p2
Definition: syzextra.cc:202
#define pAssume1(cond)
Definition: monomials.h:179

◆ p_ExpVectorCopy()

static void p_ExpVectorCopy ( poly  d_p,
poly  s_p,
const ring  r 
)
inlinestatic

Definition at line 1236 of file p_polys.h.

1237 {
1238  p_LmCheckPolyRing1(d_p, r);
1239  p_LmCheckPolyRing1(s_p, r);
1240  memcpy(d_p->exp, s_p->exp, r->ExpL_Size*sizeof(long));
1241 }
const ring r
Definition: syzextra.cc:208
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:185

◆ p_ExpVectorDiff()

static void p_ExpVectorDiff ( poly  pr,
poly  p1,
poly  p2,
const ring  r 
)
inlinestatic

Definition at line 1397 of file p_polys.h.

1398 {
1399  p_LmCheckPolyRing1(p1, r);
1401  p_LmCheckPolyRing1(pr, r);
1402 #if PDEBUG >= 2
1403  for (int i=1; i<=r->N; i++)
1404  pAssume1(p_GetExp(p1, i, r) >= p_GetExp(p2, i, r));
1405  pAssume1(!rRing_has_Comp(r) || p_GetComp(p1, r) == p_GetComp(p2, r));
1406 #endif
1407 
1408  p_MemDiff_LengthGeneral(pr->exp, p1->exp, p2->exp, r->ExpL_Size);
1410 }
#define p_GetComp(p, r)
Definition: monomials.h:72
static void p_MemSub_NegWeightAdjust(poly p, const ring r)
Definition: p_polys.h:1225
const ring r
Definition: syzextra.cc:208
#define p_MemDiff_LengthGeneral(r, s1, s2, length)
Definition: p_MemAdd.h:262
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int i
Definition: cfEzgcd.cc:123
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:185
#define rRing_has_Comp(r)
Definition: monomials.h:274
END_NAMESPACE const void * p2
Definition: syzextra.cc:202
#define pAssume1(cond)
Definition: monomials.h:179

◆ p_ExpVectorEqual()

static BOOLEAN p_ExpVectorEqual ( poly  p1,
poly  p2,
const ring  r 
)
inlinestatic

Definition at line 1412 of file p_polys.h.

1413 {
1414  p_LmCheckPolyRing1(p1, r);
1416 
1417  unsigned i = r->ExpL_Size;
1418  unsigned long *ep = p1->exp;
1419  unsigned long *eq = p2->exp;
1420 
1421  do
1422  {
1423  i--;
1424  if (ep[i] != eq[i]) return FALSE;
1425  }
1426  while (i!=0);
1427  return TRUE;
1428 }
#define FALSE
Definition: auxiliary.h:94
#define TRUE
Definition: auxiliary.h:98
const ring r
Definition: syzextra.cc:208
int i
Definition: cfEzgcd.cc:123
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:185
END_NAMESPACE const void * p2
Definition: syzextra.cc:202

◆ p_ExpVectorSub()

static void p_ExpVectorSub ( poly  p1,
poly  p2,
const ring  r 
)
inlinestatic

Definition at line 1363 of file p_polys.h.

1364 {
1365  p_LmCheckPolyRing1(p1, r);
1367 #if PDEBUG >= 1
1368  for (int i=1; i<=r->N; i++)
1369  pAssume1(p_GetExp(p1, i, r) >= p_GetExp(p2, i, r));
1370  pAssume1(p_GetComp(p1, r) == 0 || p_GetComp(p2, r) == 0 ||
1371  p_GetComp(p1, r) == p_GetComp(p2, r));
1372 #endif
1373 
1374  p_MemSub_LengthGeneral(p1->exp, p2->exp, r->ExpL_Size);
1376 }
#define p_GetComp(p, r)
Definition: monomials.h:72
static void p_MemSub_NegWeightAdjust(poly p, const ring r)
Definition: p_polys.h:1225
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int i
Definition: cfEzgcd.cc:123
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:185
#define p_MemSub_LengthGeneral(r, s, length)
Definition: p_MemAdd.h:291
END_NAMESPACE const void * p2
Definition: syzextra.cc:202
#define pAssume1(cond)
Definition: monomials.h:179

◆ p_ExpVectorSum()

static void p_ExpVectorSum ( poly  pr,
poly  p1,
poly  p2,
const ring  r 
)
inlinestatic

Definition at line 1348 of file p_polys.h.

1349 {
1350  p_LmCheckPolyRing1(p1, r);
1352  p_LmCheckPolyRing1(pr, r);
1353 #if PDEBUG >= 1
1354  for (int i=1; i<=r->N; i++)
1355  pAssume1((unsigned long) (p_GetExp(p1, i, r) + p_GetExp(p2, i, r)) <= r->bitmask);
1356  pAssume1(p_GetComp(p1, r) == 0 || p_GetComp(p2, r) == 0);
1357 #endif
1358 
1359  p_MemSum_LengthGeneral(pr->exp, p1->exp, p2->exp, r->ExpL_Size);
1361 }
#define p_MemSum_LengthGeneral(r, s1, s2, length)
Definition: p_MemAdd.h:86
#define p_GetComp(p, r)
Definition: monomials.h:72
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
static void p_MemAdd_NegWeightAdjust(poly p, const ring r)
Definition: p_polys.h:1215
int i
Definition: cfEzgcd.cc:123
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:185
END_NAMESPACE const void * p2
Definition: syzextra.cc:202
#define pAssume1(cond)
Definition: monomials.h:179

◆ p_Farey()

poly p_Farey ( poly  p,
number  N,
const ring  r 
)

Definition at line 61 of file p_polys.cc.

62 {
63  poly h=p_Copy(p,r);
64  poly hh=h;
65  while(h!=NULL)
66  {
67  number c=pGetCoeff(h);
68  pSetCoeff0(h,n_Farey(c,N,r->cf));
69  n_Delete(&c,r->cf);
70  pIter(h);
71  }
72  while((hh!=NULL)&&(n_IsZero(pGetCoeff(hh),r->cf)))
73  {
74  p_LmDelete(&hh,r);
75  }
76  h=hh;
77  while((h!=NULL) && (pNext(h)!=NULL))
78  {
79  if(n_IsZero(pGetCoeff(pNext(h)),r->cf))
80  {
81  p_LmDelete(&pNext(h),r);
82  }
83  else pIter(h);
84  }
85  return hh;
86 }
return P p
Definition: myNF.cc:203
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition: p_polys.h:804
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
const CanonicalForm CFMap CFMap & N
Definition: cfEzgcd.cc:49
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the zero element.
Definition: coeffs.h:468
static FORCE_INLINE number n_Farey(number a, number b, const coeffs r)
Definition: coeffs.h:801
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
#define pSetCoeff0(p, n)
Definition: monomials.h:67
static void p_LmDelete(poly p, const ring r)
Definition: p_polys.h:706
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete &#39;p&#39;
Definition: coeffs.h:459
polyrec * poly
Definition: hilb.h:10
static Poly * h
Definition: janet.cc:978

◆ p_FDeg()

static long p_FDeg ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 375 of file p_polys.h.

375 { return r->pFDeg(p,r); }
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208

◆ p_GcdMon()

poly p_GcdMon ( poly  f,
poly  g,
const ring  r 
)

polynomial gcd for f=mon

Definition at line 4786 of file p_polys.cc.

4787 {
4788  assume(f!=NULL);
4789  assume(g!=NULL);
4790  assume(pNext(f)==NULL);
4791  poly G=p_Head(f,r);
4792  poly h=g;
4793  int *mf=(int*)omAlloc((r->N+1)*sizeof(int));
4794  p_GetExpV(f,mf,r);
4795  int *mh=(int*)omAlloc((r->N+1)*sizeof(int));
4796  BOOLEAN const_mon;
4797  BOOLEAN one_coeff=n_IsOne(pGetCoeff(G),r->cf);
4798  loop
4799  {
4800  if (h==NULL) break;
4801  if(!one_coeff)
4802  {
4803  number n=n_SubringGcd(pGetCoeff(G),pGetCoeff(h),r->cf);
4804  one_coeff=n_IsOne(n,r->cf);
4805  p_SetCoeff(G,n,r);
4806  }
4807  p_GetExpV(h,mh,r);
4808  const_mon=TRUE;
4809  for(unsigned j=r->N;j!=0;j--)
4810  {
4811  if (mh[j]<mf[j]) mf[j]=mh[j];
4812  if (mf[j]>0) const_mon=FALSE;
4813  }
4814  if (one_coeff && const_mon) break;
4815  pIter(h);
4816  }
4817  mf[0]=0;
4818  p_SetExpV(G,mf,r); // included is p_SetComp, p_Setm
4819  omFreeSize(mf,(r->N+1)*sizeof(int));
4820  omFreeSize(mh,(r->N+1)*sizeof(int));
4821  return G;
4822 }
loop
Definition: myNF.cc:98
#define FALSE
Definition: auxiliary.h:94
static FORCE_INLINE BOOLEAN n_IsOne(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the one element.
Definition: coeffs.h:472
static void p_GetExpV(poly p, int *ev, const ring r)
Definition: p_polys.h:1443
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
#define TRUE
Definition: auxiliary.h:98
g
Definition: cfModGcd.cc:4031
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
static TreeM * G
Definition: janet.cc:38
#define omAlloc(size)
Definition: omAllocDecl.h:210
static number p_SetCoeff(poly p, number n, ring r)
Definition: p_polys.h:407
static void p_SetExpV(poly p, int *ev, const ring r)
Definition: p_polys.h:1451
#define pIter(p)
Definition: monomials.h:44
static poly p_Head(poly p, const ring r)
Definition: p_polys.h:812
const ring r
Definition: syzextra.cc:208
int j
Definition: myNF.cc:70
#define assume(x)
Definition: mod2.h:394
FILE * f
Definition: checklibs.c:9
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
static FORCE_INLINE number n_SubringGcd(number a, number b, const coeffs r)
Definition: coeffs.h:692
polyrec * poly
Definition: hilb.h:10
static Poly * h
Definition: janet.cc:978
int BOOLEAN
Definition: auxiliary.h:85

◆ p_GetCoeffRat()

poly p_GetCoeffRat ( poly  p,
int  ishift,
ring  r 
)

Definition at line 1675 of file p_polys.cc.

1676 {
1677  poly q = pNext(p);
1678  poly res; // = p_Head(p,r);
1679  res = p_GetExp_k_n(p, ishift+1, r->N, r); // does pSetm internally
1680  p_SetCoeff(res,n_Copy(p_GetCoeff(p,r),r),r);
1681  poly s;
1682  long cmp = p_GetComp(p, r);
1683  while ( (q!= NULL) && (p_Comp_k_n(p, q, ishift+1, r)) && (p_GetComp(q, r) == cmp) )
1684  {
1685  s = p_GetExp_k_n(q, ishift+1, r->N, r);
1686  p_SetCoeff(s,n_Copy(p_GetCoeff(q,r),r),r);
1687  res = p_Add_q(res,s,r);
1688  q = pNext(q);
1689  }
1690  cmp = 0;
1691  p_SetCompP(res,cmp,r);
1692  return res;
1693 }
const CanonicalForm int s
Definition: facAbsFact.cc:55
return P p
Definition: myNF.cc:203
#define p_GetComp(p, r)
Definition: monomials.h:72
static number p_SetCoeff(poly p, number n, ring r)
Definition: p_polys.h:407
poly res
Definition: myNF.cc:322
const ring r
Definition: syzextra.cc:208
static int p_Comp_k_n(poly a, poly b, int k, ring r)
Definition: p_polys.h:635
static void p_SetCompP(poly p, int i, ring r)
Definition: p_polys.h:249
#define NULL
Definition: omList.c:10
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of &#39;n&#39;
Definition: coeffs.h:455
#define pNext(p)
Definition: monomials.h:43
#define p_GetCoeff(p, r)
Definition: monomials.h:57
static poly p_GetExp_k_n(poly p, int l, int k, const ring r)
Definition: p_polys.h:1295
polyrec * poly
Definition: hilb.h:10
static poly p_Add_q(poly p, poly q, const ring r)
Definition: p_polys.h:877

◆ p_GetExp() [1/3]

static long p_GetExp ( const poly  p,
const unsigned long  iBitmask,
const int  VarOffset 
)
inlinestatic

get a single variable exponent : the integer VarOffset encodes:

  1. the position of a variable in the exponent vector p->exp (lower 24 bits)
  2. number of bits to shift to the right in the upper 8 bits (which takes at most 6 bits for 64 bit) Thus VarOffset always has 2 zero higher bits!

Definition at line 464 of file p_polys.h.

465 {
466  pAssume2((VarOffset >> (24 + 6)) == 0);
467 #if 0
468  int pos=(VarOffset & 0xffffff);
469  int bitpos=(VarOffset >> 24);
470  unsigned long exp=(p->exp[pos] >> bitmask) & iBitmask;
471  return exp;
472 #else
473  return (long)
474  ((p->exp[(VarOffset & 0xffffff)] >> (VarOffset >> 24))
475  & iBitmask);
476 #endif
477 }
return P p
Definition: myNF.cc:203
#define pAssume2(cond)
Definition: monomials.h:201
p exp[i]
Definition: DebugPrint.cc:39

◆ p_GetExp() [2/3]

static long p_GetExp ( const poly  p,
const ring  r,
const int  VarOffset 
)
inlinestatic

Definition at line 550 of file p_polys.h.

551 {
553  pAssume2(VarOffset != -1);
554  return p_GetExp(p, r->bitmask, VarOffset);
555 }
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:207
return P p
Definition: myNF.cc:203
#define pAssume2(cond)
Definition: monomials.h:201
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464

◆ p_GetExp() [3/3]

static long p_GetExp ( const poly  p,
const int  v,
const ring  r 
)
inlinestatic

get v^th exponent for a monomial

Definition at line 567 of file p_polys.h.

568 {
570  pAssume2(v>0 && v <= r->N);
571  pAssume2(r->VarOffset[v] != -1);
572  return p_GetExp(p, r->bitmask, r->VarOffset[v]);
573 }
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:207
return P p
Definition: myNF.cc:203
#define pAssume2(cond)
Definition: monomials.h:201
const ring r
Definition: syzextra.cc:208
const CanonicalForm CFMap CFMap & N
Definition: cfEzgcd.cc:49
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:37

◆ p_GetExp_k_n()

static poly p_GetExp_k_n ( poly  p,
int  l,
int  k,
const ring  r 
)
inlinestatic

Definition at line 1295 of file p_polys.h.

1296 {
1297  if (p == NULL) return NULL;
1299  poly np;
1300  omTypeAllocBin(poly, np, r->PolyBin);
1301  p_SetRingOfLm(np, r);
1302  memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long));
1303  pNext(np) = NULL;
1304  pSetCoeff0(np, n_Init(1, r->cf));
1305  int i;
1306  for(i=l;i<=k;i++)
1307  {
1308  //np->exp[(r->VarOffset[i] & 0xffffff)] =0;
1309  p_SetExp(np,i,0,r);
1310  }
1311  p_Setm(np,r);
1312  return np;
1313 }
return P p
Definition: myNF.cc:203
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition: coeffs.h:542
int k
Definition: cfEzgcd.cc:93
#define omTypeAllocBin(type, addr, bin)
Definition: omAllocDecl.h:203
const ring r
Definition: syzextra.cc:208
#define p_SetRingOfLm(p, r)
Definition: monomials.h:152
int i
Definition: cfEzgcd.cc:123
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:185
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent : VarOffset encodes the position in p->exp
Definition: p_polys.h:483
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:228
#define pSetCoeff0(p, n)
Definition: monomials.h:67
polyrec * poly
Definition: hilb.h:10
int l
Definition: cfEzgcd.cc:94

◆ p_GetExpDiff()

static long p_GetExpDiff ( poly  p1,
poly  p2,
int  i,
ring  r 
)
inlinestatic

Definition at line 630 of file p_polys.h.

631 {
632  return p_GetExp(p1,i,r) - p_GetExp(p2,i,r);
633 }
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int i
Definition: cfEzgcd.cc:123
END_NAMESPACE const void * p2
Definition: syzextra.cc:202

◆ p_GetExpSum()

static long p_GetExpSum ( poly  p1,
poly  p2,
int  i,
ring  r 
)
inlinestatic

Definition at line 624 of file p_polys.h.

625 {
626  p_LmCheckPolyRing2(p1, r);
628  return p_GetExp(p1,i,r) + p_GetExp(p2,i,r);
629 }
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:207
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int i
Definition: cfEzgcd.cc:123
END_NAMESPACE const void * p2
Definition: syzextra.cc:202

◆ p_GetExpV()

static void p_GetExpV ( poly  p,
int *  ev,
const ring  r 
)
inlinestatic

Definition at line 1443 of file p_polys.h.

1444 {
1446  for (unsigned j = r->N; j!=0; j--)
1447  ev[j] = p_GetExp(p, j, r);
1448 
1449  ev[0] = p_GetComp(p, r);
1450 }
return P p
Definition: myNF.cc:203
#define p_GetComp(p, r)
Definition: monomials.h:72
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int j
Definition: myNF.cc:70
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:185

◆ p_GetMaxExp() [1/2]

static unsigned long p_GetMaxExp ( const unsigned long  l,
const ring  r 
)
inlinestatic

Definition at line 742 of file p_polys.h.

743 {
744  unsigned long bitmask = r->bitmask;
745  unsigned long max = (l & bitmask);
746  unsigned long j = r->ExpPerLong - 1;
747 
748  if (j > 0)
749  {
750  unsigned long i = r->BitsPerExp;
751  long e;
752  loop
753  {
754  e = ((l >> i) & bitmask);
755  if ((unsigned long) e > max)
756  max = e;
757  j--;
758  if (j==0) break;
759  i += r->BitsPerExp;
760  }
761  }
762  return max;
763 }
loop
Definition: myNF.cc:98
const ring r
Definition: syzextra.cc:208
int j
Definition: myNF.cc:70
static int max(int a, int b)
Definition: fast_mult.cc:264
int i
Definition: cfEzgcd.cc:123
int l
Definition: cfEzgcd.cc:94

◆ p_GetMaxExp() [2/2]

static unsigned long p_GetMaxExp ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 765 of file p_polys.h.

766 {
767  return p_GetMaxExp(p_GetMaxExpL(p, r), r);
768 }
return P p
Definition: myNF.cc:203
static unsigned long p_GetMaxExp(const unsigned long l, const ring r)
Definition: p_polys.h:742
const ring r
Definition: syzextra.cc:208
unsigned long p_GetMaxExpL(poly p, const ring r, unsigned long l_max=0)
return the maximal exponent of p in form of the maximal long var
Definition: p_polys.cc:1174

◆ p_GetMaxExpL()

unsigned long p_GetMaxExpL ( poly  p,
const ring  r,
unsigned long  l_max = 0 
)

return the maximal exponent of p in form of the maximal long var

Definition at line 1174 of file p_polys.cc.

1175 {
1176  unsigned long l_p, divmask = r->divmask;
1177  int i;
1178 
1179  while (p != NULL)
1180  {
1181  l_p = p->exp[r->VarL_Offset[0]];
1182  if (l_p > l_max ||
1183  (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1184  l_max = p_GetMaxExpL2(l_max, l_p, r);
1185  for (i=1; i<r->VarL_Size; i++)
1186  {
1187  l_p = p->exp[r->VarL_Offset[i]];
1188  // do the divisibility trick to find out whether l has an exponent
1189  if (l_p > l_max ||
1190  (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1191  l_max = p_GetMaxExpL2(l_max, l_p, r);
1192  }
1193  pIter(p);
1194  }
1195  return l_max;
1196 }
return P p
Definition: myNF.cc:203
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
int i
Definition: cfEzgcd.cc:123
#define NULL
Definition: omList.c:10
static unsigned long p_GetMaxExpL2(unsigned long l1, unsigned long l2, const ring r, unsigned long number_of_exp)
Definition: p_polys.cc:1106

◆ p_GetMaxExpP()

poly p_GetMaxExpP ( poly  p,
ring  r 
)

return monomial r such that GetExp(r,i) is maximum of all monomials in p; coeff == 0, next == NULL, ord is not set

Definition at line 1137 of file p_polys.cc.

1138 {
1139  p_CheckPolyRing(p, r);
1140  if (p == NULL) return p_Init(r);
1141  poly max = p_LmInit(p, r);
1142  pIter(p);
1143  if (p == NULL) return max;
1144  int i, offset;
1145  unsigned long l_p, l_max;
1146  unsigned long divmask = r->divmask;
1147 
1148  do
1149  {
1150  offset = r->VarL_Offset[0];
1151  l_p = p->exp[offset];
1152  l_max = max->exp[offset];
1153  // do the divisibility trick to find out whether l has an exponent
1154  if (l_p > l_max ||
1155  (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1156  max->exp[offset] = p_GetMaxExpL2(l_max, l_p, r);
1157 
1158  for (i=1; i<r->VarL_Size; i++)
1159  {
1160  offset = r->VarL_Offset[i];
1161  l_p = p->exp[offset];
1162  l_max = max->exp[offset];
1163  // do the divisibility trick to find out whether l has an exponent
1164  if (l_p > l_max ||
1165  (((l_max & divmask) ^ (l_p & divmask)) != ((l_max-l_p) & divmask)))
1166  max->exp[offset] = p_GetMaxExpL2(l_max, l_p, r);
1167  }
1168  pIter(p);
1169  }
1170  while (p != NULL);
1171  return max;
1172 }
return P p
Definition: myNF.cc:203
#define pIter(p)
Definition: monomials.h:44
BOOLEAN p_CheckPolyRing(poly p, ring r)
Definition: pDebug.cc:111
const ring r
Definition: syzextra.cc:208
static int max(int a, int b)
Definition: fast_mult.cc:264
int i
Definition: cfEzgcd.cc:123
#define NULL
Definition: omList.c:10
static poly p_LmInit(poly p, const ring r)
Definition: p_polys.h:1258
static unsigned long p_GetMaxExpL2(unsigned long l1, unsigned long l2, const ring r, unsigned long number_of_exp)
Definition: p_polys.cc:1106
polyrec * poly
Definition: hilb.h:10
int offset
Definition: libparse.cc:1091
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1243

◆ p_GetOrder()

static long p_GetOrder ( poly  p,
ring  r 
)
inlinestatic

Definition at line 416 of file p_polys.h.

417 {
419  if (r->typ==NULL) return ((p)->exp[r->pOrdIndex]);
420  int i=0;
421  loop
422  {
423  switch(r->typ[i].ord_typ)
424  {
425  case ro_am:
426  case ro_wp_neg:
427  return ((p->exp[r->pOrdIndex])-POLY_NEGWEIGHT_OFFSET);
428  case ro_syzcomp:
429  case ro_syz:
430  case ro_cp:
431  i++;
432  break;
433  //case ro_dp:
434  //case ro_wp:
435  default:
436  return ((p)->exp[r->pOrdIndex]);
437  }
438  }
439 }
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:207
Definition: ring.h:68
#define POLY_NEGWEIGHT_OFFSET
Definition: monomials.h:244
loop
Definition: myNF.cc:98
return P p
Definition: myNF.cc:203
Definition: ring.h:66
Definition: ring.h:64
const ring r
Definition: syzextra.cc:208
int i
Definition: cfEzgcd.cc:123
#define NULL
Definition: omList.c:10
Definition: ring.h:62
p exp[i]
Definition: DebugPrint.cc:39

◆ p_GetSetmProc()

p_SetmProc p_GetSetmProc ( const ring  r)

Definition at line 559 of file p_polys.cc.

560 {
561  // covers lp, rp, ls,
562  if (r->typ == NULL) return p_Setm_Dummy;
563 
564  if (r->OrdSize == 1)
565  {
566  if (r->typ[0].ord_typ == ro_dp &&
567  r->typ[0].data.dp.start == 1 &&
568  r->typ[0].data.dp.end == r->N &&
569  r->typ[0].data.dp.place == r->pOrdIndex)
570  return p_Setm_TotalDegree;
571  if (r->typ[0].ord_typ == ro_wp &&
572  r->typ[0].data.wp.start == 1 &&
573  r->typ[0].data.wp.end == r->N &&
574  r->typ[0].data.wp.place == r->pOrdIndex &&
575  r->typ[0].data.wp.weights == r->firstwv)
577  }
578  return p_Setm_General;
579 }
void p_Setm_General(poly p, const ring r)
Definition: p_polys.cc:163
Definition: ring.h:61
void p_Setm_WFirstTotalDegree(poly p, const ring r)
Definition: p_polys.cc:553
void p_Setm_TotalDegree(poly p, const ring r)
Definition: p_polys.cc:546
const ring r
Definition: syzextra.cc:208
void p_Setm_Dummy(poly p, const ring r)
Definition: p_polys.cc:540
#define NULL
Definition: omList.c:10
Definition: ring.h:60

◆ p_GetShortExpVector() [1/2]

unsigned long p_GetShortExpVector ( const poly  a,
const ring  r 
)

Definition at line 4627 of file p_polys.cc.

4628 {
4629  assume(p != NULL);
4630  unsigned long ev = 0; // short exponent vector
4631  unsigned int n = BIT_SIZEOF_LONG / r->N; // number of bits per exp
4632  unsigned int m1; // highest bit which is filled with (n+1)
4633  int i=0,j=1;
4634 
4635  if (n == 0)
4636  {
4637  if (r->N <2*BIT_SIZEOF_LONG)
4638  {
4639  n=1;
4640  m1=0;
4641  }
4642  else
4643  {
4644  for (; j<=r->N; j++)
4645  {
4646  if (p_GetExp(p,j,r) > 0) i++;
4647  if (i == BIT_SIZEOF_LONG) break;
4648  }
4649  if (i>0)
4650  ev = ~(0UL) >> (BIT_SIZEOF_LONG - i);
4651  return ev;
4652  }
4653  }
4654  else
4655  {
4656  m1 = (n+1)*(BIT_SIZEOF_LONG - n*r->N);
4657  }
4658 
4659  n++;
4660  while (i<m1)
4661  {
4662  ev |= GetBitFields(p_GetExp(p, j,r), i, n);
4663  i += n;
4664  j++;
4665  }
4666 
4667  n--;
4668  while (i<BIT_SIZEOF_LONG)
4669  {
4670  ev |= GetBitFields(p_GetExp(p, j,r), i, n);
4671  i += n;
4672  j++;
4673  }
4674  return ev;
4675 }
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int j
Definition: myNF.cc:70
#define assume(x)
Definition: mod2.h:394
int i
Definition: cfEzgcd.cc:123
static unsigned long GetBitFields(const long e, const unsigned int s, const unsigned int n)
Definition: p_polys.cc:4594
#define NULL
Definition: omList.c:10
#define BIT_SIZEOF_LONG
Definition: auxiliary.h:78

◆ p_GetShortExpVector() [2/2]

unsigned long p_GetShortExpVector ( const poly  p,
const poly  pp,
const ring  r 
)

p_GetShortExpVector of p * pp

Definition at line 4679 of file p_polys.cc.

4680 {
4681  assume(p != NULL);
4682  assume(pp != NULL);
4683 
4684  unsigned long ev = 0; // short exponent vector
4685  unsigned int n = BIT_SIZEOF_LONG / r->N; // number of bits per exp
4686  unsigned int m1; // highest bit which is filled with (n+1)
4687  int j=1;
4688  unsigned long i = 0L;
4689 
4690  if (n == 0)
4691  {
4692  if (r->N <2*BIT_SIZEOF_LONG)
4693  {
4694  n=1;
4695  m1=0;
4696  }
4697  else
4698  {
4699  for (; j<=r->N; j++)
4700  {
4701  if (p_GetExp(p,j,r) > 0 || p_GetExp(pp,j,r) > 0) i++;
4702  if (i == BIT_SIZEOF_LONG) break;
4703  }
4704  if (i>0)
4705  ev = ~(0UL) >> (BIT_SIZEOF_LONG - i);
4706  return ev;
4707  }
4708  }
4709  else
4710  {
4711  m1 = (n+1)*(BIT_SIZEOF_LONG - n*r->N);
4712  }
4713 
4714  n++;
4715  while (i<m1)
4716  {
4717  ev |= GetBitFields(p_GetExp(p, j,r) + p_GetExp(pp, j,r), i, n);
4718  i += n;
4719  j++;
4720  }
4721 
4722  n--;
4723  while (i<BIT_SIZEOF_LONG)
4724  {
4725  ev |= GetBitFields(p_GetExp(p, j,r) + p_GetExp(pp, j,r), i, n);
4726  i += n;
4727  j++;
4728  }
4729  return ev;
4730 }
return P p
Definition: myNF.cc:203
poly pp
Definition: myNF.cc:296
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int j
Definition: myNF.cc:70
#define assume(x)
Definition: mod2.h:394
int i
Definition: cfEzgcd.cc:123
static unsigned long GetBitFields(const long e, const unsigned int s, const unsigned int n)
Definition: p_polys.cc:4594
#define NULL
Definition: omList.c:10
#define BIT_SIZEOF_LONG
Definition: auxiliary.h:78

◆ p_GetTotalDegree()

static unsigned long p_GetTotalDegree ( const unsigned long  l,
const ring  r,
const int  number_of_exps 
)
inlinestatic

Definition at line 771 of file p_polys.h.

772 {
773  const unsigned long bitmask = r->bitmask;
774  unsigned long sum = (l & bitmask);
775  unsigned long j = number_of_exps - 1;
776 
777  if (j > 0)
778  {
779  unsigned long i = r->BitsPerExp;
780  loop
781  {
782  sum += ((l >> i) & bitmask);
783  j--;
784  if (j==0) break;
785  i += r->BitsPerExp;
786  }
787  }
788  return sum;
789 }
loop
Definition: myNF.cc:98
const ring r
Definition: syzextra.cc:208
int j
Definition: myNF.cc:70
int i
Definition: cfEzgcd.cc:123
int l
Definition: cfEzgcd.cc:94

◆ p_GetVariables()

int p_GetVariables ( poly  p,
int *  e,
const ring  r 
)

set entry e[i] to 1 if var(i) occurs in p, ignore var(j) if e[j]>0 return #(e[i]>0)

Definition at line 1266 of file p_polys.cc.

1267 {
1268  int i;
1269  int n=0;
1270  while(p!=NULL)
1271  {
1272  n=0;
1273  for(i=r->N; i>0; i--)
1274  {
1275  if(e[i]==0)
1276  {
1277  if (p_GetExp(p,i,r)>0)
1278  {
1279  e[i]=1;
1280  n++;
1281  }
1282  }
1283  else
1284  n++;
1285  }
1286  if (n==r->N) break;
1287  pIter(p);
1288  }
1289  return n;
1290 }
return P p
Definition: myNF.cc:203
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int i
Definition: cfEzgcd.cc:123
#define NULL
Definition: omList.c:10

◆ p_HasNotCF()

BOOLEAN p_HasNotCF ( poly  p1,
poly  p2,
const ring  r 
)

Definition at line 1328 of file p_polys.cc.

1329 {
1330 
1331  if (p_GetComp(p1,r) > 0 || p_GetComp(p2,r) > 0)
1332  return FALSE;
1333  int i = rVar(r);
1334  loop
1335  {
1336  if ((p_GetExp(p1, i, r) > 0) && (p_GetExp(p2, i, r) > 0))
1337  return FALSE;
1338  i--;
1339  if (i == 0)
1340  return TRUE;
1341  }
1342 }
loop
Definition: myNF.cc:98
#define FALSE
Definition: auxiliary.h:94
#define p_GetComp(p, r)
Definition: monomials.h:72
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:583
#define TRUE
Definition: auxiliary.h:98
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int i
Definition: cfEzgcd.cc:123
END_NAMESPACE const void * p2
Definition: syzextra.cc:202

◆ p_Head()

static poly p_Head ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 812 of file p_polys.h.

813 {
814  if (p == NULL) return NULL;
816  poly np;
817  omTypeAllocBin(poly, np, r->PolyBin);
818  p_SetRingOfLm(np, r);
819  memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long));
820  pNext(np) = NULL;
821  pSetCoeff0(np, n_Copy(pGetCoeff(p), r->cf));
822  return np;
823 }
return P p
Definition: myNF.cc:203
#define omTypeAllocBin(type, addr, bin)
Definition: omAllocDecl.h:203
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
const ring r
Definition: syzextra.cc:208
#define p_SetRingOfLm(p, r)
Definition: monomials.h:152
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:185
#define NULL
Definition: omList.c:10
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of &#39;n&#39;
Definition: coeffs.h:455
#define pNext(p)
Definition: monomials.h:43
#define pSetCoeff0(p, n)
Definition: monomials.h:67
polyrec * poly
Definition: hilb.h:10

◆ p_Homogen()

poly p_Homogen ( poly  p,
int  varnum,
const ring  r 
)

Definition at line 3192 of file p_polys.cc.

3193 {
3194  pFDegProc deg;
3195  if (r->pLexOrder && (r->order[0]==ringorder_lp))
3196  deg=p_Totaldegree;
3197  else
3198  deg=r->pFDeg;
3199 
3200  poly q=NULL, qn;
3201  int o,ii;
3202  sBucket_pt bp;
3203 
3204  if (p!=NULL)
3205  {
3206  if ((varnum < 1) || (varnum > rVar(r)))
3207  {
3208  return NULL;
3209  }
3210  o=deg(p,r);
3211  q=pNext(p);
3212  while (q != NULL)
3213  {
3214  ii=deg(q,r);
3215  if (ii>o) o=ii;
3216  pIter(q);
3217  }
3218  q = p_Copy(p,r);
3219  bp = sBucketCreate(r);
3220  while (q != NULL)
3221  {
3222  ii = o-deg(q,r);
3223  if (ii!=0)
3224  {
3225  p_AddExp(q,varnum, (long)ii,r);
3226  p_Setm(q,r);
3227  }
3228  qn = pNext(q);
3229  pNext(q) = NULL;
3230  sBucket_Add_p(bp, q, 1);
3231  q = qn;
3232  }
3233  sBucketDestroyAdd(bp, &q, &ii);
3234  }
3235  return q;
3236 }
return P p
Definition: myNF.cc:203
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:583
void sBucketDestroyAdd(sBucket_pt bucket, poly *p, int *length)
Definition: sbuckets.h:72
static long p_Totaldegree(poly p, const ring r)
Definition: p_polys.h:1430
void sBucket_Add_p(sBucket_pt bucket, poly p, int length)
adds poly p to bucket destroys p!
Definition: sbuckets.cc:201
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition: p_polys.h:804
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
sBucket_pt sBucketCreate(const ring r)
Definition: sbuckets.cc:120
#define NULL
Definition: omList.c:10
long(* pFDegProc)(poly p, ring r)
Definition: ring.h:46
#define pNext(p)
Definition: monomials.h:43
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:228
static long p_AddExp(poly p, int v, long ee, ring r)
Definition: p_polys.h:601
polyrec * poly
Definition: hilb.h:10

◆ p_IncrExp()

static long p_IncrExp ( poly  p,
int  v,
ring  r 
)
inlinestatic

Definition at line 586 of file p_polys.h.

587 {
589  int e = p_GetExp(p,v,r);
590  e++;
591  return p_SetExp(p,v,e,r);
592 }
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:207
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:37
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent : VarOffset encodes the position in p->exp
Definition: p_polys.h:483

◆ p_Init() [1/2]

static poly p_Init ( const ring  r,
omBin  bin 
)
inlinestatic

Definition at line 1243 of file p_polys.h.

1244 {
1245  p_CheckRing1(r);
1246  pAssume1(bin != NULL && omSizeWOfBin(r->PolyBin) == omSizeWOfBin(bin));
1247  poly p;
1248  omTypeAlloc0Bin(poly, p, bin);
1250  p_SetRingOfLm(p, r);
1251  return p;
1252 }
return P p
Definition: myNF.cc:203
#define p_CheckRing1(r)
Definition: monomials.h:186
const ring r
Definition: syzextra.cc:208
#define p_SetRingOfLm(p, r)
Definition: monomials.h:152
static void p_MemAdd_NegWeightAdjust(poly p, const ring r)
Definition: p_polys.h:1215
#define omTypeAlloc0Bin(type, addr, bin)
Definition: omAllocDecl.h:204
#define NULL
Definition: omList.c:10
#define omSizeWOfBin(bin_ptr)
polyrec * poly
Definition: hilb.h:10
#define pAssume1(cond)
Definition: monomials.h:179

◆ p_Init() [2/2]

static poly p_Init ( const ring  r)
inlinestatic

Definition at line 1253 of file p_polys.h.

1254 {
1255  return p_Init(r, r->PolyBin);
1256 }
const ring r
Definition: syzextra.cc:208
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1243

◆ p_Invers()

poly p_Invers ( int  n,
poly  u,
intvec w,
const ring  R 
)

Definition at line 4331 of file p_polys.cc.

4332 {
4333  if(n<0)
4334  return NULL;
4335  number u0=n_Invers(pGetCoeff(u),R->cf);
4336  poly v=p_NSet(u0,R);
4337  if(n==0)
4338  return v;
4339  short *ww=iv2array(w,R);
4340  poly u1=p_JetW(p_Sub(p_One(R),p_Mult_nn(u,u0,R),R),n,ww,R);
4341  if(u1==NULL)
4342  {
4343  omFreeSize((ADDRESS)ww,(rVar(R)+1)*sizeof(short));
4344  return v;
4345  }
4346  poly v1=p_Mult_nn(p_Copy(u1,R),u0,R);
4347  v=p_Add_q(v,p_Copy(v1,R),R);
4348  for(int i=n/p_MinDeg(u1,w,R);i>1;i--)
4349  {
4350  v1=p_JetW(p_Mult_q(v1,p_Copy(u1,R),R),n,ww,R);
4351  v=p_Add_q(v,p_Copy(v1,R),R);
4352  }
4353  p_Delete(&u1,R);
4354  p_Delete(&v1,R);
4355  omFreeSize((ADDRESS)ww,(rVar(R)+1)*sizeof(short));
4356  return v;
4357 }
short * iv2array(intvec *iv, const ring R)
Definition: weight.cc:208
poly p_NSet(number n, const ring r)
returns the poly representing the number n, destroys n
Definition: p_polys.cc:1442
int p_MinDeg(poly p, intvec *w, const ring R)
Definition: p_polys.cc:4295
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:583
void * ADDRESS
Definition: auxiliary.h:115
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
poly p_Sub(poly p1, poly p2, const ring r)
Definition: p_polys.cc:1943
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition: p_polys.h:804
poly p_One(const ring r)
Definition: p_polys.cc:1312
const ring R
Definition: DebugPrint.cc:36
static FORCE_INLINE number n_Invers(number a, const coeffs r)
return the multiplicative inverse of &#39;a&#39;; raise an error if &#39;a&#39; is not invertible ...
Definition: coeffs.h:568
int i
Definition: cfEzgcd.cc:123
static poly p_Mult_nn(poly p, number n, const ring r)
Definition: p_polys.h:895
poly p_JetW(poly p, int m, short *w, const ring R)
Definition: p_polys.cc:4277
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:843
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:37
#define NULL
Definition: omList.c:10
polyrec * poly
Definition: hilb.h:10
static poly p_Add_q(poly p, poly q, const ring r)
Definition: p_polys.h:877
static poly p_Mult_q(poly p, poly q, const ring r)
Definition: p_polys.h:1020

◆ p_IsConstant()

static BOOLEAN p_IsConstant ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 1876 of file p_polys.h.

1877 {
1878  if (p == NULL) return TRUE;
1879  p_Test(p, r);
1880  return (pNext(p)==NULL) && p_LmIsConstant(p, r);
1881 }
return P p
Definition: myNF.cc:203
#define TRUE
Definition: auxiliary.h:98
static BOOLEAN p_LmIsConstant(const poly p, const ring r)
Definition: p_polys.h:949
const ring r
Definition: syzextra.cc:208
#define p_Test(p, r)
Definition: p_polys.h:160
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43

◆ p_IsConstantComp()

static BOOLEAN p_IsConstantComp ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 1870 of file p_polys.h.

1871 {
1872  if (p == NULL) return TRUE;
1873  return (pNext(p)==NULL) && p_LmIsConstantComp(p, r);
1874 }
static BOOLEAN p_LmIsConstantComp(const poly p, const ring r)
Definition: p_polys.h:932
return P p
Definition: myNF.cc:203
#define TRUE
Definition: auxiliary.h:98
const ring r
Definition: syzextra.cc:208
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43

◆ p_IsConstantPoly()

static BOOLEAN p_IsConstantPoly ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 1890 of file p_polys.h.

1891 {
1892  p_Test(p, r);
1893  poly pp=p;
1894  while(pp!=NULL)
1895  {
1896  if (! p_LmIsConstantComp(pp, r))
1897  return FALSE;
1898  pIter(pp);
1899  }
1900  return TRUE;
1901 }
static BOOLEAN p_LmIsConstantComp(const poly p, const ring r)
Definition: p_polys.h:932
#define FALSE
Definition: auxiliary.h:94
return P p
Definition: myNF.cc:203
#define TRUE
Definition: auxiliary.h:98
poly pp
Definition: myNF.cc:296
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
#define p_Test(p, r)
Definition: p_polys.h:160
#define NULL
Definition: omList.c:10
polyrec * poly
Definition: hilb.h:10

◆ p_ISet()

poly p_ISet ( long  i,
const ring  r 
)

returns the poly representing the integer i

Definition at line 1296 of file p_polys.cc.

1297 {
1298  poly rc = NULL;
1299  if (i!=0)
1300  {
1301  rc = p_Init(r);
1302  pSetCoeff0(rc,n_Init(i,r->cf));
1303  if (n_IsZero(pGetCoeff(rc),r->cf))
1304  p_LmDelete(&rc,r);
1305  }
1306  return rc;
1307 }
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition: coeffs.h:542
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
const ring r
Definition: syzextra.cc:208
int i
Definition: cfEzgcd.cc:123
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the zero element.
Definition: coeffs.h:468
#define NULL
Definition: omList.c:10
#define pSetCoeff0(p, n)
Definition: monomials.h:67
static void p_LmDelete(poly p, const ring r)
Definition: p_polys.h:706
polyrec * poly
Definition: hilb.h:10
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1243

◆ p_IsHomogeneous()

BOOLEAN p_IsHomogeneous ( poly  p,
const ring  r 
)

Definition at line 3241 of file p_polys.cc.

3242 {
3243  poly qp=p;
3244  int o;
3245 
3246  if ((p == NULL) || (pNext(p) == NULL)) return TRUE;
3247  pFDegProc d;
3248  if (r->pLexOrder && (r->order[0]==ringorder_lp))
3249  d=p_Totaldegree;
3250  else
3251  d=r->pFDeg;
3252  o = d(p,r);
3253  do
3254  {
3255  if (d(qp,r) != o) return FALSE;
3256  pIter(qp);
3257  }
3258  while (qp != NULL);
3259  return TRUE;
3260 }
#define FALSE
Definition: auxiliary.h:94
return P p
Definition: myNF.cc:203
#define TRUE
Definition: auxiliary.h:98
static long p_Totaldegree(poly p, const ring r)
Definition: p_polys.h:1430
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
#define NULL
Definition: omList.c:10
long(* pFDegProc)(poly p, ring r)
Definition: ring.h:46
#define pNext(p)
Definition: monomials.h:43
polyrec * poly
Definition: hilb.h:10

◆ p_IsOne()

static BOOLEAN p_IsOne ( const poly  p,
const ring  R 
)
inlinestatic

either poly(1) or gen(k)?!

Definition at line 1884 of file p_polys.h.

1885 {
1886  p_Test(p, R);
1887  return (p_IsConstant(p, R) && n_IsOne(p_GetCoeff(p, R), R->cf));
1888 }
return P p
Definition: myNF.cc:203
static FORCE_INLINE BOOLEAN n_IsOne(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the one element.
Definition: coeffs.h:472
static BOOLEAN p_IsConstant(const poly p, const ring r)
Definition: p_polys.h:1876
const ring R
Definition: DebugPrint.cc:36
#define p_Test(p, r)
Definition: p_polys.h:160
#define p_GetCoeff(p, r)
Definition: monomials.h:57

◆ p_IsPurePower()

int p_IsPurePower ( const poly  p,
const ring  r 
)

return i, if head depends only on var(i)

Definition at line 1225 of file p_polys.cc.

1226 {
1227  int i,k=0;
1228 
1229  for (i=r->N;i;i--)
1230  {
1231  if (p_GetExp(p,i, r)!=0)
1232  {
1233  if(k!=0) return 0;
1234  k=i;
1235  }
1236  }
1237  return k;
1238 }
return P p
Definition: myNF.cc:203
int k
Definition: cfEzgcd.cc:93
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int i
Definition: cfEzgcd.cc:123

◆ p_IsUnit()

static BOOLEAN p_IsUnit ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 1903 of file p_polys.h.

1904 {
1905  if (p == NULL) return FALSE;
1906  if (rField_is_Ring(r))
1907  return (p_LmIsConstant(p, r) && n_IsUnit(pGetCoeff(p),r->cf));
1908  return p_LmIsConstant(p, r);
1909 }
static FORCE_INLINE BOOLEAN n_IsUnit(number n, const coeffs r)
TRUE iff n has a multiplicative inverse in the given coeff field/ring r.
Definition: coeffs.h:519
#define FALSE
Definition: auxiliary.h:94
return P p
Definition: myNF.cc:203
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
static BOOLEAN p_LmIsConstant(const poly p, const ring r)
Definition: p_polys.h:949
const ring r
Definition: syzextra.cc:208
static BOOLEAN rField_is_Ring(const ring r)
Definition: ring.h:477
#define NULL
Definition: omList.c:10

◆ p_IsUnivariate()

int p_IsUnivariate ( poly  p,
const ring  r 
)

return i, if poly depends only on var(i)

Definition at line 1246 of file p_polys.cc.

1247 {
1248  int i,k=-1;
1249 
1250  while (p!=NULL)
1251  {
1252  for (i=r->N;i;i--)
1253  {
1254  if (p_GetExp(p,i, r)!=0)
1255  {
1256  if((k!=-1)&&(k!=i)) return 0;
1257  k=i;
1258  }
1259  }
1260  pIter(p);
1261  }
1262  return k;
1263 }
return P p
Definition: myNF.cc:203
int k
Definition: cfEzgcd.cc:93
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int i
Definition: cfEzgcd.cc:123
#define NULL
Definition: omList.c:10

◆ p_Jet()

poly p_Jet ( poly  p,
int  m,
const ring  R 
)

Definition at line 4233 of file p_polys.cc.

4234 {
4235  while((p!=NULL) && (p_Totaldegree(p,R)>m)) p_LmDelete(&p,R);
4236  if (p==NULL) return NULL;
4237  poly r=p;
4238  while (pNext(p)!=NULL)
4239  {
4240  if (p_Totaldegree(pNext(p),R)>m)
4241  {
4242  p_LmDelete(&pNext(p),R);
4243  }
4244  else
4245  pIter(p);
4246  }
4247  return r;
4248 }
return P p
Definition: myNF.cc:203
static long p_Totaldegree(poly p, const ring r)
Definition: p_polys.h:1430
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
const ring R
Definition: DebugPrint.cc:36
int m
Definition: cfEzgcd.cc:119
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
static void p_LmDelete(poly p, const ring r)
Definition: p_polys.h:706
polyrec * poly
Definition: hilb.h:10

◆ p_JetW()

poly p_JetW ( poly  p,
int  m,
short *  w,
const ring  R 
)

Definition at line 4277 of file p_polys.cc.

4278 {
4279  while((p!=NULL) && (totaldegreeWecart_IV(p,R,w)>m)) p_LmDelete(&p,R);
4280  if (p==NULL) return NULL;
4281  poly r=p;
4282  while (pNext(p)!=NULL)
4283  {
4284  if (totaldegreeWecart_IV(pNext(p),R,w)>m)
4285  {
4286  p_LmDelete(&pNext(p),R);
4287  }
4288  else
4289  pIter(p);
4290  }
4291  return r;
4292 }
return P p
Definition: myNF.cc:203
long totaldegreeWecart_IV(poly p, ring r, const short *w)
Definition: weight.cc:239
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
const ring R
Definition: DebugPrint.cc:36
int m
Definition: cfEzgcd.cc:119
#define NULL
Definition: omList.c:10
const CanonicalForm & w
Definition: facAbsFact.cc:55
#define pNext(p)
Definition: monomials.h:43
static void p_LmDelete(poly p, const ring r)
Definition: p_polys.h:706
polyrec * poly
Definition: hilb.h:10

◆ p_Last()

poly p_Last ( const poly  a,
int &  l,
const ring  r 
)

Definition at line 4468 of file p_polys.cc.

4469 {
4470  if (p == NULL)
4471  {
4472  l = 0;
4473  return NULL;
4474  }
4475  l = 1;
4476  poly a = p;
4477  if (! rIsSyzIndexRing(r))
4478  {
4479  poly next = pNext(a);
4480  while (next!=NULL)
4481  {
4482  a = next;
4483  next = pNext(a);
4484  l++;
4485  }
4486  }
4487  else
4488  {
4489  int curr_limit = rGetCurrSyzLimit(r);
4490  poly pp = a;
4491  while ((a=pNext(a))!=NULL)
4492  {
4493  if (p_GetComp(a,r)<=curr_limit/*syzComp*/)
4494  l++;
4495  else break;
4496  pp = a;
4497  }
4498  a=pp;
4499  }
4500  return a;
4501 }
const poly a
Definition: syzextra.cc:212
return P p
Definition: myNF.cc:203
static BOOLEAN rIsSyzIndexRing(const ring r)
Definition: ring.h:711
#define p_GetComp(p, r)
Definition: monomials.h:72
static int rGetCurrSyzLimit(const ring r)
Definition: ring.h:714
poly pp
Definition: myNF.cc:296
const ring r
Definition: syzextra.cc:208
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
polyrec * poly
Definition: hilb.h:10
int l
Definition: cfEzgcd.cc:94
ListNode * next
Definition: janet.h:31

◆ p_Lcm()

void p_Lcm ( const poly  a,
const poly  b,
poly  m,
const ring  r 
)

Definition at line 1614 of file p_polys.cc.

1615 {
1616  for (int i=rVar(r); i; --i)
1617  p_SetExp(m,i, si_max( p_GetExp(a,i,r), p_GetExp(b,i,r)),r);
1618 
1620  /* Don't do a pSetm here, otherwise hres/lres chockes */
1621 }
const poly a
Definition: syzextra.cc:212
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
Definition: p_polys.h:242
#define p_GetComp(p, r)
Definition: monomials.h:72
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:583
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int m
Definition: cfEzgcd.cc:119
static int si_max(const int a, const int b)
Definition: auxiliary.h:120
int i
Definition: cfEzgcd.cc:123
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent : VarOffset encodes the position in p->exp
Definition: p_polys.h:483
const poly b
Definition: syzextra.cc:213

◆ p_LcmRat()

poly p_LcmRat ( const poly  a,
const poly  b,
const long  lCompM,
const ring  r 
)

Definition at line 1630 of file p_polys.cc.

1631 {
1632  poly m = // p_One( r);
1633  p_Init(r);
1634 
1635 // const int (currRing->N) = r->N;
1636 
1637  // for (int i = (currRing->N); i>=r->real_var_start; i--)
1638  for (int i = r->real_var_end; i>=r->real_var_start; i--)
1639  {
1640  const int lExpA = p_GetExp (a, i, r);
1641  const int lExpB = p_GetExp (b, i, r);
1642 
1643  p_SetExp (m, i, si_max(lExpA, lExpB), r);
1644  }
1645 
1646  p_SetComp (m, lCompM, r);
1647  p_Setm(m,r);
1648  n_New(&(p_GetCoeff(m, r)), r);
1649 
1650  return(m);
1651 };
#define n_New(n, r)
Definition: coeffs.h:444
const poly a
Definition: syzextra.cc:212
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
Definition: p_polys.h:242
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int m
Definition: cfEzgcd.cc:119
static int si_max(const int a, const int b)
Definition: auxiliary.h:120
int i
Definition: cfEzgcd.cc:123
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent : VarOffset encodes the position in p->exp
Definition: p_polys.h:483
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:228
#define p_GetCoeff(p, r)
Definition: monomials.h:57
polyrec * poly
Definition: hilb.h:10
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1243
const poly b
Definition: syzextra.cc:213

◆ p_LDeg()

static long p_LDeg ( const poly  p,
int *  l,
const ring  r 
)
inlinestatic

Definition at line 376 of file p_polys.h.

376 { return r->pLDeg(p,l,r); }
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
int l
Definition: cfEzgcd.cc:94

◆ p_LmCheckIsFromRing()

BOOLEAN p_LmCheckIsFromRing ( poly  p,
ring  r 
)

Definition at line 71 of file pDebug.cc.

72 {
73  if (p != NULL)
74  {
75  #if (OM_TRACK > 0) && defined(OM_TRACK_CUSTOM)
76  void* custom = omGetCustomOfAddr(p);
77  if (custom != NULL)
78  {
79  pPolyAssumeReturnMsg(custom == r ||
80  // be more sloppy for qrings
81  (r->qideal != NULL &&
82  omIsBinPageAddr(p) &&
83  omSizeWOfAddr(p)==omSizeWOfBin(r->PolyBin)) ||
84  rSamePolyRep((ring) custom, r),
85  "monomial not from specified ring",p,r);
86  return TRUE;
87  }
88  else
89  #endif
90  #ifndef X_OMALLOC
91  {
93  return TRUE;
94  }
95  return FALSE;
96  #endif
97  }
98  return TRUE;
99 }
#define FALSE
Definition: auxiliary.h:94
return P p
Definition: myNF.cc:203
#define TRUE
Definition: auxiliary.h:98
size_t omSizeWOfAddr(void *addr)
#define _pPolyAssumeReturn(cond, p, r)
Definition: monomials.h:109
const ring r
Definition: syzextra.cc:208
BOOLEAN rSamePolyRep(ring r1, ring r2)
returns TRUE, if r1 and r2 represents the monomials in the same way FALSE, otherwise this is an analo...
Definition: ring.cc:1675
#define NULL
Definition: omList.c:10
#define omIsBinPageAddr(addr)
Definition: omBinPage.h:68
#define omSizeWOfBin(bin_ptr)
#define pPolyAssumeReturnMsg(cond, msg)
Definition: monomials.h:145

◆ p_LmCheckPolyRing()

BOOLEAN p_LmCheckPolyRing ( poly  p,
ring  r 
)

Definition at line 119 of file pDebug.cc.

120 {
121  #ifndef X_OMALLOC
122  pAssumeReturn(r != NULL && r->PolyBin != NULL);
123  #endif
124  pAssumeReturn(p != NULL);
125  return p_LmCheckIsFromRing(p, r);
126 }
return P p
Definition: myNF.cc:203
#define pAssumeReturn(cond)
Definition: monomials.h:86
BOOLEAN p_LmCheckIsFromRing(poly p, ring r)
Definition: pDebug.cc:71
const ring r
Definition: syzextra.cc:208
#define NULL
Definition: omList.c:10

◆ p_LmCmp()

static int p_LmCmp ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1467 of file p_polys.h.

1468 {
1470  p_LmCheckPolyRing1(q, r);
1471 
1472  const unsigned long* _s1 = ((unsigned long*) p->exp);
1473  const unsigned long* _s2 = ((unsigned long*) q->exp);
1474  register unsigned long _v1;
1475  register unsigned long _v2;
1476  const unsigned long _l = r->CmpL_Size;
1477 
1478  register unsigned long _i=0;
1479 
1480  LengthGeneral_OrdGeneral_LoopTop:
1481  _v1 = _s1[_i];
1482  _v2 = _s2[_i];
1483  if (_v1 == _v2)
1484  {
1485  _i++;
1486  if (_i == _l) return 0;
1487  goto LengthGeneral_OrdGeneral_LoopTop;
1488  }
1489  const long* _ordsgn = (long*) r->ordsgn;
1490  if (_v1 > _v2)
1491  {
1492  if (_ordsgn[_i] == 1) return 1;
1493  return -1;
1494  }
1495  if (_ordsgn[_i] == 1) return -1;
1496  return 1;
1497 
1498 }
if(0 > strat->sl)
Definition: myNF.cc:73
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:185

◆ p_LmDelete() [1/2]

static void p_LmDelete ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 706 of file p_polys.h.

707 {
709  n_Delete(&pGetCoeff(p), r->cf);
710  omFreeBinAddr(p);
711 }
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:207
return P p
Definition: myNF.cc:203
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
const ring r
Definition: syzextra.cc:208
#define omFreeBinAddr(addr)
Definition: omAllocDecl.h:258
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete &#39;p&#39;
Definition: coeffs.h:459

◆ p_LmDelete() [2/2]

static void p_LmDelete ( poly p,
const ring  r 
)
inlinestatic

Definition at line 712 of file p_polys.h.

713 {
715  poly h = *p;
716  *p = pNext(h);
717  n_Delete(&pGetCoeff(h), r->cf);
718  omFreeBinAddr(h);
719 }
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:207
return P p
Definition: myNF.cc:203
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
const ring r
Definition: syzextra.cc:208
#define omFreeBinAddr(addr)
Definition: omAllocDecl.h:258
#define pNext(p)
Definition: monomials.h:43
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete &#39;p&#39;
Definition: coeffs.h:459
polyrec * poly
Definition: hilb.h:10
static Poly * h
Definition: janet.cc:978

◆ p_LmDeleteAndNext()

static poly p_LmDeleteAndNext ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 720 of file p_polys.h.

721 {
723  poly pnext = pNext(p);
724  n_Delete(&pGetCoeff(p), r->cf);
725  omFreeBinAddr(p);
726  return pnext;
727 }
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:207
return P p
Definition: myNF.cc:203
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
const ring r
Definition: syzextra.cc:208
#define omFreeBinAddr(addr)
Definition: omAllocDecl.h:258
#define pNext(p)
Definition: monomials.h:43
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete &#39;p&#39;
Definition: coeffs.h:459
polyrec * poly
Definition: hilb.h:10

◆ p_LmDeleteAndNextRat()

void p_LmDeleteAndNextRat ( poly p,
int  ishift,
ring  r 
)

Definition at line 1653 of file p_polys.cc.

1654 {
1655  /* modifies p*/
1656  // Print("start: "); Print(" "); p_wrp(*p,r);
1657  p_LmCheckPolyRing2(*p, r);
1658  poly q = p_Head(*p,r);
1659  const long cmp = p_GetComp(*p, r);
1660  while ( ( (*p)!=NULL ) && ( p_Comp_k_n(*p, q, ishift+1, r) ) && (p_GetComp(*p, r) == cmp) )
1661  {
1662  p_LmDelete(p,r);
1663  // Print("while: ");p_wrp(*p,r);Print(" ");
1664  }
1665  // p_wrp(*p,r);Print(" ");
1666  // PrintS("end\n");
1667  p_LmDelete(&q,r);
1668 }
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:207
return P p
Definition: myNF.cc:203
#define p_GetComp(p, r)
Definition: monomials.h:72
static poly p_Head(poly p, const ring r)
Definition: p_polys.h:812
const ring r
Definition: syzextra.cc:208
static int p_Comp_k_n(poly a, poly b, int k, ring r)
Definition: p_polys.h:635
#define NULL
Definition: omList.c:10
static void p_LmDelete(poly p, const ring r)
Definition: p_polys.h:706
polyrec * poly
Definition: hilb.h:10

◆ p_LmDivisibleBy() [1/2]

static BOOLEAN p_LmDivisibleBy ( poly  a,
poly  b,
const ring  r 
)
inlinestatic

Definition at line 1768 of file p_polys.h.

1769 {
1772  if (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r))
1773  return _p_LmDivisibleByNoComp(a, b, r);
1774  return FALSE;
1775 }
const poly a
Definition: syzextra.cc:212
#define FALSE
Definition: auxiliary.h:94
#define p_GetComp(p, r)
Definition: monomials.h:72
static BOOLEAN _p_LmDivisibleByNoComp(poly a, poly b, const ring r)
return: FALSE, if there exists i, such that a->exp[i] > b->exp[i] TRUE, otherwise (1) Consider long v...
Definition: p_polys.h:1638
const ring r
Definition: syzextra.cc:208
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:185
#define pIfThen1(cond, check)
Definition: monomials.h:187
#define NULL
Definition: omList.c:10
const poly b
Definition: syzextra.cc:213

◆ p_LmDivisibleBy() [2/2]

static BOOLEAN p_LmDivisibleBy ( poly  a,
const ring  r_a,
poly  b,
const ring  r_b 
)
inlinestatic

Definition at line 1795 of file p_polys.h.

1796 {
1797  p_LmCheckPolyRing(a, r_a);
1798  p_LmCheckPolyRing(b, r_b);
1799  return _p_LmDivisibleBy(a, r_a, b, r_b);
1800 }
const poly a
Definition: syzextra.cc:212
static BOOLEAN _p_LmDivisibleBy(poly a, poly b, const ring r)
Definition: p_polys.h:1742
BOOLEAN p_LmCheckPolyRing(poly p, ring r)
Definition: pDebug.cc:119
const poly b
Definition: syzextra.cc:213

◆ p_LmDivisibleByNoComp() [1/2]

static BOOLEAN p_LmDivisibleByNoComp ( poly  a,
poly  b,
const ring  r 
)
inlinestatic

Definition at line 1754 of file p_polys.h.

1755 {
1758  return _p_LmDivisibleByNoComp(a, b, r);
1759 }
const poly a
Definition: syzextra.cc:212
static BOOLEAN _p_LmDivisibleByNoComp(poly a, poly b, const ring r)
return: FALSE, if there exists i, such that a->exp[i] > b->exp[i] TRUE, otherwise (1) Consider long v...
Definition: p_polys.h:1638
const ring r
Definition: syzextra.cc:208
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:185
const poly b
Definition: syzextra.cc:213

◆ p_LmDivisibleByNoComp() [2/2]

static BOOLEAN p_LmDivisibleByNoComp ( poly  a,
const ring  ra,
poly  b,
const ring  rb 
)
inlinestatic

Definition at line 1761 of file p_polys.h.

1762 {
1763  p_LmCheckPolyRing1(a, ra);
1764  p_LmCheckPolyRing1(b, rb);
1765  return _p_LmDivisibleByNoComp(a, ra, b, rb);
1766 }
const poly a
Definition: syzextra.cc:212
static BOOLEAN _p_LmDivisibleByNoComp(poly a, poly b, const ring r)
return: FALSE, if there exists i, such that a->exp[i] > b->exp[i] TRUE, otherwise (1) Consider long v...
Definition: p_polys.h:1638
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:185
const poly b
Definition: syzextra.cc:213

◆ p_LmDivisibleByPart()

static BOOLEAN p_LmDivisibleByPart ( poly  a,
poly  b,
const ring  r,
const int  start,
const int  end 
)
inlinestatic

Definition at line 1733 of file p_polys.h.

1734 {
1737  if (p_GetComp(a, r) == 0 || p_GetComp(a,r) == p_GetComp(b,r))
1738  return _p_LmDivisibleByNoCompPart(a, r, b, r,start, end);
1739  return FALSE;
1740 }
const poly a
Definition: syzextra.cc:212
#define FALSE
Definition: auxiliary.h:94
#define p_GetComp(p, r)
Definition: monomials.h:72
const ring r
Definition: syzextra.cc:208
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:185
#define pIfThen1(cond, check)
Definition: monomials.h:187
#define NULL
Definition: omList.c:10
static BOOLEAN _p_LmDivisibleByNoCompPart(poly a, const ring r_a, poly b, const ring r_b, const int start, const int end)
Definition: p_polys.h:1708
const poly b
Definition: syzextra.cc:213

◆ p_LmExpVectorAddIsOk()

static BOOLEAN p_LmExpVectorAddIsOk ( const poly  p1,
const poly  p2,
const ring  r 
)
inlinestatic

Definition at line 1911 of file p_polys.h.

1913 {
1914  p_LmCheckPolyRing(p1, r);
1916  unsigned long l1, l2, divmask = r->divmask;
1917  int i;
1918 
1919  for (i=0; i<r->VarL_Size; i++)
1920  {
1921  l1 = p1->exp[r->VarL_Offset[i]];
1922  l2 = p2->exp[r->VarL_Offset[i]];
1923  // do the divisiblity trick
1924  if ( (l1 > ULONG_MAX - l2) ||
1925  (((l1 & divmask) ^ (l2 & divmask)) != ((l1 + l2) & divmask)))
1926  return FALSE;
1927  }
1928  return TRUE;
1929 }
#define FALSE
Definition: auxiliary.h:94
#define TRUE
Definition: auxiliary.h:98
const ring r
Definition: syzextra.cc:208
int i
Definition: cfEzgcd.cc:123
BOOLEAN p_LmCheckPolyRing(poly p, ring r)
Definition: pDebug.cc:119
END_NAMESPACE const void * p2
Definition: syzextra.cc:202

◆ p_LmFree() [1/2]

static void p_LmFree ( poly  p,
ring   
)
inlinestatic

Definition at line 678 of file p_polys.h.

680 {
682  omFreeBinAddr(p);
683 }
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:207
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
#define omFreeBinAddr(addr)
Definition: omAllocDecl.h:258

◆ p_LmFree() [2/2]

static void p_LmFree ( poly p,
ring   
)
inlinestatic

Definition at line 687 of file p_polys.h.

689 {
691  poly h = *p;
692  *p = pNext(h);
693  omFreeBinAddr(h);
694 }
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:207
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
#define omFreeBinAddr(addr)
Definition: omAllocDecl.h:258
#define pNext(p)
Definition: monomials.h:43
polyrec * poly
Definition: hilb.h:10
static Poly * h
Definition: janet.cc:978

◆ p_LmFreeAndNext()

static poly p_LmFreeAndNext ( poly  p,
ring   
)
inlinestatic

Definition at line 698 of file p_polys.h.

700 {
702  poly pnext = pNext(p);
703  omFreeBinAddr(p);
704  return pnext;
705 }
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:207
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
#define omFreeBinAddr(addr)
Definition: omAllocDecl.h:258
#define pNext(p)
Definition: monomials.h:43
polyrec * poly
Definition: hilb.h:10

◆ p_LmInit() [1/3]

static poly p_LmInit ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 1258 of file p_polys.h.

1259 {
1261  poly np;
1262  omTypeAllocBin(poly, np, r->PolyBin);
1263  p_SetRingOfLm(np, r);
1264  memcpy(np->exp, p->exp, r->ExpL_Size*sizeof(long));
1265  pNext(np) = NULL;
1266  pSetCoeff0(np, NULL);
1267  return np;
1268 }
return P p
Definition: myNF.cc:203
#define omTypeAllocBin(type, addr, bin)
Definition: omAllocDecl.h:203
const ring r
Definition: syzextra.cc:208
#define p_SetRingOfLm(p, r)
Definition: monomials.h:152
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:185
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
#define pSetCoeff0(p, n)
Definition: monomials.h:67
polyrec * poly
Definition: hilb.h:10

◆ p_LmInit() [2/3]

static poly p_LmInit ( poly  s_p,
const ring  s_r,
const ring  d_r,
omBin  d_bin 
)
inlinestatic

Definition at line 1269 of file p_polys.h.

1270 {
1271  p_LmCheckPolyRing1(s_p, s_r);
1272  p_CheckRing(d_r);
1273  pAssume1(d_r->N <= s_r->N);
1274  poly d_p = p_Init(d_r, d_bin);
1275  for (unsigned i=d_r->N; i!=0; i--)
1276  {
1277  p_SetExp(d_p, i, p_GetExp(s_p, i,s_r), d_r);
1278  }
1279  if (rRing_has_Comp(d_r))
1280  {
1281  p_SetComp(d_p, p_GetComp(s_p,s_r), d_r);
1282  }
1283  p_Setm(d_p, d_r);
1284  return d_p;
1285 }
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
Definition: p_polys.h:242
#define p_GetComp(p, r)
Definition: monomials.h:72
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int i
Definition: cfEzgcd.cc:123
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:185
#define rRing_has_Comp(r)
Definition: monomials.h:274
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent : VarOffset encodes the position in p->exp
Definition: p_polys.h:483
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:228
polyrec * poly
Definition: hilb.h:10
BOOLEAN p_CheckRing(ring r)
Definition: pDebug.cc:127
#define pAssume1(cond)
Definition: monomials.h:179
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1243

◆ p_LmInit() [3/3]

static poly p_LmInit ( poly  s_p,
const ring  s_r,
const ring  d_r 
)
inlinestatic

Definition at line 1286 of file p_polys.h.

1287 {
1288  pAssume1(d_r != NULL);
1289  return p_LmInit(s_p, s_r, d_r, d_r->PolyBin);
1290 }
#define NULL
Definition: omList.c:10
static poly p_LmInit(poly p, const ring r)
Definition: p_polys.h:1258
#define pAssume1(cond)
Definition: monomials.h:179

◆ p_LmIsConstant()

static BOOLEAN p_LmIsConstant ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 949 of file p_polys.h.

950 {
951  if (p_LmIsConstantComp(p, r))
952  return (p_GetComp(p, r) == 0);
953  return FALSE;
954 }
static BOOLEAN p_LmIsConstantComp(const poly p, const ring r)
Definition: p_polys.h:932
#define FALSE
Definition: auxiliary.h:94
return P p
Definition: myNF.cc:203
#define p_GetComp(p, r)
Definition: monomials.h:72
const ring r
Definition: syzextra.cc:208

◆ p_LmIsConstantComp()

static BOOLEAN p_LmIsConstantComp ( const poly  p,
const ring  r 
)
inlinestatic

Definition at line 932 of file p_polys.h.

933 {
934  //p_LmCheckPolyRing(p, r);
935  int i = r->VarL_Size - 1;
936 
937  do
938  {
939  if (p->exp[r->VarL_Offset[i]] != 0)
940  return FALSE;
941  i--;
942  }
943  while (i >= 0);
944  return TRUE;
945 }
#define FALSE
Definition: auxiliary.h:94
return P p
Definition: myNF.cc:203
#define TRUE
Definition: auxiliary.h:98
const ring r
Definition: syzextra.cc:208
int i
Definition: cfEzgcd.cc:123

◆ p_LmShallowCopyDelete()

static poly p_LmShallowCopyDelete ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 1316 of file p_polys.h.

1317 {
1319  pAssume1(omSizeWOfBin(bin) == omSizeWOfBin(r->PolyBin));
1320  poly new_p = p_New(r);
1321  memcpy(new_p->exp, p->exp, r->ExpL_Size*sizeof(long));
1322  pSetCoeff0(new_p, pGetCoeff(p));
1323  pNext(new_p) = pNext(p);
1324  omFreeBinAddr(p);
1325  return new_p;
1326 }
return P p
Definition: myNF.cc:203
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
const ring r
Definition: syzextra.cc:208
#define omFreeBinAddr(addr)
Definition: omAllocDecl.h:258
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:185
#define omSizeWOfBin(bin_ptr)
#define pNext(p)
Definition: monomials.h:43
#define pSetCoeff0(p, n)
Definition: monomials.h:67
polyrec * poly
Definition: hilb.h:10
static poly p_New(const ring, omBin bin)
Definition: p_polys.h:659
#define pAssume1(cond)
Definition: monomials.h:179

◆ p_LmShortDivisibleBy() [1/2]

static BOOLEAN p_LmShortDivisibleBy ( poly  a,
unsigned long  sev_a,
poly  b,
unsigned long  not_sev_b,
const ring  r 
)
inlinestatic

Definition at line 1802 of file p_polys.h.

1804 {
1807 #ifndef PDIV_DEBUG
1808  _pPolyAssume2(p_GetShortExpVector(a, r) == sev_a, a, r);
1809  _pPolyAssume2(p_GetShortExpVector(b, r) == ~ not_sev_b, b, r);
1810 
1811  if (sev_a & not_sev_b)
1812  {
1814  return FALSE;
1815  }
1816  return p_LmDivisibleBy(a, b, r);
1817 #else
1818  return pDebugLmShortDivisibleBy(a, sev_a, r, b, not_sev_b, r);
1819 #endif
1820 }
const poly a
Definition: syzextra.cc:212
#define FALSE
Definition: auxiliary.h:94
unsigned long p_GetShortExpVector(const poly a, const ring r)
Definition: p_polys.cc:4627
static BOOLEAN p_LmDivisibleByNoComp(poly a, poly b, const ring r)
Definition: p_polys.h:1754
#define _pPolyAssume2(cond, p, r)
Definition: monomials.h:203
const ring r
Definition: syzextra.cc:208
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:185
static BOOLEAN p_LmDivisibleBy(poly a, poly b, const ring r)
Definition: p_polys.h:1768
#define pAssume1(cond)
Definition: monomials.h:179
const poly b
Definition: syzextra.cc:213
BOOLEAN pDebugLmShortDivisibleBy(poly p1, unsigned long sev_1, ring r_1, poly p2, unsigned long not_sev_2, ring r_2)
Definition: pDebug.cc:365

◆ p_LmShortDivisibleBy() [2/2]

static BOOLEAN p_LmShortDivisibleBy ( poly  a,
unsigned long  sev_a,
const ring  r_a,
poly  b,
unsigned long  not_sev_b,
const ring  r_b 
)
inlinestatic

Definition at line 1842 of file p_polys.h.

1844 {
1845  p_LmCheckPolyRing1(a, r_a);
1846  p_LmCheckPolyRing1(b, r_b);
1847 #ifndef PDIV_DEBUG
1848  _pPolyAssume2(p_GetShortExpVector(a, r_a) == sev_a, a, r_a);
1849  _pPolyAssume2(p_GetShortExpVector(b, r_b) == ~ not_sev_b, b, r_b);
1850 
1851  if (sev_a & not_sev_b)
1852  {
1853  pAssume1(_p_LmDivisibleByNoComp(a, r_a, b, r_b) == FALSE);
1854  return FALSE;
1855  }
1856  return _p_LmDivisibleBy(a, r_a, b, r_b);
1857 #else
1858  return pDebugLmShortDivisibleBy(a, sev_a, r_a, b, not_sev_b, r_b);
1859 #endif
1860 }
const poly a
Definition: syzextra.cc:212
#define FALSE
Definition: auxiliary.h:94
unsigned long p_GetShortExpVector(const poly a, const ring r)
Definition: p_polys.cc:4627
#define _pPolyAssume2(cond, p, r)
Definition: monomials.h:203
static BOOLEAN _p_LmDivisibleBy(poly a, poly b, const ring r)
Definition: p_polys.h:1742
static BOOLEAN _p_LmDivisibleByNoComp(poly a, poly b, const ring r)
return: FALSE, if there exists i, such that a->exp[i] > b->exp[i] TRUE, otherwise (1) Consider long v...
Definition: p_polys.h:1638
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:185
#define pAssume1(cond)
Definition: monomials.h:179
const poly b
Definition: syzextra.cc:213
BOOLEAN pDebugLmShortDivisibleBy(poly p1, unsigned long sev_1, ring r_1, poly p2, unsigned long not_sev_2, ring r_2)
Definition: pDebug.cc:365

◆ p_LmShortDivisibleByNoComp()

static BOOLEAN p_LmShortDivisibleByNoComp ( poly  a,
unsigned long  sev_a,
poly  b,
unsigned long  not_sev_b,
const ring  r 
)
inlinestatic

Definition at line 1822 of file p_polys.h.

1824 {
1827 #ifndef PDIV_DEBUG
1828  _pPolyAssume2(p_GetShortExpVector(a, r) == sev_a, a, r);
1829  _pPolyAssume2(p_GetShortExpVector(b, r) == ~ not_sev_b, b, r);
1830 
1831  if (sev_a & not_sev_b)
1832  {
1834  return FALSE;
1835  }
1836  return p_LmDivisibleByNoComp(a, b, r);
1837 #else
1838  return pDebugLmShortDivisibleByNoComp(a, sev_a, r, b, not_sev_b, r);
1839 #endif
1840 }
const poly a
Definition: syzextra.cc:212
BOOLEAN pDebugLmShortDivisibleByNoComp(poly p1, unsigned long sev_1, ring r_1, poly p2, unsigned long not_sev_2, ring r_2)
Definition: pDebug.cc:388
#define FALSE
Definition: auxiliary.h:94
unsigned long p_GetShortExpVector(const poly a, const ring r)
Definition: p_polys.cc:4627
static BOOLEAN p_LmDivisibleByNoComp(poly a, poly b, const ring r)
Definition: p_polys.h:1754
#define _pPolyAssume2(cond, p, r)
Definition: monomials.h:203
const ring r
Definition: syzextra.cc:208
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:185
#define pAssume1(cond)
Definition: monomials.h:179
const poly b
Definition: syzextra.cc:213

◆ p_LowVar()

int p_LowVar ( poly  p,
const ring  r 
)

the minimal index of used variables - 1

Definition at line 4527 of file p_polys.cc.

4528 {
4529  int k,l,lex;
4530 
4531  if (p == NULL) return -1;
4532 
4533  k = 32000;/*a very large dummy value*/
4534  while (p != NULL)
4535  {
4536  l = 1;
4537  lex = p_GetExp(p,l,r);
4538  while ((l < (rVar(r))) && (lex == 0))
4539  {
4540  l++;
4541  lex = p_GetExp(p,l,r);
4542  }
4543  l--;
4544  if (l < k) k = l;
4545  pIter(p);
4546  }
4547  return k;
4548 }
return P p
Definition: myNF.cc:203
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:583
int k
Definition: cfEzgcd.cc:93
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
#define NULL
Definition: omList.c:10
int l
Definition: cfEzgcd.cc:94

◆ p_LtCmp()

static int p_LtCmp ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1501 of file p_polys.h.

1502 {
1503  int res = p_LmCmp(p,q,r);
1504  if(res == 0)
1505  {
1506  if(p_GetCoeff(p,r) == NULL || p_GetCoeff(q,r) == NULL)
1507  return res;
1508  number pc = n_Copy(p_GetCoeff(p,r),r->cf);
1509  number qc = n_Copy(p_GetCoeff(q,r),r->cf);
1510  if(!n_GreaterZero(pc,r->cf))
1511  pc = n_InpNeg(pc,r->cf);
1512  if(!n_GreaterZero(qc,r->cf))
1513  qc = n_InpNeg(qc,r->cf);
1514  if(n_Greater(pc,qc,r->cf))
1515  res = 1;
1516  else if(n_Greater(qc,pc,r->cf))
1517  res = -1;
1518  else if(n_Equal(pc,qc,r->cf))
1519  res = 0;
1520  n_Delete(&pc,r->cf);
1521  n_Delete(&qc,r->cf);
1522  }
1523  return res;
1524 }
static FORCE_INLINE BOOLEAN n_Greater(number a, number b, const coeffs r)
ordered fields: TRUE iff &#39;a&#39; is larger than &#39;b&#39;; in Z/pZ: TRUE iff la > lb, where la and lb are the l...
Definition: coeffs.h:515
return P p
Definition: myNF.cc:203
poly res
Definition: myNF.cc:322
const ring r
Definition: syzextra.cc:208
static int p_LmCmp(poly p, poly q, const ring r)
Definition: p_polys.h:1467
static FORCE_INLINE number n_InpNeg(number n, const coeffs r)
in-place negation of n MUST BE USED: n = n_InpNeg(n) (no copy is returned)
Definition: coeffs.h:561
#define NULL
Definition: omList.c:10
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of &#39;n&#39;
Definition: coeffs.h:455
static FORCE_INLINE BOOLEAN n_Equal(number a, number b, const coeffs r)
TRUE iff &#39;a&#39; and &#39;b&#39; represent the same number; they may have different representations.
Definition: coeffs.h:464
#define p_GetCoeff(p, r)
Definition: monomials.h:57
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete &#39;p&#39;
Definition: coeffs.h:459
static FORCE_INLINE BOOLEAN n_GreaterZero(number n, const coeffs r)
ordered fields: TRUE iff &#39;n&#39; is positive; in Z/pZ: TRUE iff 0 < m <= roundedBelow(p/2), where m is the long representing n in C: TRUE iff (Im(n) != 0 and Im(n) >= 0) or (Im(n) == 0 and Re(n) >= 0) in K(a)/<p(a)>: TRUE iff (n != 0 and (LC(n) > 0 or deg(n) > 0)) in K(t_1, ..., t_n): TRUE iff (LC(numerator(n) is a constant and > 0) or (LC(numerator(n) is not a constant) in Z/2^kZ: TRUE iff 0 < n <= 2^(k-1) in Z/mZ: TRUE iff the internal mpz is greater than zero in Z: TRUE iff n > 0
Definition: coeffs.h:498

◆ p_LtCmpNoAbs()

static int p_LtCmpNoAbs ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1527 of file p_polys.h.

1528 {
1529  int res = p_LmCmp(p,q,r);
1530  if(res == 0)
1531  {
1532  if(p_GetCoeff(p,r) == NULL || p_GetCoeff(q,r) == NULL)
1533  return res;
1534  number pc = p_GetCoeff(p,r);
1535  number qc = p_GetCoeff(q,r);
1536  if(n_Greater(pc,qc,r->cf))
1537  res = 1;
1538  if(n_Greater(qc,pc,r->cf))
1539  res = -1;
1540  if(n_Equal(pc,qc,r->cf))
1541  res = 0;
1542  }
1543  return res;
1544 }
static FORCE_INLINE BOOLEAN n_Greater(number a, number b, const coeffs r)
ordered fields: TRUE iff &#39;a&#39; is larger than &#39;b&#39;; in Z/pZ: TRUE iff la > lb, where la and lb are the l...
Definition: coeffs.h:515
return P p
Definition: myNF.cc:203
poly res
Definition: myNF.cc:322
const ring r
Definition: syzextra.cc:208
static int p_LmCmp(poly p, poly q, const ring r)
Definition: p_polys.h:1467
#define NULL
Definition: omList.c:10
static FORCE_INLINE BOOLEAN n_Equal(number a, number b, const coeffs r)
TRUE iff &#39;a&#39; and &#39;b&#39; represent the same number; they may have different representations.
Definition: coeffs.h:464
#define p_GetCoeff(p, r)
Definition: monomials.h:57

◆ p_LtCmpOrdSgnDiffM()

static int p_LtCmpOrdSgnDiffM ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1549 of file p_polys.h.

1550 {
1551  if(r->OrdSgn == 1)
1552  {
1553  return(p_LtCmp(p,q,r) == 1);
1554  }
1555  else
1556  {
1557  return(p_LmCmp(p,q,r) == -1);
1558  }
1559 }
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
static int p_LmCmp(poly p, poly q, const ring r)
Definition: p_polys.h:1467
static int p_LtCmp(poly p, poly q, const ring r)
Definition: p_polys.h:1501

◆ p_LtCmpOrdSgnDiffP()

static int p_LtCmpOrdSgnDiffP ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1565 of file p_polys.h.

1566 {
1567  if(r->OrdSgn == 1)
1568  {
1569  return(p_LmCmp(p,q,r) == -1);
1570  }
1571  else
1572  {
1573  return(p_LtCmp(p,q,r) != -1);
1574  }
1575 
1576 }
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
static int p_LmCmp(poly p, poly q, const ring r)
Definition: p_polys.h:1467
static int p_LtCmp(poly p, poly q, const ring r)
Definition: p_polys.h:1501

◆ p_LtCmpOrdSgnEqM()

static int p_LtCmpOrdSgnEqM ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1582 of file p_polys.h.

1583 {
1584  return(p_LtCmp(p,q,r) == -r->OrdSgn);
1585 }
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
static int p_LtCmp(poly p, poly q, const ring r)
Definition: p_polys.h:1501

◆ p_LtCmpOrdSgnEqP()

static int p_LtCmpOrdSgnEqP ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1591 of file p_polys.h.

1592 {
1593  return(p_LtCmp(p,q,r) == r->OrdSgn);
1594 }
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
static int p_LtCmp(poly p, poly q, const ring r)
Definition: p_polys.h:1501

◆ p_MaxComp() [1/2]

static long p_MaxComp ( poly  p,
ring  lmRing,
ring  tailRing 
)
inlinestatic

Definition at line 287 of file p_polys.h.

288 {
289  long result,i;
290 
291  if(p==NULL) return 0;
292  result = p_GetComp(p, lmRing);
293  if (result != 0)
294  {
295  loop
296  {
297  pIter(p);
298  if(p==NULL) break;
299  i = p_GetComp(p, tailRing);
300  if (i>result) result = i;
301  }
302  }
303  return result;
304 }
BEGIN_NAMESPACE_SINGULARXX const ring lmRing
Definition: DebugPrint.h:30
loop
Definition: myNF.cc:98
return P p
Definition: myNF.cc:203
#define p_GetComp(p, r)
Definition: monomials.h:72
BEGIN_NAMESPACE_SINGULARXX const ring const ring tailRing
Definition: DebugPrint.h:30
#define pIter(p)
Definition: monomials.h:44
int i
Definition: cfEzgcd.cc:123
#define NULL
Definition: omList.c:10
return result
Definition: facAbsBiFact.cc:76

◆ p_MaxComp() [2/2]

static long p_MaxComp ( poly  p,
ring  lmRing 
)
inlinestatic

Definition at line 306 of file p_polys.h.

306 {return p_MaxComp(p,lmRing,lmRing);}
BEGIN_NAMESPACE_SINGULARXX const ring lmRing
Definition: DebugPrint.h:30
return P p
Definition: myNF.cc:203
static long p_MaxComp(poly p, ring lmRing, ring tailRing)
Definition: p_polys.h:287

◆ p_MemAdd_NegWeightAdjust()

static void p_MemAdd_NegWeightAdjust ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 1215 of file p_polys.h.

1216 {
1217  if (r->NegWeightL_Offset != NULL)
1218  {
1219  for (int i=r->NegWeightL_Size-1; i>=0; i--)
1220  {
1221  p->exp[r->NegWeightL_Offset[i]] -= POLY_NEGWEIGHT_OFFSET;
1222  }
1223  }
1224 }
#define POLY_NEGWEIGHT_OFFSET
Definition: monomials.h:244
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
int i
Definition: cfEzgcd.cc:123
#define NULL
Definition: omList.c:10

◆ p_MemSub_NegWeightAdjust()

static void p_MemSub_NegWeightAdjust ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 1225 of file p_polys.h.

1226 {
1227  if (r->NegWeightL_Offset != NULL)
1228  {
1229  for (int i=r->NegWeightL_Size-1; i>=0; i--)
1230  {
1231  p->exp[r->NegWeightL_Offset[i]] += POLY_NEGWEIGHT_OFFSET;
1232  }
1233  }
1234 }
#define POLY_NEGWEIGHT_OFFSET
Definition: monomials.h:244
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
int i
Definition: cfEzgcd.cc:123
#define NULL
Definition: omList.c:10

◆ p_Merge_q()

static poly p_Merge_q ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1135 of file p_polys.h.

1136 {
1137  assume( (p != q) || (p == NULL && q == NULL) );
1138  return r->p_Procs->p_Merge_q(p, q, r);
1139 }
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
#define assume(x)
Definition: mod2.h:394
#define NULL
Definition: omList.c:10

◆ p_MinComp() [1/2]

static long p_MinComp ( poly  p,
ring  lmRing,
ring  tailRing 
)
inlinestatic

Definition at line 308 of file p_polys.h.

309 {
310  long result,i;
311 
312  if(p==NULL) return 0;
313  result = p_GetComp(p,lmRing);
314  if (result != 0)
315  {
316  loop
317  {
318  pIter(p);
319  if(p==NULL) break;
320  i = p_GetComp(p,tailRing);
321  if (i<result) result = i;
322  }
323  }
324  return result;
325 }
BEGIN_NAMESPACE_SINGULARXX const ring lmRing
Definition: DebugPrint.h:30
loop
Definition: myNF.cc:98
return P p
Definition: myNF.cc:203
#define p_GetComp(p, r)
Definition: monomials.h:72
BEGIN_NAMESPACE_SINGULARXX const ring const ring tailRing
Definition: DebugPrint.h:30
#define pIter(p)
Definition: monomials.h:44
int i
Definition: cfEzgcd.cc:123
#define NULL
Definition: omList.c:10
return result
Definition: facAbsBiFact.cc:76

◆ p_MinComp() [2/2]

static long p_MinComp ( poly  p,
ring  lmRing 
)
inlinestatic

Definition at line 327 of file p_polys.h.

327 {return p_MinComp(p,lmRing,lmRing);}
BEGIN_NAMESPACE_SINGULARXX const ring lmRing
Definition: DebugPrint.h:30
return P p
Definition: myNF.cc:203
static long p_MinComp(poly p, ring lmRing, ring tailRing)
Definition: p_polys.h:308

◆ p_MinDeg()

int p_MinDeg ( poly  p,
intvec w,
const ring  R 
)

Definition at line 4295 of file p_polys.cc.

4296 {
4297  if(p==NULL)
4298  return -1;
4299  int d=-1;
4300  while(p!=NULL)
4301  {
4302  int d0=0;
4303  for(int j=0;j<rVar(R);j++)
4304  if(w==NULL||j>=w->length())
4305  d0+=p_GetExp(p,j+1,R);
4306  else
4307  d0+=(*w)[j]*p_GetExp(p,j+1,R);
4308  if(d0<d||d==-1)
4309  d=d0;
4310  pIter(p);
4311  }
4312  return d;
4313 }
return P p
Definition: myNF.cc:203
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:583
#define pIter(p)
Definition: monomials.h:44
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int j
Definition: myNF.cc:70
const ring R
Definition: DebugPrint.cc:36
#define NULL
Definition: omList.c:10
int length() const
Definition: intvec.h:86

◆ p_mInit()

poly p_mInit ( const char *  s,
BOOLEAN ok,
const ring  r 
)

Definition at line 1419 of file p_polys.cc.

1420 {
1421  poly p;
1422  const char *s=p_Read(st,p,r);
1423  if (*s!='\0')
1424  {
1425  if ((s!=st)&&isdigit(st[0]))
1426  {
1428  }
1429  ok=FALSE;
1430  p_Delete(&p,r);
1431  return NULL;
1432  }
1433  p_Test(p,r);
1434  ok=!errorreported;
1435  return p;
1436 }
const CanonicalForm int s
Definition: facAbsFact.cc:55
#define FALSE
Definition: auxiliary.h:94
return P p
Definition: myNF.cc:203
#define TRUE
Definition: auxiliary.h:98
const char * p_Read(const char *st, poly &rc, const ring r)
Definition: p_polys.cc:1347
const ring r
Definition: syzextra.cc:208
#define p_Test(p, r)
Definition: p_polys.h:160
short errorreported
Definition: feFopen.cc:23
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:843
#define NULL
Definition: omList.c:10
polyrec * poly
Definition: hilb.h:10

◆ p_Minus_mm_Mult_qq() [1/2]

static poly p_Minus_mm_Mult_qq ( poly  p,
const poly  m,
const poly  q,
int &  lp,
int  lq,
const poly  spNoether,
const ring  r 
)
inlinestatic

Definition at line 976 of file p_polys.h.

978 {
979  int shorter;
980  const poly res = r->p_Procs->p_Minus_mm_Mult_qq(p, m, q, shorter, spNoether, r);
981  lp += lq - shorter;
982 // assume( lp == pLength(res) );
983  return res;
984 }
return P p
Definition: myNF.cc:203
poly res
Definition: myNF.cc:322
const ring r
Definition: syzextra.cc:208
int m
Definition: cfEzgcd.cc:119
polyrec * poly
Definition: hilb.h:10

◆ p_Minus_mm_Mult_qq() [2/2]

static poly p_Minus_mm_Mult_qq ( poly  p,
const poly  m,
const poly  q,
const ring  r 
)
inlinestatic

Definition at line 987 of file p_polys.h.

988 {
989  int shorter;
990 
991  return r->p_Procs->p_Minus_mm_Mult_qq(p, m, q, shorter, NULL, r);
992 }
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
int m
Definition: cfEzgcd.cc:119
#define NULL
Definition: omList.c:10

◆ p_Mult_mm()

static poly p_Mult_mm ( poly  p,
poly  m,
const ring  r 
)
inlinestatic

Definition at line 968 of file p_polys.h.

969 {
970  if (p_LmIsConstant(m, r))
971  return p_Mult_nn(p, pGetCoeff(m), r);
972  else
973  return r->p_Procs->p_Mult_mm(p, m, r);
974 }
return P p
Definition: myNF.cc:203
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
static BOOLEAN p_LmIsConstant(const poly p, const ring r)
Definition: p_polys.h:949
const ring r
Definition: syzextra.cc:208
int m
Definition: cfEzgcd.cc:119
static poly p_Mult_nn(poly p, number n, const ring r)
Definition: p_polys.h:895

◆ p_Mult_nn() [1/2]

static poly p_Mult_nn ( poly  p,
number  n,
const ring  r 
)
inlinestatic

Definition at line 895 of file p_polys.h.

896 {
897  if (n_IsOne(n, r->cf))
898  return p;
899  else if (n_IsZero(n, r->cf))
900  {
901  r->p_Procs->p_Delete(&p, r); // NOTE: without p_Delete - memory leak!
902  return NULL;
903  } else
904  return r->p_Procs->p_Mult_nn(p, n, r);
905 }
return P p
Definition: myNF.cc:203
static FORCE_INLINE BOOLEAN n_IsOne(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the one element.
Definition: coeffs.h:472
const ring r
Definition: syzextra.cc:208
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the zero element.
Definition: coeffs.h:468
#define NULL
Definition: omList.c:10

◆ p_Mult_nn() [2/2]

static poly p_Mult_nn ( poly  p,
number  n,
const ring  lmRing,
const ring  tailRing 
)
inlinestatic

Definition at line 907 of file p_polys.h.

909 {
910 #ifndef PDEBUG
911  if (lmRing == tailRing)
912  return p_Mult_nn(p, n, tailRing);
913 #endif
914  poly pnext = pNext(p);
915  pNext(p) = NULL;
916  p = lmRing->p_Procs->p_Mult_nn(p, n, lmRing);
917  pNext(p) = tailRing->p_Procs->p_Mult_nn(pnext, n, tailRing);
918  return p;
919 }
BEGIN_NAMESPACE_SINGULARXX const ring lmRing
Definition: DebugPrint.h:30
return P p
Definition: myNF.cc:203
BEGIN_NAMESPACE_SINGULARXX const ring const ring tailRing
Definition: DebugPrint.h:30
static poly p_Mult_nn(poly p, number n, const ring r)
Definition: p_polys.h:895
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
polyrec * poly
Definition: hilb.h:10

◆ p_Mult_q()

static poly p_Mult_q ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1020 of file p_polys.h.

1021 {
1022  assume( (p != q) || (p == NULL && q == NULL) );
1023 
1024  if (p == NULL)
1025  {
1026  r->p_Procs->p_Delete(&q, r);
1027  return NULL;
1028  }
1029  if (q == NULL)
1030  {
1031  r->p_Procs->p_Delete(&p, r);
1032  return NULL;
1033  }
1034 
1035  if (pNext(p) == NULL)
1036  {
1037 #ifdef HAVE_PLURAL
1038  if (rIsPluralRing(r))
1039  q = nc_mm_Mult_p(p, q, r);
1040  else
1041 #endif /* HAVE_PLURAL */
1042  q = r->p_Procs->p_Mult_mm(q, p, r);
1043 
1044  r->p_Procs->p_Delete(&p, r);
1045  return q;
1046  }
1047 
1048  if (pNext(q) == NULL)
1049  {
1050  // NEEDED
1051 #ifdef HAVE_PLURAL
1052 /* if (rIsPluralRing(r))
1053  p = gnc_p_Mult_mm(p, q, r); // ???
1054  else*/
1055 #endif /* HAVE_PLURAL */
1056  p = r->p_Procs->p_Mult_mm(p, q, r);
1057 
1058  r->p_Procs->p_Delete(&q, r);
1059  return p;
1060  }
1061 #ifdef HAVE_PLURAL
1062  if (rIsPluralRing(r))
1063  return _nc_p_Mult_q(p, q, r);
1064  else
1065 #endif
1066  return _p_Mult_q(p, q, 0, r);
1067 }
poly _p_Mult_q(poly p, poly q, const int copy, const ring r)
Returns: p * q, Destroys: if !copy then p, q Assumes: pLength(p) >= 2 pLength(q) >=2.
Definition: p_Mult_q.cc:271
return P p
Definition: myNF.cc:203
static poly nc_mm_Mult_p(const poly m, poly p, const ring r)
Definition: nc.h:250
const ring r
Definition: syzextra.cc:208
#define assume(x)
Definition: mod2.h:394
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:404
poly _nc_p_Mult_q(poly p, poly q, const ring r)
general NC-multiplication with destruction
Definition: old.gring.cc:273
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43

◆ p_MultExp()

static long p_MultExp ( poly  p,
int  v,
long  ee,
ring  r 
)
inlinestatic

Definition at line 616 of file p_polys.h.

617 {
619  long e = p_GetExp(p,v,r);
620  e *= ee;
621  return p_SetExp(p,v,e,r);
622 }
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:207
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:37
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent : VarOffset encodes the position in p->exp
Definition: p_polys.h:483

◆ p_Neg()

static poly p_Neg ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 1013 of file p_polys.h.

1014 {
1015  return r->p_Procs->p_Neg(p, r);
1016 }
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208

◆ p_New() [1/2]

static poly p_New ( const ring  ,
omBin  bin 
)
inlinestatic

Definition at line 659 of file p_polys.h.

661 {
662  p_CheckRing2(r);
663  pAssume2(bin != NULL && omSizeWOfBin(r->PolyBin) == omSizeWOfBin(bin));
664  poly p;
665  omTypeAllocBin(poly, p, bin);
666  p_SetRingOfLm(p, r);
667  return p;
668 }
return P p
Definition: myNF.cc:203
#define p_CheckRing2(r)
Definition: monomials.h:208
#define omTypeAllocBin(type, addr, bin)
Definition: omAllocDecl.h:203
#define pAssume2(cond)
Definition: monomials.h:201
const ring r
Definition: syzextra.cc:208
#define p_SetRingOfLm(p, r)
Definition: monomials.h:152
#define NULL
Definition: omList.c:10
#define omSizeWOfBin(bin_ptr)
polyrec * poly
Definition: hilb.h:10

◆ p_New() [2/2]

static poly p_New ( ring  r)
inlinestatic

Definition at line 670 of file p_polys.h.

671 {
672  return p_New(r, r->PolyBin);
673 }
const ring r
Definition: syzextra.cc:208
static poly p_New(const ring, omBin bin)
Definition: p_polys.h:659

◆ p_Norm()

void p_Norm ( poly  p1,
const ring  r 
)

Definition at line 3619 of file p_polys.cc.

3620 {
3621  if (rField_is_Ring(r))
3622  {
3623  if (!n_IsUnit(pGetCoeff(p1), r->cf)) return;
3624  // Werror("p_Norm not possible in the case of coefficient rings.");
3625  }
3626  else if (p1!=NULL)
3627  {
3628  if (pNext(p1)==NULL)
3629  {
3630  p_SetCoeff(p1,n_Init(1,r->cf),r);
3631  return;
3632  }
3633  poly h;
3634  if (!n_IsOne(pGetCoeff(p1),r->cf))
3635  {
3636  number k, c;
3637  n_Normalize(pGetCoeff(p1),r->cf);
3638  k = pGetCoeff(p1);
3639  c = n_Init(1,r->cf);
3640  pSetCoeff0(p1,c);
3641  h = pNext(p1);
3642  while (h!=NULL)
3643  {
3644  c=n_Div(pGetCoeff(h),k,r->cf);
3645  // no need to normalize: Z/p, R
3646  // normalize already in nDiv: Q_a, Z/p_a
3647  // remains: Q
3648  if (rField_is_Q(r) && (!n_IsOne(c,r->cf))) n_Normalize(c,r->cf);
3649  p_SetCoeff(h,c,r);
3650  pIter(h);
3651  }
3652  n_Delete(&k,r->cf);
3653  }
3654  else
3655  {
3656  //if (r->cf->cfNormalize != nDummy2) //TODO: OPTIMIZE
3657  {
3658  h = pNext(p1);
3659  while (h!=NULL)
3660  {
3661  n_Normalize(pGetCoeff(h),r->cf);
3662  pIter(h);
3663  }
3664  }
3665  }
3666  }
3667 }
static FORCE_INLINE BOOLEAN n_IsUnit(number n, const coeffs r)
TRUE iff n has a multiplicative inverse in the given coeff field/ring r.
Definition: coeffs.h:519
static FORCE_INLINE BOOLEAN n_IsOne(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the one element.
Definition: coeffs.h:472
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition: coeffs.h:542
static FORCE_INLINE void n_Normalize(number &n, const coeffs r)
inplace-normalization of n; produces some canonical representation of n;
Definition: coeffs.h:582
int k
Definition: cfEzgcd.cc:93
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
static number p_SetCoeff(poly p, number n, ring r)
Definition: p_polys.h:407
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
static BOOLEAN rField_is_Q(const ring r)
Definition: ring.h:501
static BOOLEAN rField_is_Ring(const ring r)
Definition: ring.h:477
#define NULL
Definition: omList.c:10
static FORCE_INLINE number n_Div(number a, number b, const coeffs r)
return the quotient of &#39;a&#39; and &#39;b&#39;, i.e., a/b; raises an error if &#39;b&#39; is not invertible in r exceptio...
Definition: coeffs.h:619
#define pNext(p)
Definition: monomials.h:43
#define pSetCoeff0(p, n)
Definition: monomials.h:67
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete &#39;p&#39;
Definition: coeffs.h:459
polyrec * poly
Definition: hilb.h:10
static Poly * h
Definition: janet.cc:978

◆ p_Normalize()

void p_Normalize ( poly  p,
const ring  r 
)

Definition at line 3672 of file p_polys.cc.

3673 {
3674  if (rField_has_simple_inverse(r)) return; /* Z/p, GF(p,n), R, long R/C */
3675  while (p!=NULL)
3676  {
3677  // no test befor n_Normalize: n_Normalize should fix problems
3678  n_Normalize(pGetCoeff(p),r->cf);
3679  pIter(p);
3680  }
3681 }
return P p
Definition: myNF.cc:203
static FORCE_INLINE void n_Normalize(number &n, const coeffs r)
inplace-normalization of n; produces some canonical representation of n;
Definition: coeffs.h:582
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
static BOOLEAN rField_has_simple_inverse(const ring r)
Definition: ring.h:540
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
#define NULL
Definition: omList.c:10

◆ p_NSet()

poly p_NSet ( number  n,
const ring  r 
)

returns the poly representing the number n, destroys n

Definition at line 1442 of file p_polys.cc.

1443 {
1444  if (n_IsZero(n,r->cf))
1445  {
1446  n_Delete(&n, r->cf);
1447  return NULL;
1448  }
1449  else
1450  {
1451  poly rc = p_Init(r);
1452  pSetCoeff0(rc,n);
1453  return rc;
1454  }
1455 }
const ring r
Definition: syzextra.cc:208
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the zero element.
Definition: coeffs.h:468
#define NULL
Definition: omList.c:10
#define pSetCoeff0(p, n)
Definition: monomials.h:67
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete &#39;p&#39;
Definition: coeffs.h:459
polyrec * poly
Definition: hilb.h:10
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1243

◆ p_One()

poly p_One ( const ring  r)

Definition at line 1312 of file p_polys.cc.

1313 {
1314  poly rc = p_Init(r);
1315  pSetCoeff0(rc,n_Init(1,r->cf));
1316  return rc;
1317 }
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition: coeffs.h:542
const ring r
Definition: syzextra.cc:208
#define pSetCoeff0(p, n)
Definition: monomials.h:67
polyrec * poly
Definition: hilb.h:10
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1243

◆ p_OneComp()

BOOLEAN p_OneComp ( poly  p,
const ring  r 
)

return TRUE if all monoms have the same component

Definition at line 1207 of file p_polys.cc.

1208 {
1209  if(p!=NULL)
1210  {
1211  long i = p_GetComp(p, r);
1212  while (pNext(p)!=NULL)
1213  {
1214  pIter(p);
1215  if(i != p_GetComp(p, r)) return FALSE;
1216  }
1217  }
1218  return TRUE;
1219 }
#define FALSE
Definition: auxiliary.h:94
return P p
Definition: myNF.cc:203
#define p_GetComp(p, r)
Definition: monomials.h:72
#define TRUE
Definition: auxiliary.h:98
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
int i
Definition: cfEzgcd.cc:123
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43

◆ p_PermPoly()

poly p_PermPoly ( poly  p,
const int *  perm,
const ring  OldRing,
const ring  dst,
nMapFunc  nMap,
const int *  par_perm = NULL,
int  OldPar = 0,
BOOLEAN  use_mult = FALSE 
)

Definition at line 3977 of file p_polys.cc.

3979 {
3980 #if 0
3981  p_Test(p, oldRing);
3982  PrintS("p_PermPoly::p: "); p_Write(p, oldRing, oldRing);
3983 #endif
3984  const int OldpVariables = rVar(oldRing);
3985  poly result = NULL;
3986  poly result_last = NULL;
3987  poly aq = NULL; /* the map coefficient */
3988  poly qq; /* the mapped monomial */
3989  assume(dst != NULL);
3990  assume(dst->cf != NULL);
3991  #ifdef HAVE_PLURAL
3992  poly tmp_mm=p_One(dst);
3993  #endif
3994  while (p != NULL)
3995  {
3996  // map the coefficient
3997  if ( ((OldPar == 0) || (par_perm == NULL) || rField_is_GF(oldRing) || (nMap==ndCopyMap))
3998  && (nMap != NULL) )
3999  {
4000  qq = p_Init(dst);
4001  assume( nMap != NULL );
4002  number n = nMap(p_GetCoeff(p, oldRing), oldRing->cf, dst->cf);
4003  n_Test (n,dst->cf);
4004  if ( nCoeff_is_algExt(dst->cf) )
4005  n_Normalize(n, dst->cf);
4006  p_GetCoeff(qq, dst) = n;// Note: n can be a ZERO!!!
4007  }
4008  else
4009  {
4010  qq = p_One(dst);
4011 // aq = naPermNumber(p_GetCoeff(p, oldRing), par_perm, OldPar, oldRing); // no dst???
4012 // poly n_PermNumber(const number z, const int *par_perm, const int P, const ring src, const ring dst)
4013  aq = n_PermNumber(p_GetCoeff(p, oldRing), par_perm, OldPar, oldRing, dst);
4014  p_Test(aq, dst);
4015  if ( nCoeff_is_algExt(dst->cf) )
4016  p_Normalize(aq,dst);
4017  if (aq == NULL)
4018  p_SetCoeff(qq, n_Init(0, dst->cf),dst); // Very dirty trick!!!
4019  p_Test(aq, dst);
4020  }
4021  if (rRing_has_Comp(dst))
4022  p_SetComp(qq, p_GetComp(p, oldRing), dst);
4023  if ( n_IsZero(pGetCoeff(qq), dst->cf) )
4024  {
4025  p_LmDelete(&qq,dst);
4026  qq = NULL;
4027  }
4028  else
4029  {
4030  // map pars:
4031  int mapped_to_par = 0;
4032  for(int i = 1; i <= OldpVariables; i++)
4033  {
4034  int e = p_GetExp(p, i, oldRing);
4035  if (e != 0)
4036  {
4037  if (perm==NULL)
4038  p_SetExp(qq, i, e, dst);
4039  else if (perm[i]>0)
4040  {
4041  #ifdef HAVE_PLURAL
4042  if(use_mult)
4043  {
4044  p_SetExp(tmp_mm,perm[i],e,dst);
4045  p_Setm(tmp_mm,dst);
4046  qq=p_Mult_mm(qq,tmp_mm,dst);
4047  p_SetExp(tmp_mm,perm[i],0,dst);
4048 
4049  }
4050  else
4051  #endif
4052  p_AddExp(qq,perm[i], e/*p_GetExp( p,i,oldRing)*/, dst);
4053  }
4054  else if (perm[i]<0)
4055  {
4056  number c = p_GetCoeff(qq, dst);
4057  if (rField_is_GF(dst))
4058  {
4059  assume( dst->cf->extRing == NULL );
4060  number ee = n_Param(1, dst);
4061  number eee;
4062  n_Power(ee, e, &eee, dst->cf); //nfDelete(ee,dst);
4063  ee = n_Mult(c, eee, dst->cf);
4064  //nfDelete(c,dst);nfDelete(eee,dst);
4065  pSetCoeff0(qq,ee);
4066  }
4067  else if (nCoeff_is_Extension(dst->cf))
4068  {
4069  const int par = -perm[i];
4070  assume( par > 0 );
4071 // WarnS("longalg missing 3");
4072 #if 1
4073  const coeffs C = dst->cf;
4074  assume( C != NULL );
4075  const ring R = C->extRing;
4076  assume( R != NULL );
4077  assume( par <= rVar(R) );
4078  poly pcn; // = (number)c
4079  assume( !n_IsZero(c, C) );
4080  if( nCoeff_is_algExt(C) )
4081  pcn = (poly) c;
4082  else // nCoeff_is_transExt(C)
4083  pcn = NUM((fraction)c);
4084  if (pNext(pcn) == NULL) // c->z
4085  p_AddExp(pcn, -perm[i], e, R);
4086  else /* more difficult: we have really to multiply: */
4087  {
4088  poly mmc = p_ISet(1, R);
4089  p_SetExp(mmc, -perm[i], e, R);
4090  p_Setm(mmc, R);
4091  number nnc;
4092  // convert back to a number: number nnc = mmc;
4093  if( nCoeff_is_algExt(C) )
4094  nnc = (number) mmc;
4095  else // nCoeff_is_transExt(C)
4096  nnc = ntInit(mmc, C);
4097  p_GetCoeff(qq, dst) = n_Mult((number)c, nnc, C);
4098  n_Delete((number *)&c, C);
4099  n_Delete((number *)&nnc, C);
4100  }
4101  mapped_to_par=1;
4102 #endif
4103  }
4104  }
4105  else
4106  {
4107  /* this variable maps to 0 !*/
4108  p_LmDelete(&qq, dst);
4109  break;
4110  }
4111  }
4112  }
4113  if ( mapped_to_par && (qq!= NULL) && nCoeff_is_algExt(dst->cf) )
4114  {
4115  number n = p_GetCoeff(qq, dst);
4116  n_Normalize(n, dst->cf);
4117  p_GetCoeff(qq, dst) = n;
4118  }
4119  }
4120  pIter(p);
4121 
4122 #if 0
4123  p_Test(aq,dst);
4124  PrintS("aq: "); p_Write(aq, dst, dst);
4125 #endif
4126 
4127 
4128 #if 1
4129  if (qq!=NULL)
4130  {
4131  p_Setm(qq,dst);
4132 
4133  p_Test(aq,dst);
4134  p_Test(qq,dst);
4135 
4136 #if 0
4137  PrintS("qq: "); p_Write(qq, dst, dst);
4138 #endif
4139 
4140  if (aq!=NULL)
4141  qq=p_Mult_q(aq,qq,dst);
4142  aq = qq;
4143  while (pNext(aq) != NULL) pIter(aq);
4144  if (result_last==NULL)
4145  {
4146  result=qq;
4147  }
4148  else
4149  {
4150  pNext(result_last)=qq;
4151  }
4152  result_last=aq;
4153  aq = NULL;
4154  }
4155  else if (aq!=NULL)
4156  {
4157  p_Delete(&aq,dst);
4158  }
4159  }
4160  result=p_SortAdd(result,dst);
4161 #else
4162  // if (qq!=NULL)
4163  // {
4164  // pSetm(qq);
4165  // pTest(qq);
4166  // pTest(aq);
4167  // if (aq!=NULL) qq=pMult(aq,qq);
4168  // aq = qq;
4169  // while (pNext(aq) != NULL) pIter(aq);
4170  // pNext(aq) = result;
4171  // aq = NULL;
4172  // result = qq;
4173  // }
4174  // else if (aq!=NULL)
4175  // {
4176  // pDelete(&aq);
4177  // }
4178  //}
4179  //p = result;
4180  //result = NULL;
4181  //while (p != NULL)
4182  //{
4183  // qq = p;
4184  // pIter(p);
4185  // qq->next = NULL;
4186  // result = pAdd(result, qq);
4187  //}
4188 #endif
4189  p_Test(result,dst);
4190 #if 0
4191  p_Test(result,dst);
4192  PrintS("result: "); p_Write(result,dst,dst);
4193 #endif
4194  #ifdef HAVE_PLURAL
4195  p_LmDelete(&tmp_mm,dst);
4196  #endif
4197  return result;
4198 }
return P p
Definition: myNF.cc:203
static poly p_Mult_mm(poly p, poly m, const ring r)
Definition: p_polys.h:968
number ndCopyMap(number a, const coeffs aRing, const coeffs r)
Definition: numbers.cc:244
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
Definition: p_polys.h:242
#define p_GetComp(p, r)
Definition: monomials.h:72
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition: coeffs.h:542
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:583
static FORCE_INLINE void n_Normalize(number &n, const coeffs r)
inplace-normalization of n; produces some canonical representation of n;
Definition: coeffs.h:582
static BOOLEAN rField_is_GF(const ring r)
Definition: ring.h:513
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
static number p_SetCoeff(poly p, number n, ring r)
Definition: p_polys.h:407
static FORCE_INLINE number n_Param(const int iParameter, const coeffs r)
return the (iParameter^th) parameter as a NEW number NOTE: parameter numbering: 1..n_NumberOfParameters(...)
Definition: coeffs.h:817
#define pIter(p)
Definition: monomials.h:44
static poly p_SortAdd(poly p, const ring r, BOOLEAN revert=FALSE)
Definition: p_polys.h:1142
static FORCE_INLINE number n_Mult(number a, number b, const coeffs r)
return the product of &#39;a&#39; and &#39;b&#39;, i.e., a*b
Definition: coeffs.h:640
static FORCE_INLINE BOOLEAN nCoeff_is_algExt(const coeffs r)
TRUE iff r represents an algebraic extension field.
Definition: coeffs.h:927
poly p_One(const ring r)
Definition: p_polys.cc:1312
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
number ntInit(long i, const coeffs cf)
Definition: transext.cc:692
#define assume(x)
Definition: mod2.h:394
The main handler for Singular numbers which are suitable for Singular polynomials.
const ring R
Definition: DebugPrint.cc:36
#define n_Test(a, r)
BOOLEAN n_Test(number a, const coeffs r)
Definition: coeffs.h:742
int i
Definition: cfEzgcd.cc:123
void PrintS(const char *s)
Definition: reporter.cc:284
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the zero element.
Definition: coeffs.h:468
#define p_Test(p, r)
Definition: p_polys.h:160
void p_Normalize(poly p, const ring r)
Definition: p_polys.cc:3672
#define rRing_has_Comp(r)
Definition: monomials.h:274
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:843
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent : VarOffset encodes the position in p->exp
Definition: p_polys.h:483
static FORCE_INLINE void n_Power(number a, int b, number *res, const coeffs r)
fill res with the power a^b
Definition: coeffs.h:636
#define NULL
Definition: omList.c:10
poly n_PermNumber(const number z, const int *par_perm, const int, const ring src, const ring dst)
Definition: p_polys.cc:3873
#define pNext(p)
Definition: monomials.h:43
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:228
#define pSetCoeff0(p, n)
Definition: monomials.h:67
static long p_AddExp(poly p, int v, long ee, ring r)
Definition: p_polys.h:601
#define p_GetCoeff(p, r)
Definition: monomials.h:57
static FORCE_INLINE BOOLEAN nCoeff_is_Extension(const coeffs r)
Definition: coeffs.h:863
static void p_LmDelete(poly p, const ring r)
Definition: p_polys.h:706
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete &#39;p&#39;
Definition: coeffs.h:459
void p_Write(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:206
polyrec * poly
Definition: hilb.h:10
int perm[100]
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1243
poly p_ISet(long i, const ring r)
returns the poly representing the integer i
Definition: p_polys.cc:1296
static poly p_Mult_q(poly p, poly q, const ring r)
Definition: p_polys.h:1020
return result
Definition: facAbsBiFact.cc:76

◆ p_Plus_mm_Mult_qq() [1/2]

static poly p_Plus_mm_Mult_qq ( poly  p,
poly  m,
poly  q,
int &  lp,
int  lq,
const ring  r 
)
inlinestatic

Definition at line 1106 of file p_polys.h.

1108 {
1109 #ifdef HAVE_PLURAL
1110  if (rIsPluralRing(r))
1111  return nc_p_Plus_mm_Mult_qq(p, m, q, lp, lq, r);
1112 #endif
1113 
1114 // this should be implemented more efficiently
1115  poly res;
1116  int shorter;
1117  number n_old = pGetCoeff(m);
1118  number n_neg = n_Copy(n_old, r->cf);
1119  n_neg = n_InpNeg(n_neg, r->cf);
1120  pSetCoeff0(m, n_neg);
1121  res = r->p_Procs->p_Minus_mm_Mult_qq(p, m, q, shorter, NULL, r);
1122  lp = (lp + lq) - shorter;
1123  pSetCoeff0(m, n_old);
1124  n_Delete(&n_neg, r->cf);
1125  return res;
1126 }
return P p
Definition: myNF.cc:203
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
poly nc_p_Plus_mm_Mult_qq(poly p, const poly m, const poly q, int &lp, const int, const ring r)
Definition: old.gring.cc:226
poly res
Definition: myNF.cc:322
const ring r
Definition: syzextra.cc:208
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:404
int m
Definition: cfEzgcd.cc:119
static FORCE_INLINE number n_InpNeg(number n, const coeffs r)
in-place negation of n MUST BE USED: n = n_InpNeg(n) (no copy is returned)
Definition: coeffs.h:561
#define NULL
Definition: omList.c:10
static FORCE_INLINE number n_Copy(number n, const coeffs r)
return a copy of &#39;n&#39;
Definition: coeffs.h:455
#define pSetCoeff0(p, n)
Definition: monomials.h:67
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete &#39;p&#39;
Definition: coeffs.h:459
polyrec * poly
Definition: hilb.h:10

◆ p_Plus_mm_Mult_qq() [2/2]

static poly p_Plus_mm_Mult_qq ( poly  p,
poly  m,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1128 of file p_polys.h.

1129 {
1130  int lp = 0, lq = 0;
1131  return p_Plus_mm_Mult_qq(p, m, q, lp, lq, r);
1132 }
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
int m
Definition: cfEzgcd.cc:119
static poly p_Plus_mm_Mult_qq(poly p, poly m, poly q, int &lp, int lq, const ring r)
Definition: p_polys.h:1106

◆ p_PolyDiv()

poly p_PolyDiv ( poly p,
const poly  divisor,
const BOOLEAN  needResult,
const ring  r 
)

assumes that p and divisor are univariate polynomials in r, mentioning the same variable; assumes divisor != NULL; p may be NULL; assumes a global monomial ordering in r; performs polynomial division of p by divisor:

  • afterwards p contains the remainder of the division, i.e., p_before = result * divisor + p_afterwards;
  • if needResult == TRUE, then the method computes and returns 'result', otherwise NULL is returned (This parametrization can be used when one is only interested in the remainder of the division. In this case, the method will be slightly faster.) leaves divisor unmodified

Definition at line 1823 of file p_polys.cc.

1824 {
1825  assume(divisor != NULL);
1826  if (p == NULL) return NULL;
1827 
1828  poly result = NULL;
1829  number divisorLC = p_GetCoeff(divisor, r);
1830  int divisorLE = p_GetExp(divisor, 1, r);
1831  while ((p != NULL) && (p_Deg(p, r) >= p_Deg(divisor, r)))
1832  {
1833  /* determine t = LT(p) / LT(divisor) */
1834  poly t = p_ISet(1, r);
1835  number c = n_Div(p_GetCoeff(p, r), divisorLC, r->cf);
1836  n_Normalize(c,r->cf);
1837  p_SetCoeff(t, c, r);
1838  int e = p_GetExp(p, 1, r) - divisorLE;
1839  p_SetExp(t, 1, e, r);
1840  p_Setm(t, r);
1841  if (needResult) result = p_Add_q(result, p_Copy(t, r), r);
1842  p = p_Add_q(p, p_Neg(p_Mult_q(t, p_Copy(divisor, r), r), r), r);
1843  }
1844  return result;
1845 }
return P p
Definition: myNF.cc:203
static FORCE_INLINE void n_Normalize(number &n, const coeffs r)
inplace-normalization of n; produces some canonical representation of n;
Definition: coeffs.h:582
static number p_SetCoeff(poly p, number n, ring r)
Definition: p_polys.h:407
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition: p_polys.h:804
long p_Deg(poly a, const ring r)
Definition: p_polys.cc:586
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
#define assume(x)
Definition: mod2.h:394
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent : VarOffset encodes the position in p->exp
Definition: p_polys.h:483
#define NULL
Definition: omList.c:10
static FORCE_INLINE number n_Div(number a, number b, const coeffs r)
return the quotient of &#39;a&#39; and &#39;b&#39;, i.e., a/b; raises an error if &#39;b&#39; is not invertible in r exceptio...
Definition: coeffs.h:619
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:228
#define p_GetCoeff(p, r)
Definition: monomials.h:57
static poly p_Neg(poly p, const ring r)
Definition: p_polys.h:1013
polyrec * poly
Definition: hilb.h:10
static poly p_Add_q(poly p, poly q, const ring r)
Definition: p_polys.h:877
poly p_ISet(long i, const ring r)
returns the poly representing the integer i
Definition: p_polys.cc:1296
static poly p_Mult_q(poly p, poly q, const ring r)
Definition: p_polys.h:1020
return result
Definition: facAbsBiFact.cc:76

◆ p_Power()

poly p_Power ( poly  p,
int  i,
const ring  r 
)

Definition at line 2150 of file p_polys.cc.

2151 {
2152  poly rc=NULL;
2153 
2154  if (i==0)
2155  {
2156  p_Delete(&p,r);
2157  return p_One(r);
2158  }
2159 
2160  if(p!=NULL)
2161  {
2162  if ( (i > 0) && ((unsigned long ) i > (r->bitmask)))
2163  {
2164  Werror("exponent %d is too large, max. is %ld",i,r->bitmask);
2165  return NULL;
2166  }
2167  switch (i)
2168  {
2169 // cannot happen, see above
2170 // case 0:
2171 // {
2172 // rc=pOne();
2173 // pDelete(&p);
2174 // break;
2175 // }
2176  case 1:
2177  rc=p;
2178  break;
2179  case 2:
2180  rc=p_Mult_q(p_Copy(p,r),p,r);
2181  break;
2182  default:
2183  if (i < 0)
2184  {
2185  p_Delete(&p,r);
2186  return NULL;
2187  }
2188  else
2189  {
2190 #ifdef HAVE_PLURAL
2191  if (rIsPluralRing(r)) /* in the NC case nothing helps :-( */
2192  {
2193  int j=i;
2194  rc = p_Copy(p,r);
2195  while (j>1)
2196  {
2197  rc = p_Mult_q(p_Copy(p,r),rc,r);
2198  j--;
2199  }
2200  p_Delete(&p,r);
2201  return rc;
2202  }
2203 #endif
2204  rc = pNext(p);
2205  if (rc == NULL)
2206  return p_MonPower(p,i,r);
2207  /* else: binom ?*/
2208  int char_p=rChar(r);
2209  if ((char_p>0) && (i>char_p)
2210  && ((rField_is_Zp(r,char_p)
2211  || (rField_is_Zp_a(r,char_p)))))
2212  {
2213  poly h=p_Pow_charp(p_Copy(p,r),char_p,r);
2214  int rest=i-char_p;
2215  while (rest>=char_p)
2216  {
2217  rest-=char_p;
2218  h=p_Mult_q(h,p_Pow_charp(p_Copy(p,r),char_p,r),r);
2219  }
2220  poly res=h;
2221  if (rest>0)
2222  res=p_Mult_q(p_Power(p_Copy(p,r),rest,r),h,r);
2223  p_Delete(&p,r);
2224  return res;
2225  }
2226  if ((pNext(rc) != NULL)
2227  || rField_is_Ring(r)
2228  )
2229  return p_Pow(p,i,r);
2230  if ((char_p==0) || (i<=char_p))
2231  return p_TwoMonPower(p,i,r);
2232  return p_Pow(p,i,r);
2233  }
2234  /*end default:*/
2235  }
2236  }
2237  return rc;
2238 }
static poly p_MonPower(poly p, int exp, const ring r)
Definition: p_polys.cc:1953
static BOOLEAN rField_is_Zp_a(const ring r)
Definition: ring.h:521
return P p
Definition: myNF.cc:203
int rChar(ring r)
Definition: ring.cc:686
static poly p_TwoMonPower(poly p, int exp, const ring r)
Definition: p_polys.cc:2059
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition: p_polys.h:804
poly res
Definition: myNF.cc:322
const ring r
Definition: syzextra.cc:208
poly p_One(const ring r)
Definition: p_polys.cc:1312
int j
Definition: myNF.cc:70
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:404
int i
Definition: cfEzgcd.cc:123
static poly p_Pow(poly p, int i, const ring r)
Definition: p_polys.cc:2124
static BOOLEAN rField_is_Zp(const ring r)
Definition: ring.h:495
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:843
static BOOLEAN rField_is_Ring(const ring r)
Definition: ring.h:477
#define NULL
Definition: omList.c:10
static poly p_Pow_charp(poly p, int i, const ring r)
Definition: p_polys.cc:2138
#define pNext(p)
Definition: monomials.h:43
polyrec * poly
Definition: hilb.h:10
static Poly * h
Definition: janet.cc:978
static poly p_Mult_q(poly p, poly q, const ring r)
Definition: p_polys.h:1020
poly p_Power(poly p, int i, const ring r)
Definition: p_polys.cc:2150
void Werror(const char *fmt,...)
Definition: reporter.cc:189

◆ p_ProjectiveUnique()

void p_ProjectiveUnique ( poly  p,
const ring  r 
)

Definition at line 3064 of file p_polys.cc.

3065 {
3066  if( ph == NULL )
3067  return;
3068 
3069  assume( r != NULL ); assume( r->cf != NULL ); const coeffs C = r->cf;
3070 
3071  number h;
3072  poly p;
3073 
3074  if (rField_is_Ring(r))
3075  {
3076  p_Content(ph,r);
3077  if(!n_GreaterZero(pGetCoeff(ph),C)) ph = p_Neg(ph,r);
3078  assume( n_GreaterZero(pGetCoeff(ph),C) );
3079  return;
3080  }
3081 
3083  {
3084  assume( n_GreaterZero(pGetCoeff(ph),C) );
3085  if(!n_GreaterZero(pGetCoeff(ph),C)) ph = p_Neg(ph,r);
3086  return;
3087  }
3088  p = ph;
3089 
3090  assume(p != NULL);
3091 
3092  if(pNext(p)==NULL) // a monomial
3093  {
3094  p_SetCoeff(p, n_Init(1, C), r);
3095  return;
3096  }
3097 
3098  assume(pNext(p)!=NULL);
3099 
3100  if(!rField_is_Q(r) && !nCoeff_is_transExt(C))
3101  {
3102  h = p_GetCoeff(p, C);
3103  number hInv = n_Invers(h, C);
3104  pIter(p);
3105  while (p!=NULL)
3106  {
3107  p_SetCoeff(p, n_Mult(p_GetCoeff(p, C), hInv, C), r);
3108  pIter(p);
3109  }
3110  n_Delete(&hInv, C);
3111  p = ph;
3112  p_SetCoeff(p, n_Init(1, C), r);
3113  }
3114 
3115  p_Cleardenom(ph, r); //performs also a p_Content
3116 
3117 
3118  /* normalize ph over a transcendental extension s.t.
3119  lead (ph) is > 0 if extRing->cf == Q
3120  or lead (ph) is monic if extRing->cf == Zp*/
3121  if (nCoeff_is_transExt(C))
3122  {
3123  p= ph;
3124  h= p_GetCoeff (p, C);
3125  fraction f = (fraction) h;
3126  number n=p_GetCoeff (NUM (f),C->extRing->cf);
3127  if (rField_is_Q (C->extRing))
3128  {
3129  if (!n_GreaterZero(n,C->extRing->cf))
3130  {
3131  p=p_Neg (p,r);
3132  }
3133  }
3134  else if (rField_is_Zp(C->extRing))
3135  {
3136  if (!n_IsOne (n, C->extRing->cf))
3137  {
3138  n=n_Invers (n,C->extRing->cf);
3139  nMapFunc nMap;
3140  nMap= n_SetMap (C->extRing->cf, C);
3141  number ninv= nMap (n,C->extRing->cf, C);
3142  p=p_Mult_nn (p, ninv, r);
3143  n_Delete (&ninv, C);
3144  n_Delete (&n, C->extRing->cf);
3145  }
3146  }
3147  p= ph;
3148  }
3149 
3150  return;
3151 }
return P p
Definition: myNF.cc:203
static FORCE_INLINE BOOLEAN n_IsOne(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the one element.
Definition: coeffs.h:472
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition: coeffs.h:542
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
static number p_SetCoeff(poly p, number n, ring r)
Definition: p_polys.h:407
#define pIter(p)
Definition: monomials.h:44
static FORCE_INLINE number n_Mult(number a, number b, const coeffs r)
return the product of &#39;a&#39; and &#39;b&#39;, i.e., a*b
Definition: coeffs.h:640
const ring r
Definition: syzextra.cc:208
#define TEST_OPT_INTSTRATEGY
Definition: options.h:105
#define assume(x)
Definition: mod2.h:394
The main handler for Singular numbers which are suitable for Singular polynomials.
number(* nMapFunc)(number a, const coeffs src, const coeffs dst)
maps "a", which lives in src, into dst
Definition: coeffs.h:73
static FORCE_INLINE number n_Invers(number a, const coeffs r)
return the multiplicative inverse of &#39;a&#39;; raise an error if &#39;a&#39; is not invertible ...
Definition: coeffs.h:568
static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
TRUE iff r represents a transcendental extension field.
Definition: coeffs.h:935
FILE * f
Definition: checklibs.c:9
static poly p_Mult_nn(poly p, number n, const ring r)
Definition: p_polys.h:895
static BOOLEAN rField_is_Q(const ring r)
Definition: ring.h:501
void p_Content(poly ph, const ring r)
Definition: p_polys.cc:2247
static FORCE_INLINE nMapFunc n_SetMap(const coeffs src, const coeffs dst)
set the mapping function pointers for translating numbers from src to dst
Definition: coeffs.h:725
static BOOLEAN rField_is_Zp(const ring r)
Definition: ring.h:495
static BOOLEAN rField_is_Ring(const ring r)
Definition: ring.h:477
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
#define p_GetCoeff(p, r)
Definition: monomials.h:57
static poly p_Neg(poly p, const ring r)
Definition: p_polys.h:1013
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete &#39;p&#39;
Definition: coeffs.h:459
static FORCE_INLINE BOOLEAN n_GreaterZero(number n, const coeffs r)
ordered fields: TRUE iff &#39;n&#39; is positive; in Z/pZ: TRUE iff 0 < m <= roundedBelow(p/2), where m is the long representing n in C: TRUE iff (Im(n) != 0 and Im(n) >= 0) or (Im(n) == 0 and Re(n) >= 0) in K(a)/<p(a)>: TRUE iff (n != 0 and (LC(n) > 0 or deg(n) > 0)) in K(t_1, ..., t_n): TRUE iff (LC(numerator(n) is a constant and > 0) or (LC(numerator(n) is not a constant) in Z/2^kZ: TRUE iff 0 < n <= 2^(k-1) in Z/mZ: TRUE iff the internal mpz is greater than zero in Z: TRUE iff n > 0
Definition: coeffs.h:498
polyrec * poly
Definition: hilb.h:10
static Poly * h
Definition: janet.cc:978
poly p_Cleardenom(poly p, const ring r)
Definition: p_polys.cc:2747

◆ p_Read()

const char* p_Read ( const char *  s,
poly p,
const ring  r 
)

Definition at line 1347 of file p_polys.cc.

1348 {
1349  if (r==NULL) { rc=NULL;return st;}
1350  int i,j;
1351  rc = p_Init(r);
1352  const char *s = n_Read(st,&(p_GetCoeff(rc, r)),r->cf);
1353  if (s==st)
1354  /* i.e. it does not start with a coeff: test if it is a ringvar*/
1355  {
1356  j = r_IsRingVar(s,r->names,r->N);
1357  if (j >= 0)
1358  {
1359  p_IncrExp(rc,1+j,r);
1360  while (*s!='\0') s++;
1361  goto done;
1362  }
1363  }
1364  while (*s!='\0')
1365  {
1366  char ss[2];
1367  ss[0] = *s++;
1368  ss[1] = '\0';
1369  j = r_IsRingVar(ss,r->names,r->N);
1370  if (j >= 0)
1371  {
1372  const char *s_save=s;
1373  s = eati(s,&i);
1374  if (((unsigned long)i) > r->bitmask/2)
1375  {
1376  // exponent to large: it is not a monomial
1377  p_LmDelete(&rc,r);
1378  return s_save;
1379  }
1380  p_AddExp(rc,1+j, (long)i, r);
1381  }
1382  else
1383  {
1384  // 1st char of is not a varname
1385  // We return the parsed polynomial nevertheless. This is needed when
1386  // we are parsing coefficients in a rational function field.
1387  s--;
1388  break;
1389  }
1390  }
1391 done:
1392  if (n_IsZero(pGetCoeff(rc),r->cf)) p_LmDelete(&rc,r);
1393  else
1394  {
1395 #ifdef HAVE_PLURAL
1396  // in super-commutative ring
1397  // squares of anti-commutative variables are zeroes!
1398  if(rIsSCA(r))
1399  {
1400  const unsigned int iFirstAltVar = scaFirstAltVar(r);
1401  const unsigned int iLastAltVar = scaLastAltVar(r);
1402 
1403  assume(rc != NULL);
1404 
1405  for(unsigned int k = iFirstAltVar; k <= iLastAltVar; k++)
1406  if( p_GetExp(rc, k, r) > 1 )
1407  {
1408  p_LmDelete(&rc, r);
1409  goto finish;
1410  }
1411  }
1412 #endif
1413 
1414  p_Setm(rc,r);
1415  }
1416 finish:
1417  return s;
1418 }
const CanonicalForm int s
Definition: facAbsFact.cc:55
const char * eati(const char *s, int *i)
Definition: reporter.cc:373
static FORCE_INLINE const char * n_Read(const char *s, number *a, const coeffs r)
!!! Recommendation: This method is too cryptic to be part of the user- !!! interface. As defined here, it is merely a helper !!! method for parsing number input strings.
Definition: coeffs.h:602
static long p_IncrExp(poly p, int v, ring r)
Definition: p_polys.h:586
int k
Definition: cfEzgcd.cc:93
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
int r_IsRingVar(const char *n, char **names, int N)
Definition: ring.cc:222
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int j
Definition: myNF.cc:70
#define assume(x)
Definition: mod2.h:394
int i
Definition: cfEzgcd.cc:123
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the zero element.
Definition: coeffs.h:468
static short scaFirstAltVar(ring r)
Definition: sca.h:18
#define NULL
Definition: omList.c:10
static short scaLastAltVar(ring r)
Definition: sca.h:25
static bool rIsSCA(const ring r)
Definition: nc.h:206
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:228
static long p_AddExp(poly p, int v, long ee, ring r)
Definition: p_polys.h:601
#define p_GetCoeff(p, r)
Definition: monomials.h:57
static void p_LmDelete(poly p, const ring r)
Definition: p_polys.h:706
static poly p_Init(const ring r, omBin bin)
Definition: p_polys.h:1243

◆ p_Series()

poly p_Series ( int  n,
poly  p,
poly  u,
intvec w,
const ring  R 
)

Definition at line 4317 of file p_polys.cc.

4318 {
4319  short *ww=iv2array(w,R);
4320  if(p!=NULL)
4321  {
4322  if(u==NULL)
4323  p=p_JetW(p,n,ww,R);
4324  else
4325  p=p_JetW(p_Mult_q(p,p_Invers(n-p_MinDeg(p,w,R),u,w,R),R),n,ww,R);
4326  }
4327  omFreeSize((ADDRESS)ww,(rVar(R)+1)*sizeof(short));
4328  return p;
4329 }
return P p
Definition: myNF.cc:203
short * iv2array(intvec *iv, const ring R)
Definition: weight.cc:208
int p_MinDeg(poly p, intvec *w, const ring R)
Definition: p_polys.cc:4295
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:583
void * ADDRESS
Definition: auxiliary.h:115
poly p_Invers(int n, poly u, intvec *w, const ring R)
Definition: p_polys.cc:4331
const ring R
Definition: DebugPrint.cc:36
poly p_JetW(poly p, int m, short *w, const ring R)
Definition: p_polys.cc:4277
#define NULL
Definition: omList.c:10
static poly p_Mult_q(poly p, poly q, const ring r)
Definition: p_polys.h:1020

◆ p_SetCoeff()

static number p_SetCoeff ( poly  p,
number  n,
ring  r 
)
inlinestatic

Definition at line 407 of file p_polys.h.

408 {
410  n_Delete(&(p->coef), r->cf);
411  (p)->coef=n;
412  return n;
413 }
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:207
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete &#39;p&#39;
Definition: coeffs.h:459

◆ p_SetComp()

static unsigned long p_SetComp ( poly  p,
unsigned long  c,
ring  r 
)
inlinestatic

Definition at line 242 of file p_polys.h.

243 {
245  if (r->pCompIndex>=0) __p_GetComp(p,r) = c;
246  return c;
247 }
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:207
#define __p_GetComp(p, r)
Definition: monomials.h:71
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208

◆ p_SetCompP() [1/2]

static void p_SetCompP ( poly  p,
int  i,
ring  r 
)
inlinestatic

Definition at line 249 of file p_polys.h.

250 {
251  if (p != NULL)
252  {
253  p_Test(p, r);
255  {
256  do
257  {
258  p_SetComp(p, i, r);
259  p_SetmComp(p, r);
260  pIter(p);
261  }
262  while (p != NULL);
263  }
264  else
265  {
266  do
267  {
268  p_SetComp(p, i, r);
269  pIter(p);
270  }
271  while(p != NULL);
272  }
273  }
274 }
return P p
Definition: myNF.cc:203
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
Definition: p_polys.h:242
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
int i
Definition: cfEzgcd.cc:123
BOOLEAN rOrd_SetCompRequiresSetm(const ring r)
return TRUE if p_SetComp requires p_Setm
Definition: ring.cc:1869
#define p_Test(p, r)
Definition: p_polys.h:160
#define p_SetmComp
Definition: p_polys.h:239
#define NULL
Definition: omList.c:10

◆ p_SetCompP() [2/2]

static void p_SetCompP ( poly  p,
int  i,
ring  lmRing,
ring  tailRing 
)
inlinestatic

Definition at line 276 of file p_polys.h.

277 {
278  if (p != NULL)
279  {
280  p_SetComp(p, i, lmRing);
281  p_SetmComp(p, lmRing);
283  }
284 }
BEGIN_NAMESPACE_SINGULARXX const ring lmRing
Definition: DebugPrint.h:30
return P p
Definition: myNF.cc:203
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
Definition: p_polys.h:242
BEGIN_NAMESPACE_SINGULARXX const ring const ring tailRing
Definition: DebugPrint.h:30
static void p_SetCompP(poly p, int i, ring r)
Definition: p_polys.h:249
int i
Definition: cfEzgcd.cc:123
#define p_SetmComp
Definition: p_polys.h:239
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43

◆ p_SetExp() [1/3]

static unsigned long p_SetExp ( poly  p,
const unsigned long  e,
const unsigned long  iBitmask,
const int  VarOffset 
)
inlinestatic

set a single variable exponent : VarOffset encodes the position in p->exp

See also
p_GetExp

Definition at line 483 of file p_polys.h.

484 {
485  pAssume2(e>=0);
486  pAssume2(e<=iBitmask);
487  pAssume2((VarOffset >> (24 + 6)) == 0);
488 
489  // shift e to the left:
490  register int shift = VarOffset >> 24;
491  unsigned long ee = e << shift /*(VarOffset >> 24)*/;
492  // find the bits in the exponent vector
493  register int offset = (VarOffset & 0xffffff);
494  // clear the bits in the exponent vector:
495  p->exp[offset] &= ~( iBitmask << shift );
496  // insert e with |
497  p->exp[ offset ] |= ee;
498  return e;
499 }
return P p
Definition: myNF.cc:203
#define pAssume2(cond)
Definition: monomials.h:201
int offset
Definition: libparse.cc:1091

◆ p_SetExp() [2/3]

static long p_SetExp ( poly  p,
const long  e,
const ring  r,
const int  VarOffset 
)
inlinestatic

Definition at line 557 of file p_polys.h.

558 {
560  pAssume2(VarOffset != -1);
561  return p_SetExp(p, e, r->bitmask, VarOffset);
562 }
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:207
return P p
Definition: myNF.cc:203
#define pAssume2(cond)
Definition: monomials.h:201
const ring r
Definition: syzextra.cc:208
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent : VarOffset encodes the position in p->exp
Definition: p_polys.h:483

◆ p_SetExp() [3/3]

static long p_SetExp ( poly  p,
const int  v,
const long  e,
const ring  r 
)
inlinestatic

set v^th exponent for a monomial

Definition at line 577 of file p_polys.h.

578 {
580  pAssume2(v>0 && v <= r->N);
581  pAssume2(r->VarOffset[v] != -1);
582  return p_SetExp(p, e, r->bitmask, r->VarOffset[v]);
583 }
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:207
return P p
Definition: myNF.cc:203
#define pAssume2(cond)
Definition: monomials.h:201
const ring r
Definition: syzextra.cc:208
const CanonicalForm CFMap CFMap & N
Definition: cfEzgcd.cc:49
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:37
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent : VarOffset encodes the position in p->exp
Definition: p_polys.h:483

◆ p_SetExpV()

static void p_SetExpV ( poly  p,
int *  ev,
const ring  r 
)
inlinestatic

Definition at line 1451 of file p_polys.h.

1452 {
1454  for (unsigned j = r->N; j!=0; j--)
1455  p_SetExp(p, j, ev[j], r);
1456 
1457  p_SetComp(p, ev[0],r);
1458  p_Setm(p, r);
1459 }
return P p
Definition: myNF.cc:203
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
Definition: p_polys.h:242
const ring r
Definition: syzextra.cc:208
int j
Definition: myNF.cc:70
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:185
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent : VarOffset encodes the position in p->exp
Definition: p_polys.h:483
static void p_Setm(poly p, const ring r)
Definition: p_polys.h:228

◆ p_Setm()

static void p_Setm ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 228 of file p_polys.h.

229 {
230  p_CheckRing2(r);
231  r->p_Setm(p, r);
232 }
return P p
Definition: myNF.cc:203
#define p_CheckRing2(r)
Definition: monomials.h:208
const ring r
Definition: syzextra.cc:208

◆ p_SetModDeg()

void p_SetModDeg ( intvec w,
ring  r 
)

Definition at line 3571 of file p_polys.cc.

3572 {
3573  if (w!=NULL)
3574  {
3575  r->pModW = w;
3576  pOldFDeg = r->pFDeg;
3577  pOldLDeg = r->pLDeg;
3578  pOldLexOrder = r->pLexOrder;
3580  r->pLexOrder = TRUE;
3581  }
3582  else
3583  {
3584  r->pModW = NULL;
3586  r->pLexOrder = pOldLexOrder;
3587  }
3588 }
static BOOLEAN pOldLexOrder
Definition: p_polys.cc:3560
static long pModDeg(poly p, ring r)
Definition: p_polys.cc:3562
#define TRUE
Definition: auxiliary.h:98
const ring r
Definition: syzextra.cc:208
void pSetDegProcs(ring r, pFDegProc new_FDeg, pLDegProc new_lDeg)
Definition: p_polys.cc:3535
void pRestoreDegProcs(ring r, pFDegProc old_FDeg, pLDegProc old_lDeg)
Definition: p_polys.cc:3547
static pLDegProc pOldLDeg
Definition: p_polys.cc:3559
#define NULL
Definition: omList.c:10
static pFDegProc pOldFDeg
Definition: p_polys.cc:3558
const CanonicalForm & w
Definition: facAbsFact.cc:55

◆ p_ShallowCopyDelete()

static poly p_ShallowCopyDelete ( poly  p,
const ring  r,
omBin  bin 
)
inlinestatic

Definition at line 869 of file p_polys.h.

870 {
872  pAssume2(omSizeWOfBin(r->PolyBin) == omSizeWOfBin(bin));
873  return r->p_Procs->p_ShallowCopyDelete(p, r, bin);
874 }
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:207
return P p
Definition: myNF.cc:203
#define pAssume2(cond)
Definition: monomials.h:201
const ring r
Definition: syzextra.cc:208
#define omSizeWOfBin(bin_ptr)

◆ p_ShallowDelete()

void p_ShallowDelete ( poly p,
const ring  r 
)

◆ p_Shift()

void p_Shift ( poly p,
int  i,
const ring  r 
)

shifts components of the vector p by i

Definition at line 4553 of file p_polys.cc.

4554 {
4555  poly qp1 = *p,qp2 = *p;/*working pointers*/
4556  int j = p_MaxComp(*p,r),k = p_MinComp(*p,r);
4557 
4558  if (j+i < 0) return ;
4559  while (qp1 != NULL)
4560  {
4561  if ((p_GetComp(qp1,r)+i > 0) || ((j == -i) && (j == k)))
4562  {
4563  p_AddComp(qp1,i,r);
4564  p_SetmComp(qp1,r);
4565  qp2 = qp1;
4566  pIter(qp1);
4567  }
4568  else
4569  {
4570  if (qp2 == *p)
4571  {
4572  pIter(*p);
4573  p_LmDelete(&qp2,r);
4574  qp2 = *p;
4575  qp1 = *p;
4576  }
4577  else
4578  {
4579  qp2->next = qp1->next;
4580  if (qp1!=NULL) p_LmDelete(&qp1,r);
4581  qp1 = qp2->next;
4582  }
4583  }
4584  }
4585 }
static unsigned long p_AddComp(poly p, unsigned long v, ring r)
Definition: p_polys.h:442
return
Definition: syzextra.cc:280
return P p
Definition: myNF.cc:203
#define p_GetComp(p, r)
Definition: monomials.h:72
int k
Definition: cfEzgcd.cc:93
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
int j
Definition: myNF.cc:70
int i
Definition: cfEzgcd.cc:123
static long p_MinComp(poly p, ring lmRing, ring tailRing)
Definition: p_polys.h:308
#define p_SetmComp
Definition: p_polys.h:239
#define NULL
Definition: omList.c:10
static void p_LmDelete(poly p, const ring r)
Definition: p_polys.h:706
polyrec * poly
Definition: hilb.h:10
static long p_MaxComp(poly p, ring lmRing, ring tailRing)
Definition: p_polys.h:287

◆ p_SimpleContent()

void p_SimpleContent ( poly  p,
int  s,
const ring  r 
)

Definition at line 2456 of file p_polys.cc.

2457 {
2458  if(TEST_OPT_CONTENTSB) return;
2459  if (ph==NULL) return;
2460  if (pNext(ph)==NULL)
2461  {
2462  p_SetCoeff(ph,n_Init(1,r->cf),r);
2463  return;
2464  }
2465  if ((pNext(pNext(ph))==NULL)||(!rField_is_Q(r)))
2466  {
2467  return;
2468  }
2469  number d=p_InitContent(ph,r);
2470  if (n_Size(d,r->cf)<=smax)
2471  {
2472  //if (TEST_OPT_PROT) PrintS("G");
2473  return;
2474  }
2475 
2476 
2477  poly p=ph;
2478  number h=d;
2479  if (smax==1) smax=2;
2480  while (p!=NULL)
2481  {
2482 #if 0
2483  d=n_Gcd(h,pGetCoeff(p),r->cf);
2484  n_Delete(&h,r->cf);
2485  h = d;
2486 #else
2487  STATISTIC(n_Gcd); nlInpGcd(h,pGetCoeff(p),r->cf); // FIXME? TODO? // extern void nlInpGcd(number &a, number b, const coeffs r);
2488 #endif
2489  if(n_Size(h,r->cf)<smax)
2490  {
2491  //if (TEST_OPT_PROT) PrintS("g");
2492  return;
2493  }
2494  pIter(p);
2495  }
2496  p = ph;
2497  if (!n_GreaterZero(pGetCoeff(p),r->cf)) h=n_InpNeg(h,r->cf);
2498  if(n_IsOne(h,r->cf)) return;
2499  //if (TEST_OPT_PROT) PrintS("c");
2500  while (p!=NULL)
2501  {
2502 #if 1
2503  d = n_ExactDiv(pGetCoeff(p),h,r->cf);
2504  p_SetCoeff(p,d,r);
2505 #else
2506  STATISTIC(n_ExactDiv); nlInpExactDiv(pGetCoeff(p),h,r->cf); // no such function... ?
2507 #endif
2508  pIter(p);
2509  }
2510  n_Delete(&h,r->cf);
2511 }
#define STATISTIC(f)
Definition: numstats.h:16
static FORCE_INLINE number n_Gcd(number a, number b, const coeffs r)
in Z: return the gcd of &#39;a&#39; and &#39;b&#39; in Z/nZ, Z/2^kZ: computed as in the case Z in Z/pZ...
Definition: coeffs.h:690
return P p
Definition: myNF.cc:203
static FORCE_INLINE BOOLEAN n_IsOne(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the one element.
Definition: coeffs.h:472
#define TEST_OPT_CONTENTSB
Definition: options.h:121
static FORCE_INLINE number n_Init(long i, const coeffs r)
a number representing i in the given coeff field/ring r
Definition: coeffs.h:542
void nlInpGcd(number &a, number b, const coeffs r)
Definition: longrat.cc:2778
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
static number p_SetCoeff(poly p, number n, ring r)
Definition: p_polys.h:407
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
static FORCE_INLINE number n_InpNeg(number n, const coeffs r)
in-place negation of n MUST BE USED: n = n_InpNeg(n) (no copy is returned)
Definition: coeffs.h:561
static number p_InitContent(poly ph, const ring r)
Definition: p_polys.cc:2514
static BOOLEAN rField_is_Q(const ring r)
Definition: ring.h:501
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
static FORCE_INLINE number n_ExactDiv(number a, number b, const coeffs r)
assume that there is a canonical subring in cf and we know that division is possible for these a and ...
Definition: coeffs.h:626
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete &#39;p&#39;
Definition: coeffs.h:459
static FORCE_INLINE BOOLEAN n_GreaterZero(number n, const coeffs r)
ordered fields: TRUE iff &#39;n&#39; is positive; in Z/pZ: TRUE iff 0 < m <= roundedBelow(p/2), where m is the long representing n in C: TRUE iff (Im(n) != 0 and Im(n) >= 0) or (Im(n) == 0 and Re(n) >= 0) in K(a)/<p(a)>: TRUE iff (n != 0 and (LC(n) > 0 or deg(n) > 0)) in K(t_1, ..., t_n): TRUE iff (LC(numerator(n) is a constant and > 0) or (LC(numerator(n) is not a constant) in Z/2^kZ: TRUE iff 0 < n <= 2^(k-1) in Z/mZ: TRUE iff the internal mpz is greater than zero in Z: TRUE iff n > 0
Definition: coeffs.h:498
polyrec * poly
Definition: hilb.h:10
static Poly * h
Definition: janet.cc:978
static FORCE_INLINE int n_Size(number n, const coeffs r)
return a non-negative measure for the complexity of n; return 0 only when n represents zero; (used fo...
Definition: coeffs.h:574

◆ p_Size()

int p_Size ( poly  p,
const ring  r 
)

Definition at line 3175 of file p_polys.cc.

3176 {
3177  int count = 0;
3178  if (r->cf->has_simple_Alloc)
3179  return pLength(p);
3180  while ( p != NULL )
3181  {
3182  count+= n_Size( pGetCoeff( p ), r->cf );
3183  pIter( p );
3184  }
3185  return count;
3186 }
int status int void size_t count
Definition: si_signals.h:59
return P p
Definition: myNF.cc:203
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
static unsigned pLength(poly a)
Definition: p_polys.h:189
#define NULL
Definition: omList.c:10
static FORCE_INLINE int n_Size(number n, const coeffs r)
return a non-negative measure for the complexity of n; return 0 only when n represents zero; (used fo...
Definition: coeffs.h:574

◆ p_SortAdd()

static poly p_SortAdd ( poly  p,
const ring  r,
BOOLEAN  revert = FALSE 
)
inlinestatic

Definition at line 1142 of file p_polys.h.

1143 {
1144  if (revert) p = pReverse(p);
1145  return sBucketSortAdd(p, r);
1146 }
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
poly sBucketSortAdd(poly p, const ring r)
Sorts p with bucketSort: p may have equal monomials.
Definition: sbuckets.cc:364
static poly pReverse(poly p)
Definition: p_polys.h:330

◆ p_SortMerge()

static poly p_SortMerge ( poly  p,
const ring  r,
BOOLEAN  revert = FALSE 
)
inlinestatic

Definition at line 1152 of file p_polys.h.

1153 {
1154  if (revert) p = pReverse(p);
1155  return sBucketSortMerge(p, r);
1156 }
return P p
Definition: myNF.cc:203
poly sBucketSortMerge(poly p, const ring r)
Sorts p with bucketSort: assumes all monomials of p are different.
Definition: sbuckets.cc:327
const ring r
Definition: syzextra.cc:208
static poly pReverse(poly p)
Definition: p_polys.h:330

◆ p_Split()

void p_Split ( poly  p,
poly r 
)

Definition at line 1319 of file p_polys.cc.

1320 {
1321  *h=pNext(p);
1322  pNext(p)=NULL;
1323 }
return P p
Definition: myNF.cc:203
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
static Poly * h
Definition: janet.cc:978

◆ p_String() [1/2]

char* p_String ( poly  p,
ring  lmRing,
ring  tailRing 
)

Definition at line 186 of file polys0.cc.

187 {
188  StringSetS("");
190  return StringEndS();
191 }
BEGIN_NAMESPACE_SINGULARXX const ring lmRing
Definition: DebugPrint.h:30
return P p
Definition: myNF.cc:203
BEGIN_NAMESPACE_SINGULARXX const ring const ring tailRing
Definition: DebugPrint.h:30
char * StringEndS()
Definition: reporter.cc:151
void StringSetS(const char *st)
Definition: reporter.cc:128
void p_String0(poly p, ring lmRing, ring tailRing)
print p according to ShortOut in lmRing & tailRing
Definition: polys0.cc:136

◆ p_String() [2/2]

static char* p_String ( poly  p,
ring  p_ring 
)
inlinestatic

Definition at line 1163 of file p_polys.h.

1164 {
1165  return p_String(p, p_ring, p_ring);
1166 }
char * p_String(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:186
return P p
Definition: myNF.cc:203

◆ p_String0() [1/2]

void p_String0 ( poly  p,
ring  lmRing,
ring  tailRing 
)

print p according to ShortOut in lmRing & tailRing

Definition at line 136 of file polys0.cc.

137 {
138  if (p == NULL)
139  {
140  StringAppendS("0");
141  return;
142  }
144  if ((n_GetChar(lmRing->cf) == 0)
145  && (nCoeff_is_transExt(lmRing->cf)))
146  p_Normalize(p,lmRing); /* Manual/absfact.tst */
147  if ((p_GetComp(p, lmRing) == 0) || (!lmRing->VectorOut))
148  {
149  writemon(p,0, lmRing);
150  p = pNext(p);
151  while (p!=NULL)
152  {
153  assume((p->coef==NULL)||(!n_IsZero(p->coef,tailRing->cf)));
154  if ((p->coef==NULL)||n_GreaterZero(p->coef,tailRing->cf))
155  StringAppendS("+");
156  writemon(p,0, tailRing);
157  p = pNext(p);
158  }
159  return;
160  }
161 
162  long k = 1;
163  StringAppendS("[");
164  loop
165  {
166  while (k < p_GetComp(p,lmRing))
167  {
168  StringAppendS("0,");
169  k++;
170  }
171  writemon(p,k,lmRing);
172  pIter(p);
173  while ((p!=NULL) && (k == p_GetComp(p, tailRing)))
174  {
175  if (n_GreaterZero(p->coef,tailRing->cf)) StringAppendS("+");
176  writemon(p,k,tailRing);
177  pIter(p);
178  }
179  if (p == NULL) break;
180  StringAppendS(",");
181  k++;
182  }
183  StringAppendS("]");
184 }
BEGIN_NAMESPACE_SINGULARXX const ring lmRing
Definition: DebugPrint.h:30
loop
Definition: myNF.cc:98
return P p
Definition: myNF.cc:203
#define p_GetComp(p, r)
Definition: monomials.h:72
BEGIN_NAMESPACE_SINGULARXX const ring const ring tailRing
Definition: DebugPrint.h:30
static FORCE_INLINE int n_GetChar(const coeffs r)
Return the characteristic of the coeff. domain.
Definition: coeffs.h:448
int k
Definition: cfEzgcd.cc:93
#define pIter(p)
Definition: monomials.h:44
#define assume(x)
Definition: mod2.h:394
void StringAppendS(const char *st)
Definition: reporter.cc:107
static FORCE_INLINE BOOLEAN nCoeff_is_transExt(const coeffs r)
TRUE iff r represents a transcendental extension field.
Definition: coeffs.h:935
static FORCE_INLINE BOOLEAN n_IsZero(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the zero element.
Definition: coeffs.h:468
void p_Normalize(poly p, const ring r)
Definition: p_polys.cc:3672
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
static FORCE_INLINE BOOLEAN n_GreaterZero(number n, const coeffs r)
ordered fields: TRUE iff &#39;n&#39; is positive; in Z/pZ: TRUE iff 0 < m <= roundedBelow(p/2), where m is the long representing n in C: TRUE iff (Im(n) != 0 and Im(n) >= 0) or (Im(n) == 0 and Re(n) >= 0) in K(a)/<p(a)>: TRUE iff (n != 0 and (LC(n) > 0 or deg(n) > 0)) in K(t_1, ..., t_n): TRUE iff (LC(numerator(n) is a constant and > 0) or (LC(numerator(n) is not a constant) in Z/2^kZ: TRUE iff 0 < n <= 2^(k-1) in Z/mZ: TRUE iff the internal mpz is greater than zero in Z: TRUE iff n > 0
Definition: coeffs.h:498
static void writemon(poly p, int ko, const ring r)
Definition: polys0.cc:23

◆ p_String0() [2/2]

static void p_String0 ( poly  p,
ring  p_ring 
)
inlinestatic

Definition at line 1167 of file p_polys.h.

1168 {
1169  p_String0(p, p_ring, p_ring);
1170 }
return P p
Definition: myNF.cc:203
void p_String0(poly p, ring lmRing, ring tailRing)
print p according to ShortOut in lmRing & tailRing
Definition: polys0.cc:136

◆ p_String0Long()

void p_String0Long ( const poly  p,
ring  lmRing,
ring  tailRing 
)

print p in a long way

print p in a long way

Definition at line 116 of file polys0.cc.

117 {
118  // NOTE: the following (non-thread-safe!) UGLYNESS
119  // (changing naRing->ShortOut for a while) is due to Hans!
120  // Just think of other ring using the VERY SAME naRing and possible
121  // side-effects...
122  // but this is not a problem: i/o is not thread-safe anyway.
123  const BOOLEAN bLMShortOut = rShortOut(lmRing);
124  const BOOLEAN bTAILShortOut = rShortOut(tailRing);
125 
126  lmRing->ShortOut = FALSE;
127  tailRing->ShortOut = FALSE;
128 
130 
131  lmRing->ShortOut = bLMShortOut;
132  tailRing->ShortOut = bTAILShortOut;
133 }
BEGIN_NAMESPACE_SINGULARXX const ring lmRing
Definition: DebugPrint.h:30
#define FALSE
Definition: auxiliary.h:94
return P p
Definition: myNF.cc:203
BEGIN_NAMESPACE_SINGULARXX const ring const ring tailRing
Definition: DebugPrint.h:30
static BOOLEAN rShortOut(const ring r)
Definition: ring.h:572
void p_String0(poly p, ring lmRing, ring tailRing)
print p according to ShortOut in lmRing & tailRing
Definition: polys0.cc:136
int BOOLEAN
Definition: auxiliary.h:85

◆ p_String0Short()

void p_String0Short ( const poly  p,
ring  lmRing,
ring  tailRing 
)

print p in a short way, if possible

print p in a short way, if possible

Definition at line 97 of file polys0.cc.

98 {
99  // NOTE: the following (non-thread-safe!) UGLYNESS
100  // (changing naRing->ShortOut for a while) is due to Hans!
101  // Just think of other ring using the VERY SAME naRing and possible
102  // side-effects...
103  const BOOLEAN bLMShortOut = rShortOut(lmRing);
104  const BOOLEAN bTAILShortOut = rShortOut(tailRing);
105 
106  lmRing->ShortOut = rCanShortOut(lmRing);
107  tailRing->ShortOut = rCanShortOut(tailRing);
108 
110 
111  lmRing->ShortOut = bLMShortOut;
112  tailRing->ShortOut = bTAILShortOut;
113 }
BEGIN_NAMESPACE_SINGULARXX const ring lmRing
Definition: DebugPrint.h:30
return P p
Definition: myNF.cc:203
BEGIN_NAMESPACE_SINGULARXX const ring const ring tailRing
Definition: DebugPrint.h:30
static BOOLEAN rShortOut(const ring r)
Definition: ring.h:572
static BOOLEAN rCanShortOut(const ring r)
Definition: ring.h:577
void p_String0(poly p, ring lmRing, ring tailRing)
print p according to ShortOut in lmRing & tailRing
Definition: polys0.cc:136
int BOOLEAN
Definition: auxiliary.h:85

◆ p_Sub()

poly p_Sub ( poly  a,
poly  b,
const ring  r 
)

Definition at line 1943 of file p_polys.cc.

1944 {
1945  return p_Add_q(p1, p_Neg(p2,r),r);
1946 }
const ring r
Definition: syzextra.cc:208
static poly p_Neg(poly p, const ring r)
Definition: p_polys.h:1013
END_NAMESPACE const void * p2
Definition: syzextra.cc:202
static poly p_Add_q(poly p, poly q, const ring r)
Definition: p_polys.h:877

◆ p_SubComp()

static unsigned long p_SubComp ( poly  p,
unsigned long  v,
ring  r 
)
inlinestatic

Definition at line 448 of file p_polys.h.

449 {
453  return __p_GetComp(p,r) -= v;
454 }
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:207
#define __p_GetComp(p, r)
Definition: monomials.h:71
return P p
Definition: myNF.cc:203
#define _pPolyAssume2(cond, p, r)
Definition: monomials.h:203
#define pAssume2(cond)
Definition: monomials.h:201
const ring r
Definition: syzextra.cc:208
#define rRing_has_Comp(r)
Definition: monomials.h:274
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:37

◆ p_SubExp()

static long p_SubExp ( poly  p,
int  v,
long  ee,
ring  r 
)
inlinestatic

Definition at line 608 of file p_polys.h.

609 {
611  long e = p_GetExp(p,v,r);
612  pAssume2(e >= ee);
613  e -= ee;
614  return p_SetExp(p,v,e,r);
615 }
#define p_LmCheckPolyRing2(p, r)
Definition: monomials.h:207
return P p
Definition: myNF.cc:203
#define pAssume2(cond)
Definition: monomials.h:201
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:37
static unsigned long p_SetExp(poly p, const unsigned long e, const unsigned long iBitmask, const int VarOffset)
set a single variable exponent : VarOffset encodes the position in p->exp
Definition: p_polys.h:483

◆ p_Subst()

poly p_Subst ( poly  p,
int  n,
poly  e,
const ring  r 
)

Definition at line 3814 of file p_polys.cc.

3815 {
3816  if (e == NULL) return p_Subst0(p, n,r);
3817 
3818  if (p_IsConstant(e,r))
3819  {
3820  if (n_IsOne(pGetCoeff(e),r->cf)) return p_Subst1(p,n,r);
3821  else return p_Subst2(p, n, pGetCoeff(e),r);
3822  }
3823 
3824 #ifdef HAVE_PLURAL
3825  if (rIsPluralRing(r))
3826  {
3827  return nc_pSubst(p,n,e,r);
3828  }
3829 #endif
3830 
3831  int exponent,i;
3832  poly h, res, m;
3833  int *me,*ee;
3834  number nu,nu1;
3835 
3836  me=(int *)omAlloc((rVar(r)+1)*sizeof(int));
3837  ee=(int *)omAlloc((rVar(r)+1)*sizeof(int));
3838  if (e!=NULL) p_GetExpV(e,ee,r);
3839  res=NULL;
3840  h=p;
3841  while (h!=NULL)
3842  {
3843  if ((e!=NULL) || (p_GetExp(h,n,r)==0))
3844  {
3845  m=p_Head(h,r);
3846  p_GetExpV(m,me,r);
3847  exponent=me[n];
3848  me[n]=0;
3849  for(i=rVar(r);i>0;i--)
3850  me[i]+=exponent*ee[i];
3851  p_SetExpV(m,me,r);
3852  if (e!=NULL)
3853  {
3854  n_Power(pGetCoeff(e),exponent,&nu,r->cf);
3855  nu1=n_Mult(pGetCoeff(m),nu,r->cf);
3856  n_Delete(&nu,r->cf);
3857  p_SetCoeff(m,nu1,r);
3858  }
3859  res=p_Add_q(res,m,r);
3860  }
3861  p_LmDelete(&h,r);
3862  }
3863  omFreeSize((ADDRESS)me,(rVar(r)+1)*sizeof(int));
3864  omFreeSize((ADDRESS)ee,(rVar(r)+1)*sizeof(int));
3865  return res;
3866 }
return P p
Definition: myNF.cc:203
static FORCE_INLINE BOOLEAN n_IsOne(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the one element.
Definition: coeffs.h:472
static void p_GetExpV(poly p, int *ev, const ring r)
Definition: p_polys.h:1443
#define omFreeSize(addr, size)
Definition: omAllocDecl.h:260
static poly p_Subst1(poly p, int n, const ring r)
Definition: p_polys.cc:3721
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:583
void * ADDRESS
Definition: auxiliary.h:115
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
#define omAlloc(size)
Definition: omAllocDecl.h:210
static number p_SetCoeff(poly p, number n, ring r)
Definition: p_polys.h:407
static void p_SetExpV(poly p, int *ev, const ring r)
Definition: p_polys.h:1451
poly res
Definition: myNF.cc:322
static FORCE_INLINE number n_Mult(number a, number b, const coeffs r)
return the product of &#39;a&#39; and &#39;b&#39;, i.e., a*b
Definition: coeffs.h:640
static poly p_Head(poly p, const ring r)
Definition: p_polys.h:812
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:404
static BOOLEAN p_IsConstant(const poly p, const ring r)
Definition: p_polys.h:1876
static poly p_Subst0(poly p, int n, const ring r)
Definition: p_polys.cc:3789
int m
Definition: cfEzgcd.cc:119
int i
Definition: cfEzgcd.cc:123
static FORCE_INLINE void n_Power(number a, int b, number *res, const coeffs r)
fill res with the power a^b
Definition: coeffs.h:636
#define NULL
Definition: omList.c:10
static void p_LmDelete(poly p, const ring r)
Definition: p_polys.h:706
int exponent(const CanonicalForm &f, int q)
int exponent ( const CanonicalForm & f, int q )
static poly p_Subst2(poly p, int n, number e, const ring r)
Definition: p_polys.cc:3748
static FORCE_INLINE void n_Delete(number *p, const coeffs r)
delete &#39;p&#39;
Definition: coeffs.h:459
poly nc_pSubst(poly p, int n, poly e, const ring r)
substitute the n-th variable by e in p destroy p e is not a constant
Definition: old.gring.cc:3287
polyrec * poly
Definition: hilb.h:10
static poly p_Add_q(poly p, poly q, const ring r)
Definition: p_polys.h:877
static Poly * h
Definition: janet.cc:978

◆ p_TakeOutComp() [1/2]

void p_TakeOutComp ( poly p,
long  comp,
poly q,
int *  lq,
const ring  r 
)

Definition at line 3432 of file p_polys.cc.

3433 {
3434  spolyrec pp, qq;
3435  poly p, q, p_prev;
3436  int l = 0;
3437 
3438 #ifdef HAVE_ASSUME
3439  int lp = pLength(*r_p);
3440 #endif
3441 
3442  pNext(&pp) = *r_p;
3443  p = *r_p;
3444  p_prev = &pp;
3445  q = &qq;
3446 
3447  while(p != NULL)
3448  {
3449  while (p_GetComp(p,r) == comp)
3450  {
3451  pNext(q) = p;
3452  pIter(q);
3453  p_SetComp(p, 0,r);
3454  p_SetmComp(p,r);
3455  pIter(p);
3456  l++;
3457  if (p == NULL)
3458  {
3459  pNext(p_prev) = NULL;
3460  goto Finish;
3461  }
3462  }
3463  pNext(p_prev) = p;
3464  p_prev = p;
3465  pIter(p);
3466  }
3467 
3468  Finish:
3469  pNext(q) = NULL;
3470  *r_p = pNext(&pp);
3471  *r_q = pNext(&qq);
3472  *lq = l;
3473 #ifdef HAVE_ASSUME
3474  assume(pLength(*r_p) + pLength(*r_q) == lp);
3475 #endif
3476  p_Test(*r_p,r);
3477  p_Test(*r_q,r);
3478 }
return P p
Definition: myNF.cc:203
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
Definition: p_polys.h:242
#define p_GetComp(p, r)
Definition: monomials.h:72
poly pp
Definition: myNF.cc:296
int comp(const CanonicalForm &A, const CanonicalForm &B)
compare polynomials
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
#define assume(x)
Definition: mod2.h:394
static unsigned pLength(poly a)
Definition: p_polys.h:189
#define p_Test(p, r)
Definition: p_polys.h:160
#define p_SetmComp
Definition: p_polys.h:239
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
polyrec * poly
Definition: hilb.h:10
int l
Definition: cfEzgcd.cc:94

◆ p_TakeOutComp() [2/2]

poly p_TakeOutComp ( poly p,
int  k,
const ring  r 
)

Definition at line 3371 of file p_polys.cc.

3372 {
3373  poly q = *p,qq=NULL,result = NULL;
3374 
3375  if (q==NULL) return NULL;
3376  BOOLEAN use_setmcomp=rOrd_SetCompRequiresSetm(r);
3377  if (p_GetComp(q,r)==k)
3378  {
3379  result = q;
3380  do
3381  {
3382  p_SetComp(q,0,r);
3383  if (use_setmcomp) p_SetmComp(q,r);
3384  qq = q;
3385  pIter(q);
3386  }
3387  while ((q!=NULL) && (p_GetComp(q,r)==k));
3388  *p = q;
3389  pNext(qq) = NULL;
3390  }
3391  if (q==NULL) return result;
3392  if (p_GetComp(q,r) > k)
3393  {
3394  p_SubComp(q,1,r);
3395  if (use_setmcomp) p_SetmComp(q,r);
3396  }
3397  poly pNext_q;
3398  while ((pNext_q=pNext(q))!=NULL)
3399  {
3400  if (p_GetComp(pNext_q,r)==k)
3401  {
3402  if (result==NULL)
3403  {
3404  result = pNext_q;
3405  qq = result;
3406  }
3407  else
3408  {
3409  pNext(qq) = pNext_q;
3410  pIter(qq);
3411  }
3412  pNext(q) = pNext(pNext_q);
3413  pNext(qq) =NULL;
3414  p_SetComp(qq,0,r);
3415  if (use_setmcomp) p_SetmComp(qq,r);
3416  }
3417  else
3418  {
3419  /*pIter(q);*/ q=pNext_q;
3420  if (p_GetComp(q,r) > k)
3421  {
3422  p_SubComp(q,1,r);
3423  if (use_setmcomp) p_SetmComp(q,r);
3424  }
3425  }
3426  }
3427  return result;
3428 }
return P p
Definition: myNF.cc:203
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
Definition: p_polys.h:242
#define p_GetComp(p, r)
Definition: monomials.h:72
int k
Definition: cfEzgcd.cc:93
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
BOOLEAN rOrd_SetCompRequiresSetm(const ring r)
return TRUE if p_SetComp requires p_Setm
Definition: ring.cc:1869
static unsigned long p_SubComp(poly p, unsigned long v, ring r)
Definition: p_polys.h:448
#define p_SetmComp
Definition: p_polys.h:239
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
polyrec * poly
Definition: hilb.h:10
int BOOLEAN
Definition: auxiliary.h:85
return result
Definition: facAbsBiFact.cc:76

◆ p_TakeOutComp1()

poly p_TakeOutComp1 ( poly p,
int  k,
const ring  r 
)

Definition at line 3320 of file p_polys.cc.

3321 {
3322  poly q = *p;
3323 
3324  if (q==NULL) return NULL;
3325 
3326  poly qq=NULL,result = NULL;
3327 
3328  if (p_GetComp(q,r)==k)
3329  {
3330  result = q; /* *p */
3331  while ((q!=NULL) && (p_GetComp(q,r)==k))
3332  {
3333  p_SetComp(q,0,r);
3334  p_SetmComp(q,r);
3335  qq = q;
3336  pIter(q);
3337  }
3338  *p = q;
3339  pNext(qq) = NULL;
3340  }
3341  if (q==NULL) return result;
3342 // if (pGetComp(q) > k) pGetComp(q)--;
3343  while (pNext(q)!=NULL)
3344  {
3345  if (p_GetComp(pNext(q),r)==k)
3346  {
3347  if (result==NULL)
3348  {
3349  result = pNext(q);
3350  qq = result;
3351  }
3352  else
3353  {
3354  pNext(qq) = pNext(q);
3355  pIter(qq);
3356  }
3357  pNext(q) = pNext(pNext(q));
3358  pNext(qq) =NULL;
3359  p_SetComp(qq,0,r);
3360  p_SetmComp(qq,r);
3361  }
3362  else
3363  {
3364  pIter(q);
3365 // if (pGetComp(q) > k) pGetComp(q)--;
3366  }
3367  }
3368  return result;
3369 }
return P p
Definition: myNF.cc:203
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
Definition: p_polys.h:242
#define p_GetComp(p, r)
Definition: monomials.h:72
int k
Definition: cfEzgcd.cc:93
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
#define p_SetmComp
Definition: p_polys.h:239
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
polyrec * poly
Definition: hilb.h:10
return result
Definition: facAbsBiFact.cc:76

◆ p_Totaldegree()

static long p_Totaldegree ( poly  p,
const ring  r 
)
inlinestatic

Definition at line 1430 of file p_polys.h.

1431 {
1433  unsigned long s = p_GetTotalDegree(p->exp[r->VarL_Offset[0]],
1434  r,
1435  r->ExpPerLong);
1436  for (unsigned i=r->VarL_Size-1; i!=0; i--)
1437  {
1438  s += p_GetTotalDegree(p->exp[r->VarL_Offset[i]], r,r->ExpPerLong);
1439  }
1440  return (long)s;
1441 }
const CanonicalForm int s
Definition: facAbsFact.cc:55
return P p
Definition: myNF.cc:203
static unsigned long p_GetTotalDegree(const unsigned long l, const ring r, const int number_of_exps)
Definition: p_polys.h:771
const ring r
Definition: syzextra.cc:208
int i
Definition: cfEzgcd.cc:123
#define p_LmCheckPolyRing1(p, r)
Definition: monomials.h:185

◆ p_Var()

int p_Var ( poly  mi,
const ring  r 
)

Definition at line 4503 of file p_polys.cc.

4504 {
4505  if (m==NULL) return 0;
4506  if (pNext(m)!=NULL) return 0;
4507  int i,e=0;
4508  for (i=rVar(r); i>0; i--)
4509  {
4510  int exp=p_GetExp(m,i,r);
4511  if (exp==1)
4512  {
4513  if (e==0) e=i;
4514  else return 0;
4515  }
4516  else if (exp!=0)
4517  {
4518  return 0;
4519  }
4520  }
4521  return e;
4522 }
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:583
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int m
Definition: cfEzgcd.cc:119
int i
Definition: cfEzgcd.cc:123
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
p exp[i]
Definition: DebugPrint.cc:39

◆ p_Vec2Polys()

void p_Vec2Polys ( poly  v,
poly **  p,
int *  len,
const ring  r 
)

Definition at line 3513 of file p_polys.cc.

3514 {
3515  poly h;
3516  int k;
3517 
3518  *len=p_MaxComp(v,r);
3519  if (*len==0) *len=1;
3520  *p=(poly*)omAlloc0((*len)*sizeof(poly));
3521  while (v!=NULL)
3522  {
3523  h=p_Head(v,r);
3524  k=p_GetComp(h,r);
3525  p_SetComp(h,0,r);
3526  (*p)[k-1]=p_Add_q((*p)[k-1],h,r);
3527  pIter(v);
3528  }
3529 }
return P p
Definition: myNF.cc:203
static unsigned long p_SetComp(poly p, unsigned long c, ring r)
Definition: p_polys.h:242
#define p_GetComp(p, r)
Definition: monomials.h:72
int k
Definition: cfEzgcd.cc:93
#define pIter(p)
Definition: monomials.h:44
static poly p_Head(poly p, const ring r)
Definition: p_polys.h:812
const ring r
Definition: syzextra.cc:208
const Variable & v
< [in] a sqrfree bivariate poly
Definition: facBivar.h:37
#define NULL
Definition: omList.c:10
polyrec * poly
Definition: hilb.h:10
static poly p_Add_q(poly p, poly q, const ring r)
Definition: p_polys.h:877
static Poly * h
Definition: janet.cc:978
#define omAlloc0(size)
Definition: omAllocDecl.h:211
static long p_MaxComp(poly p, ring lmRing, ring tailRing)
Definition: p_polys.h:287

◆ p_VectorHasUnit()

void p_VectorHasUnit ( poly  p,
int *  k,
int *  len,
const ring  r 
)

Definition at line 3288 of file p_polys.cc.

3289 {
3290  poly q=p,qq;
3291  int i,j=0;
3292 
3293  *len = 0;
3294  while (q!=NULL)
3295  {
3296  if (p_LmIsConstantComp(q,r))
3297  {
3298  i = p_GetComp(q,r);
3299  qq = p;
3300  while ((qq != q) && (p_GetComp(qq,r) != i)) pIter(qq);
3301  if (qq == q)
3302  {
3303  j = 0;
3304  while (qq!=NULL)
3305  {
3306  if (p_GetComp(qq,r)==i) j++;
3307  pIter(qq);
3308  }
3309  if ((*len == 0) || (j<*len))
3310  {
3311  *len = j;
3312  *k = i;
3313  }
3314  }
3315  }
3316  pIter(q);
3317  }
3318 }
static BOOLEAN p_LmIsConstantComp(const poly p, const ring r)
Definition: p_polys.h:932
return P p
Definition: myNF.cc:203
#define p_GetComp(p, r)
Definition: monomials.h:72
int k
Definition: cfEzgcd.cc:93
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
int j
Definition: myNF.cc:70
int i
Definition: cfEzgcd.cc:123
#define NULL
Definition: omList.c:10
polyrec * poly
Definition: hilb.h:10

◆ p_VectorHasUnitB()

BOOLEAN p_VectorHasUnitB ( poly  p,
int *  k,
const ring  r 
)

Definition at line 3263 of file p_polys.cc.

3264 {
3265  poly q=p,qq;
3266  int i;
3267 
3268  while (q!=NULL)
3269  {
3270  if (p_LmIsConstantComp(q,r))
3271  {
3272  i = p_GetComp(q,r);
3273  qq = p;
3274  while ((qq != q) && (p_GetComp(qq,r) != i)) pIter(qq);
3275  if (qq == q)
3276  {
3277  *k = i;
3278  return TRUE;
3279  }
3280  else
3281  pIter(q);
3282  }
3283  else pIter(q);
3284  }
3285  return FALSE;
3286 }
static BOOLEAN p_LmIsConstantComp(const poly p, const ring r)
Definition: p_polys.h:932
#define FALSE
Definition: auxiliary.h:94
return P p
Definition: myNF.cc:203
#define p_GetComp(p, r)
Definition: monomials.h:72
#define TRUE
Definition: auxiliary.h:98
int k
Definition: cfEzgcd.cc:93
#define pIter(p)
Definition: monomials.h:44
const ring r
Definition: syzextra.cc:208
int i
Definition: cfEzgcd.cc:123
#define NULL
Definition: omList.c:10
polyrec * poly
Definition: hilb.h:10

◆ p_WDegree()

long p_WDegree ( poly  p,
const ring  r 
)

Definition at line 713 of file p_polys.cc.

714 {
715  if (r->firstwv==NULL) return p_Totaldegree(p, r);
717  int i;
718  long j =0;
719 
720  for(i=1;i<=r->firstBlockEnds;i++)
721  j+=p_GetExp(p, i, r)*r->firstwv[i-1];
722 
723  for (;i<=rVar(r);i++)
724  j+=p_GetExp(p,i, r)*p_Weight(i, r);
725 
726  return j;
727 }
return P p
Definition: myNF.cc:203
static short rVar(const ring r)
#define rVar(r) (r->N)
Definition: ring.h:583
static long p_Totaldegree(poly p, const ring r)
Definition: p_polys.h:1430
int p_Weight(int i, const ring r)
Definition: p_polys.cc:704
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int j
Definition: myNF.cc:70
int i
Definition: cfEzgcd.cc:123
#define NULL
Definition: omList.c:10
BOOLEAN p_LmCheckPolyRing(poly p, ring r)
Definition: pDebug.cc:119

◆ p_Weight()

int p_Weight ( int  c,
const ring  r 
)

Definition at line 704 of file p_polys.cc.

705 {
706  if ((r->firstwv==NULL) || (i>r->firstBlockEnds))
707  {
708  return 1;
709  }
710  return r->firstwv[i-1];
711 }
const ring r
Definition: syzextra.cc:208
int i
Definition: cfEzgcd.cc:123
#define NULL
Definition: omList.c:10

◆ p_WFirstTotalDegree()

long p_WFirstTotalDegree ( poly  p,
ring  r 
)

Definition at line 595 of file p_polys.cc.

596 {
597  int i;
598  long sum = 0;
599 
600  for (i=1; i<= r->firstBlockEnds; i++)
601  {
602  sum += p_GetExp(p, i, r)*r->firstwv[i-1];
603  }
604  return sum;
605 }
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int i
Definition: cfEzgcd.cc:123

◆ p_Write() [1/2]

void p_Write ( poly  p,
ring  lmRing,
ring  tailRing 
)

Definition at line 206 of file polys0.cc.

207 {
209  PrintLn();
210 }
void PrintLn()
Definition: reporter.cc:310
BEGIN_NAMESPACE_SINGULARXX const ring lmRing
Definition: DebugPrint.h:30
return P p
Definition: myNF.cc:203
BEGIN_NAMESPACE_SINGULARXX const ring const ring tailRing
Definition: DebugPrint.h:30
void p_Write0(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:196

◆ p_Write() [2/2]

static void p_Write ( poly  p,
ring  p_ring 
)
inlinestatic

Definition at line 1171 of file p_polys.h.

1172 {
1173  p_Write(p, p_ring, p_ring);
1174 }
return P p
Definition: myNF.cc:203
void p_Write(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:206

◆ p_Write0() [1/2]

void p_Write0 ( poly  p,
ring  lmRing,
ring  tailRing 
)

Definition at line 196 of file polys0.cc.

197 {
198  char *s=p_String(p, lmRing, tailRing);
199  PrintS(s);
200  omFree(s);
201 }
const CanonicalForm int s
Definition: facAbsFact.cc:55
char * p_String(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:186
BEGIN_NAMESPACE_SINGULARXX const ring lmRing
Definition: DebugPrint.h:30
return P p
Definition: myNF.cc:203
BEGIN_NAMESPACE_SINGULARXX const ring const ring tailRing
Definition: DebugPrint.h:30
#define omFree(addr)
Definition: omAllocDecl.h:261
void PrintS(const char *s)
Definition: reporter.cc:284

◆ p_Write0() [2/2]

static void p_Write0 ( poly  p,
ring  p_ring 
)
inlinestatic

Definition at line 1175 of file p_polys.h.

1176 {
1177  p_Write0(p, p_ring, p_ring);
1178 }
return P p
Definition: myNF.cc:203
void p_Write0(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:196

◆ p_wrp() [1/2]

void p_wrp ( poly  p,
ring  lmRing,
ring  tailRing 
)

Definition at line 237 of file polys0.cc.

238 {
239  poly r;
240 
241  if (p==NULL) PrintS("NULL");
242  else if (pNext(p)==NULL) p_Write0(p, lmRing);
243  else
244  {
245  r = pNext(pNext(p));
246  pNext(pNext(p)) = NULL;
247  p_Write0(p, tailRing);
248  if (r!=NULL)
249  {
250  PrintS("+...");
251  pNext(pNext(p)) = r;
252  }
253  }
254 }
BEGIN_NAMESPACE_SINGULARXX const ring lmRing
Definition: DebugPrint.h:30
return P p
Definition: myNF.cc:203
BEGIN_NAMESPACE_SINGULARXX const ring const ring tailRing
Definition: DebugPrint.h:30
const ring r
Definition: syzextra.cc:208
void p_Write0(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:196
void PrintS(const char *s)
Definition: reporter.cc:284
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
polyrec * poly
Definition: hilb.h:10

◆ p_wrp() [2/2]

static void p_wrp ( poly  p,
ring  p_ring 
)
inlinestatic

Definition at line 1179 of file p_polys.h.

1180 {
1181  p_wrp(p, p_ring, p_ring);
1182 }
return P p
Definition: myNF.cc:203
void p_wrp(poly p, ring lmRing, ring tailRing)
Definition: polys0.cc:237

◆ p_WTotaldegree()

long p_WTotaldegree ( poly  p,
const ring  r 
)

Definition at line 612 of file p_polys.cc.

613 {
615  int i, k;
616  long j =0;
617 
618  // iterate through each block:
619  for (i=0;r->order[i]!=0;i++)
620  {
621  int b0=r->block0[i];
622  int b1=r->block1[i];
623  switch(r->order[i])
624  {
625  case ringorder_M:
626  for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
627  { // in jedem block:
628  j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/]*r->OrdSgn;
629  }
630  break;
631  case ringorder_wp:
632  case ringorder_ws:
633  case ringorder_Wp:
634  case ringorder_Ws:
635  for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
636  { // in jedem block:
637  j+= p_GetExp(p,k,r)*r->wvhdl[i][k - b0 /*r->block0[i]*/];
638  }
639  break;
640  case ringorder_lp:
641  case ringorder_ls:
642  case ringorder_rs:
643  case ringorder_dp:
644  case ringorder_ds:
645  case ringorder_Dp:
646  case ringorder_Ds:
647  case ringorder_rp:
648  for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
649  {
650  j+= p_GetExp(p,k,r);
651  }
652  break;
653  case ringorder_a64:
654  {
655  int64* w=(int64*)r->wvhdl[i];
656  for (k=0;k<=(b1 /*r->block1[i]*/ - b0 /*r->block0[i]*/);k++)
657  {
658  //there should be added a line which checks if w[k]>2^31
659  j+= p_GetExp(p,k+1, r)*(long)w[k];
660  }
661  //break;
662  return j;
663  }
664  case ringorder_c:
665  case ringorder_C:
666  case ringorder_S:
667  case ringorder_s:
668  case ringorder_aa:
669  case ringorder_IS:
670  break;
671  case ringorder_a:
672  for (k=b0 /*r->block0[i]*/;k<=b1 /*r->block1[i]*/;k++)
673  { // only one line
674  j+= p_GetExp(p,k, r)*r->wvhdl[i][ k- b0 /*r->block0[i]*/];
675  }
676  //break;
677  return j;
678 
679 #ifndef SING_NDEBUG
680  default:
681  Print("missing order %d in p_WTotaldegree\n",r->order[i]);
682  break;
683 #endif
684  }
685  }
686  return j;
687 }
for idElimination, like a, except pFDeg, pWeigths ignore it
Definition: ring.h:99
for int64 weights
Definition: ring.h:79
#define Print
Definition: emacs.cc:83
return P p
Definition: myNF.cc:203
opposite of ls
Definition: ring.h:100
long int64
Definition: auxiliary.h:66
int k
Definition: cfEzgcd.cc:93
const ring r
Definition: syzextra.cc:208
for(int i=0;i< R->ExpL_Size;i++) Print("%09lx "
Definition: cfEzgcd.cc:66
static long p_GetExp(const poly p, const unsigned long iBitmask, const int VarOffset)
get a single variable exponent : the integer VarOffset encodes:
Definition: p_polys.h:464
int j
Definition: myNF.cc:70
int i
Definition: cfEzgcd.cc:123
Induced (Schreyer) ordering.
Definition: ring.h:101
S?
Definition: ring.h:83
BOOLEAN p_LmCheckPolyRing(poly p, ring r)
Definition: pDebug.cc:119
const CanonicalForm & w
Definition: facAbsFact.cc:55
s?
Definition: ring.h:84

◆ pEnlargeSet()

void pEnlargeSet ( poly **  p,
int  length,
int  increment 
)

Definition at line 3594 of file p_polys.cc.

3595 {
3596  poly* h;
3597 
3598  if (*p==NULL)
3599  {
3600  if (increment==0) return;
3601  h=(poly*)omAlloc0(increment*sizeof(poly));
3602  }
3603  else
3604  {
3605  h=(poly*)omReallocSize((poly*)*p,l*sizeof(poly),(l+increment)*sizeof(poly));
3606  if (increment>0)
3607  {
3608  //for (i=l; i<l+increment; i++)
3609  // h[i]=NULL;
3610  memset(&(h[l]),0,increment*sizeof(poly));
3611  }
3612  }
3613  *p=h;
3614 }
return P p
Definition: myNF.cc:203
#define omReallocSize(addr, o_size, size)
Definition: omAllocDecl.h:220
#define NULL
Definition: omList.c:10
polyrec * poly
Definition: hilb.h:10
static Poly * h
Definition: janet.cc:978
#define omAlloc0(size)
Definition: omAllocDecl.h:211
int l
Definition: cfEzgcd.cc:94

◆ pHaveCommonMonoms()

BOOLEAN pHaveCommonMonoms ( poly  p,
poly  q 
)

Definition at line 174 of file pDebug.cc.

175 {
176  while (p != NULL)
177  {
178  if (pIsMonomOf(q, p))
179  {
180  return TRUE;
181  }
182  pIter(p);
183  }
184  return FALSE;
185 }
#define FALSE
Definition: auxiliary.h:94
return P p
Definition: myNF.cc:203
#define TRUE
Definition: auxiliary.h:98
#define pIter(p)
Definition: monomials.h:44
BOOLEAN pIsMonomOf(poly p, poly m)
Definition: pDebug.cc:164
#define NULL
Definition: omList.c:10

◆ pIsMonomOf()

BOOLEAN pIsMonomOf ( poly  p,
poly  m 
)

Definition at line 164 of file pDebug.cc.

165 {
166  if (m == NULL) return TRUE;
167  while (p != NULL)
168  {
169  if (p == m) return TRUE;
170  pIter(p);
171  }
172  return FALSE;
173 }
#define FALSE
Definition: auxiliary.h:94
return P p
Definition: myNF.cc:203
#define TRUE
Definition: auxiliary.h:98
#define pIter(p)
Definition: monomials.h:44
int m
Definition: cfEzgcd.cc:119
#define NULL
Definition: omList.c:10

◆ pLDeg0()

long pLDeg0 ( poly  p,
int *  l,
ring  r 
)

Definition at line 738 of file p_polys.cc.

739 {
740  p_CheckPolyRing(p, r);
741  long k= p_GetComp(p, r);
742  int ll=1;
743 
744  if (k > 0)
745  {
746  while ((pNext(p)!=NULL) && (p_GetComp(pNext(p), r)==k))
747  {
748  pIter(p);
749  ll++;
750  }
751  }
752  else
753  {
754  while (pNext(p)!=NULL)
755  {
756  pIter(p);
757  ll++;
758  }
759  }
760  *l=ll;
761  return r->pFDeg(p, r);
762 }
return P p
Definition: myNF.cc:203
#define p_GetComp(p, r)
Definition: monomials.h:72
int k
Definition: cfEzgcd.cc:93
#define pIter(p)
Definition: monomials.h:44
BOOLEAN p_CheckPolyRing(poly p, ring r)
Definition: pDebug.cc:111
const ring r
Definition: syzextra.cc:208
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
int l
Definition: cfEzgcd.cc:94

◆ pLDeg0c()

long pLDeg0c ( poly  p,
int *  l,
ring  r 
)

Definition at line 769 of file p_polys.cc.

770 {
771  assume(p!=NULL);
772  p_Test(p,r);
773  p_CheckPolyRing(p, r);
774  long o;
775  int ll=1;
776 
777  if (! rIsSyzIndexRing(r))
778  {
779  while (pNext(p) != NULL)
780  {
781  pIter(p);
782  ll++;
783  }
784  o = r->pFDeg(p, r);
785  }
786  else
787  {
788  int curr_limit = rGetCurrSyzLimit(r);
789  poly pp = p;
790  while ((p=pNext(p))!=NULL)
791  {
792  if (p_GetComp(p, r)<=curr_limit/*syzComp*/)
793  ll++;
794  else break;
795  pp = p;
796  }
797  p_Test(pp,r);
798  o = r->pFDeg(pp, r);
799  }
800  *l=ll;
801  return o;
802 }
return P p
Definition: myNF.cc:203
static BOOLEAN rIsSyzIndexRing(const ring r)
Definition: ring.h:711
#define p_GetComp(p, r)
Definition: monomials.h:72
static int rGetCurrSyzLimit(const ring r)
Definition: ring.h:714
poly pp
Definition: myNF.cc:296
#define pIter(p)
Definition: monomials.h:44
BOOLEAN p_CheckPolyRing(poly p, ring r)
Definition: pDebug.cc:111
const ring r
Definition: syzextra.cc:208
#define assume(x)
Definition: mod2.h:394
#define p_Test(p, r)
Definition: p_polys.h:160
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
polyrec * poly
Definition: hilb.h:10
int l
Definition: cfEzgcd.cc:94

◆ pLDeg1()

long pLDeg1 ( poly  p,
int *  l,
ring  r 
)

Definition at line 840 of file p_polys.cc.

841 {
842  p_CheckPolyRing(p, r);
843  long k= p_GetComp(p, r);
844  int ll=1;
845  long t,max;
846 
847  max=r->pFDeg(p, r);
848  if (k > 0)
849  {
850  while (((p=pNext(p))!=NULL) && (p_GetComp(p, r)==k))
851  {
852  t=r->pFDeg(p, r);
853  if (t>max) max=t;
854  ll++;
855  }
856  }
857  else
858  {
859  while ((p=pNext(p))!=NULL)
860  {
861  t=r->pFDeg(p, r);
862  if (t>max) max=t;
863  ll++;
864  }
865  }
866  *l=ll;
867  return max;
868 }
return P p
Definition: myNF.cc:203
#define p_GetComp(p, r)
Definition: monomials.h:72
int k
Definition: cfEzgcd.cc:93
BOOLEAN p_CheckPolyRing(poly p, ring r)
Definition: pDebug.cc:111
const ring r
Definition: syzextra.cc:208
static int max(int a, int b)
Definition: fast_mult.cc:264
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
int l
Definition: cfEzgcd.cc:94

◆ pLDeg1_Deg()

long pLDeg1_Deg ( poly  p,
int *  l,
ring  r 
)

Definition at line 909 of file p_polys.cc.

910 {
911  assume(r->pFDeg == p_Deg);
912  p_CheckPolyRing(p, r);
913  long k= p_GetComp(p, r);
914  int ll=1;
915  long t,max;
916 
917  max=p_GetOrder(p, r);
918  if (k > 0)
919  {
920  while (((p=pNext(p))!=NULL) && (p_GetComp(p, r)==k))
921  {
922  t=p_GetOrder(p, r);
923  if (t>max) max=t;
924  ll++;
925  }
926  }
927  else
928  {
929  while ((p=pNext(p))!=NULL)
930  {
931  t=p_GetOrder(p, r);
932  if (t>max) max=t;
933  ll++;
934  }
935  }
936  *l=ll;
937  return max;
938 }
return P p
Definition: myNF.cc:203
#define p_GetComp(p, r)
Definition: monomials.h:72
int k
Definition: cfEzgcd.cc:93
BOOLEAN p_CheckPolyRing(poly p, ring r)
Definition: pDebug.cc:111
long p_Deg(poly a, const ring r)
Definition: p_polys.cc:586
const ring r
Definition: syzextra.cc:208
static int max(int a, int b)
Definition: fast_mult.cc:264
#define assume(x)
Definition: mod2.h:394
static long p_GetOrder(poly p, ring r)
Definition: p_polys.h:416
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
int l
Definition: cfEzgcd.cc:94

◆ pLDeg1_Totaldegree()

long pLDeg1_Totaldegree ( poly  p,
int *  l,
ring  r 
)

Definition at line 974 of file p_polys.cc.

975 {
976  p_CheckPolyRing(p, r);
977  long k= p_GetComp(p, r);
978  int ll=1;
979  long t,max;
980 
981  max=p_Totaldegree(p, r);
982  if (k > 0)
983  {
984  while (((p=pNext(p))!=NULL) && (p_GetComp(p, r)==k))
985  {
986  t=p_Totaldegree(p, r);
987  if (t>max) max=t;
988  ll++;
989  }
990  }
991  else
992  {
993  while ((p=pNext(p))!=NULL)
994  {
995  t=p_Totaldegree(p, r);
996  if (t>max) max=t;
997  ll++;
998  }
999  }
1000  *l=ll;
1001  return max;
1002 }
return P p
Definition: myNF.cc:203
#define p_GetComp(p, r)
Definition: monomials.h:72
static long p_Totaldegree(poly p, const ring r)
Definition: p_polys.h:1430
int k
Definition: cfEzgcd.cc:93
BOOLEAN p_CheckPolyRing(poly p, ring r)
Definition: pDebug.cc:111
const ring r
Definition: syzextra.cc:208
static int max(int a, int b)
Definition: fast_mult.cc:264
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
int l
Definition: cfEzgcd.cc:94

◆ pLDeg1_WFirstTotalDegree()

long pLDeg1_WFirstTotalDegree ( poly  p,
int *  l,
ring  r 
)

Definition at line 1037 of file p_polys.cc.

1038 {
1039  p_CheckPolyRing(p, r);
1040  long k= p_GetComp(p, r);
1041  int ll=1;
1042  long t,max;
1043 
1044  max=p_WFirstTotalDegree(p, r);
1045  if (k > 0)
1046  {
1047  while (((p=pNext(p))!=NULL) && (p_GetComp(p, r)==k))
1048  {
1049  t=p_WFirstTotalDegree(p, r);
1050  if (t>max) max=t;
1051  ll++;
1052  }
1053  }
1054  else
1055  {
1056  while ((p=pNext(p))!=NULL)
1057  {
1058  t=p_WFirstTotalDegree(p, r);
1059  if (t>max) max=t;
1060  ll++;
1061  }
1062  }
1063  *l=ll;
1064  return max;
1065 }
return P p
Definition: myNF.cc:203
#define p_GetComp(p, r)
Definition: monomials.h:72
int k
Definition: cfEzgcd.cc:93
BOOLEAN p_CheckPolyRing(poly p, ring r)
Definition: pDebug.cc:111
const ring r
Definition: syzextra.cc:208
static int max(int a, int b)
Definition: fast_mult.cc:264
long p_WFirstTotalDegree(poly p, const ring r)
Definition: p_polys.cc:595
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
int l
Definition: cfEzgcd.cc:94

◆ pLDeg1c()

long pLDeg1c ( poly  p,
int *  l,
ring  r 
)

Definition at line 876 of file p_polys.cc.

877 {
878  p_CheckPolyRing(p, r);
879  int ll=1;
880  long t,max;
881 
882  max=r->pFDeg(p, r);
883  if (rIsSyzIndexRing(r))
884  {
885  long limit = rGetCurrSyzLimit(r);
886  while ((p=pNext(p))!=NULL)
887  {
888  if (p_GetComp(p, r)<=limit)
889  {
890  if ((t=r->pFDeg(p, r))>max) max=t;
891  ll++;
892  }
893  else break;
894  }
895  }
896  else
897  {
898  while ((p=pNext(p))!=NULL)
899  {
900  if ((t=r->pFDeg(p, r))>max) max=t;
901  ll++;
902  }
903  }
904  *l=ll;
905  return max;
906 }
return P p
Definition: myNF.cc:203
static BOOLEAN rIsSyzIndexRing(const ring r)
Definition: ring.h:711
#define p_GetComp(p, r)
Definition: monomials.h:72
static int rGetCurrSyzLimit(const ring r)
Definition: ring.h:714
BOOLEAN p_CheckPolyRing(poly p, ring r)
Definition: pDebug.cc:111
const ring r
Definition: syzextra.cc:208
static int max(int a, int b)
Definition: fast_mult.cc:264
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
int l
Definition: cfEzgcd.cc:94

◆ pLDeg1c_Deg()

long pLDeg1c_Deg ( poly  p,
int *  l,
ring  r 
)

Definition at line 940 of file p_polys.cc.

941 {
942  assume(r->pFDeg == p_Deg);
943  p_CheckPolyRing(p, r);
944  int ll=1;
945  long t,max;
946 
947  max=p_GetOrder(p, r);
948  if (rIsSyzIndexRing(r))
949  {
950  long limit = rGetCurrSyzLimit(r);
951  while ((p=pNext(p))!=NULL)
952  {
953  if (p_GetComp(p, r)<=limit)
954  {
955  if ((t=p_GetOrder(p, r))>max) max=t;
956  ll++;
957  }
958  else break;
959  }
960  }
961  else
962  {
963  while ((p=pNext(p))!=NULL)
964  {
965  if ((t=p_GetOrder(p, r))>max) max=t;
966  ll++;
967  }
968  }
969  *l=ll;
970  return max;
971 }
return P p
Definition: myNF.cc:203
static BOOLEAN rIsSyzIndexRing(const ring r)
Definition: ring.h:711
#define p_GetComp(p, r)
Definition: monomials.h:72
static int rGetCurrSyzLimit(const ring r)
Definition: ring.h:714
BOOLEAN p_CheckPolyRing(poly p, ring r)
Definition: pDebug.cc:111
long p_Deg(poly a, const ring r)
Definition: p_polys.cc:586
const ring r
Definition: syzextra.cc:208
static int max(int a, int b)
Definition: fast_mult.cc:264
#define assume(x)
Definition: mod2.h:394
static long p_GetOrder(poly p, ring r)
Definition: p_polys.h:416
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
int l
Definition: cfEzgcd.cc:94

◆ pLDeg1c_Totaldegree()

long pLDeg1c_Totaldegree ( poly  p,
int *  l,
ring  r 
)

Definition at line 1004 of file p_polys.cc.

1005 {
1006  p_CheckPolyRing(p, r);
1007  int ll=1;
1008  long t,max;
1009 
1010  max=p_Totaldegree(p, r);
1011  if (rIsSyzIndexRing(r))
1012  {
1013  long limit = rGetCurrSyzLimit(r);
1014  while ((p=pNext(p))!=NULL)
1015  {
1016  if (p_GetComp(p, r)<=limit)
1017  {
1018  if ((t=p_Totaldegree(p, r))>max) max=t;
1019  ll++;
1020  }
1021  else break;
1022  }
1023  }
1024  else
1025  {
1026  while ((p=pNext(p))!=NULL)
1027  {
1028  if ((t=p_Totaldegree(p, r))>max) max=t;
1029  ll++;
1030  }
1031  }
1032  *l=ll;
1033  return max;
1034 }
return P p
Definition: myNF.cc:203
static BOOLEAN rIsSyzIndexRing(const ring r)
Definition: ring.h:711
#define p_GetComp(p, r)
Definition: monomials.h:72
static int rGetCurrSyzLimit(const ring r)
Definition: ring.h:714
static long p_Totaldegree(poly p, const ring r)
Definition: p_polys.h:1430
BOOLEAN p_CheckPolyRing(poly p, ring r)
Definition: pDebug.cc:111
const ring r
Definition: syzextra.cc:208
static int max(int a, int b)
Definition: fast_mult.cc:264
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
int l
Definition: cfEzgcd.cc:94

◆ pLDeg1c_WFirstTotalDegree()

long pLDeg1c_WFirstTotalDegree ( poly  p,
int *  l,
ring  r 
)

Definition at line 1067 of file p_polys.cc.

1068 {
1069  p_CheckPolyRing(p, r);
1070  int ll=1;
1071  long t,max;
1072 
1073  max=p_WFirstTotalDegree(p, r);
1074  if (rIsSyzIndexRing(r))
1075  {
1076  long limit = rGetCurrSyzLimit(r);
1077  while ((p=pNext(p))!=NULL)
1078  {
1079  if (p_GetComp(p, r)<=limit)
1080  {
1081  if ((t=p_Totaldegree(p, r))>max) max=t;
1082  ll++;
1083  }
1084  else break;
1085  }
1086  }
1087  else
1088  {
1089  while ((p=pNext(p))!=NULL)
1090  {
1091  if ((t=p_Totaldegree(p, r))>max) max=t;
1092  ll++;
1093  }
1094  }
1095  *l=ll;
1096  return max;
1097 }
return P p
Definition: myNF.cc:203
static BOOLEAN rIsSyzIndexRing(const ring r)
Definition: ring.h:711
#define p_GetComp(p, r)
Definition: monomials.h:72
static int rGetCurrSyzLimit(const ring r)
Definition: ring.h:714
static long p_Totaldegree(poly p, const ring r)
Definition: p_polys.h:1430
BOOLEAN p_CheckPolyRing(poly p, ring r)
Definition: pDebug.cc:111
const ring r
Definition: syzextra.cc:208
static int max(int a, int b)
Definition: fast_mult.cc:264
long p_WFirstTotalDegree(poly p, const ring r)
Definition: p_polys.cc:595
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
int l
Definition: cfEzgcd.cc:94

◆ pLDegb()

long pLDegb ( poly  p,
int *  l,
ring  r 
)

Definition at line 810 of file p_polys.cc.

811 {
812  p_CheckPolyRing(p, r);
813  long k= p_GetComp(p, r);
814  long o = r->pFDeg(p, r);
815  int ll=1;
816 
817  if (k != 0)
818  {
819  while (((p=pNext(p))!=NULL) && (p_GetComp(p, r)==k))
820  {
821  ll++;
822  }
823  }
824  else
825  {
826  while ((p=pNext(p)) !=NULL)
827  {
828  ll++;
829  }
830  }
831  *l=ll;
832  return o;
833 }
return P p
Definition: myNF.cc:203
#define p_GetComp(p, r)
Definition: monomials.h:72
int k
Definition: cfEzgcd.cc:93
BOOLEAN p_CheckPolyRing(poly p, ring r)
Definition: pDebug.cc:111
const ring r
Definition: syzextra.cc:208
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
int l
Definition: cfEzgcd.cc:94

◆ pLength()

static unsigned pLength ( poly  a)
inlinestatic

Definition at line 189 of file p_polys.h.

190 {
191  unsigned l = 0;
192  while (a!=NULL)
193  {
194  pIter(a);
195  l++;
196  }
197  return l;
198 }
const poly a
Definition: syzextra.cc:212
#define pIter(p)
Definition: monomials.h:44
#define NULL
Definition: omList.c:10
int l
Definition: cfEzgcd.cc:94

◆ pp_Jet()

poly pp_Jet ( poly  p,
int  m,
const ring  R 
)

Definition at line 4205 of file p_polys.cc.

4206 {
4207  poly r=NULL;
4208  poly t=NULL;
4209 
4210  while (p!=NULL)
4211  {
4212  if (p_Totaldegree(p,R)<=m)
4213  {
4214  if (r==NULL)
4215  r=p_Head(p,R);
4216  else
4217  if (t==NULL)
4218  {
4219  pNext(r)=p_Head(p,R);
4220  t=pNext(r);
4221  }
4222  else
4223  {
4224  pNext(t)=p_Head(p,R);
4225  pIter(t);
4226  }
4227  }
4228  pIter(p);
4229  }
4230  return r;
4231 }
return P p
Definition: myNF.cc:203
static long p_Totaldegree(poly p, const ring r)
Definition: p_polys.h:1430
#define pIter(p)
Definition: monomials.h:44
static poly p_Head(poly p, const ring r)
Definition: p_polys.h:812
const ring r
Definition: syzextra.cc:208
const ring R
Definition: DebugPrint.cc:36
int m
Definition: cfEzgcd.cc:119
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
polyrec * poly
Definition: hilb.h:10

◆ pp_JetW()

poly pp_JetW ( poly  p,
int  m,
short *  w,
const ring  R 
)

Definition at line 4250 of file p_polys.cc.

4251 {
4252  poly r=NULL;
4253  poly t=NULL;
4254  while (p!=NULL)
4255  {
4256  if (totaldegreeWecart_IV(p,R,w)<=m)
4257  {
4258  if (r==NULL)
4259  r=p_Head(p,R);
4260  else
4261  if (t==NULL)
4262  {
4263  pNext(r)=p_Head(p,R);
4264  t=pNext(r);
4265  }
4266  else
4267  {
4268  pNext(t)=p_Head(p,R);
4269  pIter(t);
4270  }
4271  }
4272  pIter(p);
4273  }
4274  return r;
4275 }
return P p
Definition: myNF.cc:203
long totaldegreeWecart_IV(poly p, ring r, const short *w)
Definition: weight.cc:239
#define pIter(p)
Definition: monomials.h:44
static poly p_Head(poly p, const ring r)
Definition: p_polys.h:812
const ring r
Definition: syzextra.cc:208
const ring R
Definition: DebugPrint.cc:36
int m
Definition: cfEzgcd.cc:119
#define NULL
Definition: omList.c:10
const CanonicalForm & w
Definition: facAbsFact.cc:55
#define pNext(p)
Definition: monomials.h:43
polyrec * poly
Definition: hilb.h:10

◆ pp_Mult_Coeff_mm_DivSelect() [1/2]

static poly pp_Mult_Coeff_mm_DivSelect ( poly  p,
const poly  m,
const ring  r 
)
inlinestatic

Definition at line 996 of file p_polys.h.

997 {
998  int shorter;
999  return r->p_Procs->pp_Mult_Coeff_mm_DivSelect(p, m, shorter, r);
1000 }
return P p
Definition: myNF.cc:203
const ring r
Definition: syzextra.cc:208
int m
Definition: cfEzgcd.cc:119

◆ pp_Mult_Coeff_mm_DivSelect() [2/2]

static poly pp_Mult_Coeff_mm_DivSelect ( poly  p,
int &  lp,
const poly  m,
const ring  r 
)
inlinestatic

Definition at line 1004 of file p_polys.h.

1005 {
1006  int shorter;
1007  poly pp = r->p_Procs->pp_Mult_Coeff_mm_DivSelect(p, m, shorter, r);
1008  lp -= shorter;
1009  return pp;
1010 }
return P p
Definition: myNF.cc:203
poly pp
Definition: myNF.cc:296
const ring r
Definition: syzextra.cc:208
int m
Definition: cfEzgcd.cc:119
polyrec * poly
Definition: hilb.h:10

◆ pp_Mult_mm()

static poly pp_Mult_mm ( poly  p,
poly  m,
const ring  r 
)
inlinestatic

Definition at line 957 of file p_polys.h.

958 {
959  if (p_LmIsConstant(m, r))
960  return pp_Mult_nn(p, pGetCoeff(m), r);
961  else
962  {
963  return r->p_Procs->pp_Mult_mm(p, m, r);
964  }
965 }
return P p
Definition: myNF.cc:203
static poly pp_Mult_nn(poly p, number n, const ring r)
Definition: p_polys.h:922
static number & pGetCoeff(poly p)
return an alias to the leading coefficient of p assumes that p != NULL NOTE: not copy ...
Definition: monomials.h:51
static BOOLEAN p_LmIsConstant(const poly p, const ring r)
Definition: p_polys.h:949
const ring r
Definition: syzextra.cc:208
int m
Definition: cfEzgcd.cc:119

◆ pp_Mult_nn()

static poly pp_Mult_nn ( poly  p,
number  n,
const ring  r 
)
inlinestatic

Definition at line 922 of file p_polys.h.

923 {
924  if (n_IsOne(n, r->cf))
925  return p_Copy(p, r);
926  else
927  return r->p_Procs->pp_Mult_nn(p, n, r);
928 }
return P p
Definition: myNF.cc:203
static FORCE_INLINE BOOLEAN n_IsOne(number n, const coeffs r)
TRUE iff &#39;n&#39; represents the one element.
Definition: coeffs.h:472
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition: p_polys.h:804
const ring r
Definition: syzextra.cc:208

◆ pp_Mult_qq()

static poly pp_Mult_qq ( poly  p,
poly  q,
const ring  r 
)
inlinestatic

Definition at line 1070 of file p_polys.h.

1071 {
1072  if (p == NULL || q == NULL) return NULL;
1073 
1074  if (pNext(p) == NULL)
1075  {
1076 #ifdef HAVE_PLURAL
1077  if (rIsPluralRing(r))
1078  return nc_mm_Mult_pp(p, q, r);
1079 #endif
1080  return r->p_Procs->pp_Mult_mm(q, p, r);
1081  }
1082 
1083  if (pNext(q) == NULL)
1084  {
1085  return r->p_Procs->pp_Mult_mm(p, q, r);
1086  }
1087 
1088  poly qq = q;
1089  if (p == q)
1090  qq = p_Copy(q, r);
1091 
1092  poly res;
1093 #ifdef HAVE_PLURAL
1094  if (rIsPluralRing(r))
1095  res = _nc_pp_Mult_qq(p, qq, r);
1096  else
1097 #endif
1098  res = _p_Mult_q(p, qq, 1, r);
1099 
1100  if (qq != q)
1101  p_Delete(&qq, r);
1102  return res;
1103 }
poly _nc_pp_Mult_qq(const poly p, const poly q, const ring r)
general NC-multiplication without destruction
Definition: old.gring.cc:312
poly _p_Mult_q(poly p, poly q, const int copy, const ring r)
Returns: p * q, Destroys: if !copy then p, q Assumes: pLength(p) >= 2 pLength(q) >=2.
Definition: p_Mult_q.cc:271
return P p
Definition: myNF.cc:203
static poly p_Copy(poly p, const ring r)
returns a copy of p
Definition: p_polys.h:804
poly res
Definition: myNF.cc:322
const ring r
Definition: syzextra.cc:208
static BOOLEAN rIsPluralRing(const ring r)
we must always have this test!
Definition: ring.h:404
static void p_Delete(poly *p, const ring r)
Definition: p_polys.h:843
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
static poly nc_mm_Mult_pp(const poly m, const poly p, const ring r)
Definition: nc.h:240
polyrec * poly
Definition: hilb.h:10

◆ pRestoreDegProcs()

void pRestoreDegProcs ( ring  r,
pFDegProc  old_FDeg,
pLDegProc  old_lDeg 
)

Definition at line 3547 of file p_polys.cc.

3548 {
3549  assume(old_FDeg != NULL && old_lDeg != NULL);
3550  r->pFDeg = old_FDeg;
3551  r->pLDeg = old_lDeg;
3552 }
const ring r
Definition: syzextra.cc:208
#define assume(x)
Definition: mod2.h:394
#define NULL
Definition: omList.c:10

◆ pReverse()

static poly pReverse ( poly  p)
inlinestatic

Definition at line 330 of file p_polys.h.

331 {
332  if (p == NULL || pNext(p) == NULL) return p;
333 
334  poly q = pNext(p), // == pNext(p)
335  qn;
336  pNext(p) = NULL;
337  do
338  {
339  qn = pNext(q);
340  pNext(q) = p;
341  p = q;
342  q = qn;
343  }
344  while (qn != NULL);
345  return p;
346 }
return P p
Definition: myNF.cc:203
#define NULL
Definition: omList.c:10
#define pNext(p)
Definition: monomials.h:43
polyrec * poly
Definition: hilb.h:10

◆ pSetDegProcs()

void pSetDegProcs ( ring  r,
pFDegProc  new_FDeg,
pLDegProc  new_lDeg = NULL 
)

Definition at line 3535 of file p_polys.cc.

3536 {
3537  assume(new_FDeg != NULL);
3538  r->pFDeg = new_FDeg;
3539 
3540  if (new_lDeg == NULL)
3541  new_lDeg = r->pLDegOrig;
3542 
3543  r->pLDeg = new_lDeg;
3544 }
const ring r
Definition: syzextra.cc:208
#define assume(x)
Definition: mod2.h:394
#define NULL
Definition: omList.c:10