A Consumer Library Interfaceto DWARF
David Anderson

1. INTRODUCTION

This document describes an interfacelitmiwarf, a library of functions to pndde access to WARF
delugging information records, \MARF line number information, WARF address range and global
names information, weak names informationVARF frame description information, IARF static
function names, WARF static variables, andARF type information.

The document has long mentioned the "Unix International Programming Languages Special Interest
Group" (PLSIG), under whose auspices th&V/ARF committee was formed around 1991Unix
International” was disbanded in the 1990s and no longer exists.

The DNARF committee published\WARF2 July 27, 1993.

In the mid 1990s this document and the library it describes (which the commiteeeemdorsed, hang
decided not to endorse or appeoay particular library interface) was madgadable on the internet by
Silicon Graphics, Inc.

In 2005 the DVARF committee bgen an dfiliation with FreeStandardsar In 2007 FreeStandardsgor
merged with The Linux Bundation. Th®WARF committee dropped itsfdfation with FreeStandardsgr
in 2007 and established the alfistd.og website. Seéhttp://www.dwarfstd.og" for current information
on standardization activities and a gaf the standard.

1.1 Copyright
Copyright 1993-2006 Silicon Graphics, Inc.

Copyright 2007-2015 David Anderson.

Permission is hereby granted to gap republish or use gnor dl of this document without restriction
except that when publishing more than a small amount of the document please acknowledge Silicon
Graphics, Inc and David Anderson.

This document is distributed in the hope that dud be useful, but WITHOUT ANY WRRANTY;
without esen the implied warranty of MERCHANABILITY or FITNESS FOR A RRTICULAR
PURPOSE.

1.2 Purpose and Scope

The purpose of this document is to document a library of functions to act®8KRMP dehlugging
information. There is no effort made in this document to address the creation of these records as those
issues are addressed separately (see "A Producer Library Interfadé RMAD).

Additionally, the focus of this document is the functional irded, and as such, implementation as well as

optimization issues are intentionally ignored.

1.3 Document History

A document vas written about 1991 which had similar layout and iat&$. Writterby people from Hal

rev 2.48, Mar 14, 2016 -1-



Corporation, That document described a library for readifgARF1. Theauthors distributed paper
copies to the committee with the clearly expressed intent to propose the document as a suppa@ted interf
definition. Thecommittee decided not to pursue a library definition.

SGI wrote the document you arewnoeading in 1993 with a similar layout and content argirgration,

but it was complete documentwsdte with the intent to read WARF2 (the DVARF version then in
existence). Thantent was (and is) to also s future revisions of B/ARFE All the function interdces
were changed in 1994 to uniformly return a simple integer success-codéNs&d ¥ OK etc), generally
following the recommendations in the chapter titled "Candy Machine dne='f of "Writing Solid Code",
a book by Stge Maguire (published by Microsoft Press).

1.4 Definitions

DWARF debugging information entries (DIEs) are thgnsents of information placed in thelebug_*

sections by compilers, assemblers, and linkage editors that, in conjunction with line number entries, are
necessary for symbolic source4t debugging. Referto the latest DWARF Debugging Information

Format" from www.dwarfstd.ay for a more complete description of these entries.

This document adopts all the terms and definitionsDWARF Debugging Information Format" versions
2,3,4, and 5.1t originally focused on the implementation at Silicon Graphics, Inc., butattempts to be
more generally useful.

1.5 Overview

The remaining sections of this document describe the proposed interfadedwar f , first by describing

the purpose of additional types ihefd by the interface, followed by descriptions of theilable
operations. Thiglocument assumes you are thoroughly familiar with the information contained in the
DWARF Debugging Information Format document.

We eparate the functions intovs&eal categories to emphasize that not all consumart to use all the
functions. V¢ all the catgories Dehgger Internal-level, High-level, and Miscellaneous not because one
is more important than another but as a way of making the ratlyer $at of function calls easier to
understand.

Unless otherwise specified, all functions and structures should ée sakbeing designed for Dejyer
consumers.

The Debugger Interface of this library is intended to be used hygdels. Theanterface is lov-level
(close to dwarf) but suppresses irvale detail. A debugger will want to absorb all of some sections at
startup and will want to see little or nothing of some sectignsp at need. Andven then will probably
want to absorb only the information in a single compilation unit at a titndebugger does not care about
implementation details of the library.

The Internal-lgel Interface is for a WARF prettyprinter and cheek A thorough prettyprinter will ant

to know al kinds of internal things (lie ectual FORM numbers and actual offsets) so it can check for
appropriate structure in theVBARF data and print (on request) all that internal information for human
users and libdwarf authors and compileiters. Callsin this interface provide data a debugger does not
normally care about.

The High-level Interface is for higher kel access (it is not really a highvd interface!). Programsuch as
disassemblers will want to be able to displayvaieinformation about functions and line numbers without
having to ivest too much effort in looking at\BARF.

The miscellaneous interface is just what is lgfirothe error handler functions.

The following is a brief mention of the changes in this libdwarf from the Eivfldraft for DVARF \ersion
1 and recent changes.

rev 2.48, Mar 14, 2016 -2-



1.6 Items Changed

Adding support for BVARF5 .delbg loc.dw and split dwarf range tables. Added
dwarf_get_ofset_size(). (Neember 08, 2015)

Adding support for reading WARF5 line tables and GNU twlevel line tables. The function
dwarf_srclines() still wrks but those using \WARF4 or DNVARF5 are advised to switch to
dwarf_srclines_b(). derf_srclines() cannot handleedkton line tables sensibly and awimterface vas
needed for two-hel line tables so the meapproach satisfies both. (October 5,2015)

Adding support for Package Files\lARF5) to enable access of address data usig BDRM_addrx.
See dvarf_set_tied_dbg(). (Septemtis, 2015)

Adding some [DVARF5 support and impved DWP Package File support, using
dwarf_next_cu_header_d().

Added a note about dwf_errmsg(): the string pointer returned should be considered ephemeral, not a
string which remains valid permanentlyser code should print it or cpjit before calling other libdarf
functions on the specific Dwarf_Debug instance. (May 15, 2014)

Added a printf-callback so libdwarf will not actually print to stdout. Added dwarf_highpc_b() so return of
a DWARF4 DW_AT high_pc of class constant can be returned prop@igust 15 2013)

Defined hav the nev operator DW_OP_GNU_const_type is handled. (January 26 2013)

Added dvarf_loclist from_e&pr_b() function which adds gmments of the WARF version (2 for

DWARF2, etc) and the offset size to the atfvloclist from_epr _a() function. Because the
DW_OP_GNU_implicit_pointer opcode is defined differently foWWBRF2 than for later ersions.

(November 2012)

Added nev functions (some for libdwarf client code) and internal logic support for tWWARF4

.delug_types section. The nev functions are derf next cu_header c(), dwf siblingof b(),

dwarf_ofdie_b(), dvarf get cu_die_ offset ygn cu_header_ &fet _b(), dvarf get die_infotypes flag(),
dwarf_get_section_max_offsets_b().

New functions and logic support additional detailed error reporting so that more compiler bugs can be
reported sensibly by consumer code (as opposedvinchbBbdwarf just assume things are ok and blindly
continuing on with erroneous data). Wmber 20, 2010

It seems impossible to default to botdW/DFRAME_CFA_COL and DW_FRAME_CFA_COL3 in a single
build of libdwarf, so the default is mo unambiguously & FRAME_CFA_COL3 unless the coigfure
option --enable-oldframecol is specified at configure time. The functi@fdset frame_cfa alue() may
be used to werride the default : using that functionvgs consumer applications full control (its use is
highly recommended). (January 17,2010)

Added dwarf_set_reloc_application() and the default automatic application of EIf rela’ relocations to
DWARF sections (such rela sections appear irles,fnot in &ecutables or shared objects, in general).
The dwarf_set reloc_application() routine lets a consumer tufrth&f automatic application ofela’
relocations if desired (it is not clear wlnyone would really want to do thatutopossibly a consumer
could write its @vn relocation application). An example application thateirses a set of DIEs was added

to the nev dwarfexample directory (not in this libdwarf directobyt in parallel to it). (July 10, 2009)

Added dvarf_get ARG _name() (and the FORMTAand so on) interface functions so applications can get
the string of the AG, Attribute, etc as needed. (June 2009)

Added dwarf_get ranges_a() andafvloclist from_e&pr_a() functions which add arguments allowing a
correct address_size when the address_size varies by compilation wmititg address_size is quite rare
as of May 2009). (May 2009)

Added dvarf_set_frame_sameale(), and darf_set _frame_undefinedalue() to complete the set of
frame-information functions needed to all@n aplication get all frame information returned correctly
(meaning that it can be correctly interpreted) for all ABIs. Documenteatfdset frame cfa value().

rev 2.48, Mar 14, 2016 -3-



Corrected spelling to dwarf_set_frame_rule_initialue(). (April2009).

Added support for various\BMARF3 features, Ut primarily a nev frame-information interface tailorable at
run-time to more than a single ABI See ativset frame_rule_initial_value(),
dwarf_set _frame_rule_table_size(), v set_frame_cfa alue(). Sealso dvarf_get fde_info_for_reg3()

and dwarf_get fde_info_for_cfa g&(). (April 2006)

Added support for B/ARF3 .debug_pubtypes section. Corrected various leaks (revising dealloc() calls,
adding ne functions) and corrected dwarf_formstring() documentation.

Added dwarf_srclines_dealloc() as the yiwes deallocation method documented for data returned by
dwarf_srclines() was incapable of freeing all the allocated storage (14 July 2005).

dwarf_netglob(), dwarf_globname(), and dwarf_globdie() were all changed to operate on the items in the
.debug_pubnames section.

All functions were modified to return solely an error code. Data is returned through pomigereats.
This makes writing safe and correct library-using-code far eaBaerjustification for this approach, see
the chapter titled "Candy Machine Interfaces" in the book "Writing Solid Code" g Bleguire.

1.7 Items Removed

Dwarf_Type was remad snce types are no longer special.

dwarf_typeof() was rema@d since types are no longer special.

Dwarf_Ellist was remeed since element lists no longer are a special format.
Dwarf_Bounds was remved snce bounds ha been generalized.

dwarf_netdie() was replaced by édsf next_cu_header() to reflect the real wayVBRF is oganized.
The dvarf_netdie() was only useful for getting to compilation uniglmnings, so it does not seem harmful
to remave it in favar of a more direct function.

dwarf_childcnt() is remeed on gounds that no good use was apparent.

dwarf_prevline() and dvarf_nectline() were remweed on grounds this is better left to a debugger to do.
Similarly, dwarf_dieline() was remeed.

dwarf_islstline() was remved as it wvas not meaningful for the revised\B\RF line operations.

Any libdwarf implementation might well decide to support all the resddunctionality and to retain the
DWARF Version 1 meanings of that functionalityhis would be dffcult because the original libcrf
draft specification used traditional C library interfaces which confuse ahes returned by successful
calls with exceptional conditions Bkfailures and 'no more data’ indications.

1.8 Revision History

July 2014 Added support for the .gdb_indeection and started support for the .dgbcu_index
and .debug_tu_indesections.

October 2011 DWARF4 support for reading .debug_types added.

March 93 Work on DWARF2 SGI draft begins
June 94 The function returns are changed to return an error/success code only.
April 2006: Support for &WARF3 consumer operations is close to completion.

November 2010: Added various wedunctions and impneed error checking.

rev 2.48, Mar 14, 2016 -4 -



2. Types Definitions

2.1 General Description

Thelibdwarf.h header file contains typedefs and preprocessor definitions of types and symbolic names used
to reference objects dibdwarf. The types defined by typedefs containedlilodwarf.h all use the
convention of addingDwar f _ as a prefix and can be placed in three categories:

« Scalar types : The scalar types definedbdwarf.h are defined primarily for notational cagnience
and identiication. Dependingn the individual definition, theare interpreted as a value, a pointer
or as a flag.

« Aggregae types : Some values can not be represented by a single scalar typejutiiebe
represented by a collection of, or as a union of, scalar and/ogaiggtgpes.

- Opaque types : The complete definition of these types is intentionally omitted; their use is as handles
for query operations, which will yield either an instance of another opaque type to be used in another
guery or an nstance of a scalar or aggae type, which is the actual result.

2.2 Scalar Types
The following are the defined Bibdwarf.h:

typedef int Dwar f _Bool ;

typedef unsigned long |ong Dwarf_ O f;

typedef unsigned | ong | ong Dwarf_Unsi gned;

typedef unsi gned short Dwar f _Hal f;

typedef unsi gned char Dwar f _Smal | ;

typedef signed |l ong |ong Dwar f _Si gned;

typedef unsigned | ong | ong Dwarf_Addr;

typedef void *Dwarf_Ptr;

typedef void (*Dwarf_Handl er) (Dwarf_Error error, Dwarf_Ptr errarg);

Dwarf_Ptr is an address for use by the host program calling the Jilmatryfor representing pc-
values/addresses within the target objelet. f Dwarf_Addr is for pc-alues within the target objedtef.
The sample scalar type assignmentsvabae for alibdwarf.h that can read and write 32-bit or 64-bit
binaries on a 32-bit or 64-bit host machin&he types must bedefned appropriately for each
implementation of libdwarf. A description of these scalar types in the SGI/MIP@renment is gien in
Figure 1.

rev 2.48, Mar 14, 2016 -5-



NAME SIZE ALIGNMENT PURPOSE
Dwarf_Bool 4 4 Boolean states
Dwarf_ Off 8 8 Unsigned file offset
Dwarf_Unsigned 8 8 Unsigned large integer
Dwarf_Half 2 2 Unsigned medium integer
Dwarf_Small 1 1 Unsigned small integer
Dwarf_Signed 8 8 Sgned large integer
Dwarf_Addr 8 8 Program address
(target program)
Dwarf_Ptr 4|8 4|8 Dwarf section pointer
(host program)
Dwarf_Handler 4|8 4|8 Pointeto
error handler function

Figurel. Scalar Types

2.3 Aggregate Types

The following aggrgate types are defed by libdwarf.h: Dwarf_Loc, Dwarf_Locdesc,
Dwar f _Bl ock, Dwarf_Frame_Op. Dwarf_Regtabl e. Dwarf_Regtabl e3. While most of

I i bdwar f acts on or returns simple values or opaque pointer types, this small set of structures seems
useful.

2.3.1 Location Record

TheDwar f _Loc type identifies a single atom of a location description or a location expression.

typedef struct {

Dwar f _Smal | Ir_atom

Dwar f _Unsi gned I r_nunber;

Dwar f _Unsi gned I r_nunber2;

Dwar f _Unsi gned Ir_offset;
} Dwarf_Loc;

Thel r _at omidentifies the atom corresponding to tB&/ OP_* definition in dwarf.h and it represents
the operation to be performed in order to locate the item in question.

Thel r _nunber field is the operand to be used in the calculation specified by thaet omfield; not all
atoms use thisidld. Someatom operations imply signed numbers so it is necessary to cast this to a
Dwar f _Si gned type for those operations.

Thel r _nunber 2 field is the second operand specified byltheat omfield; onlyDW OP_BREGX has
this field. Someatom operations imply signed numbers so it may be necessary to cast this to a
Dwar f _Si gned type for those operations.

For aDW OP_i npl i ci t _val ue operator thd r _nunber 2 field is a pointer to the bytes of thalwe.
The field pointed to i$ r _numnber bytes long. There is no explicit terminatdbo not attempt td r ee
the bytes which r _nunber 2 points at and do not alter those bytes. The pointer value reneidgiV
the open Dwarf_Dehlug is closed. This is a rather ugly use of a host integer to hold a poffaerwill
normally hae o do a tast’ operation to use the value.

For aDW OP_GNU_const _t ype operator the r _nunber 2 field is a pointer to a block with an initial
unsigned byte giving the number of bytes following, followed immediately that number of @dust v

rev 2.48, Mar 14, 2016 -6-



bytes. Theras no explicit terminator Do not attempt tdf r ee the bytes whicH r _nunber 2 points at
and do not alter those bytes. The pointer value remains valid till the opefi D&hug is closed. This is a
rather ugly use of a host integer to hold a poin¥eu will normally hae  do a tast’ operation to use the
value.

Thelr _of fset field is the byte déet (within the block the location record came from) of the atom
specifed by thel r _at omfield. Thisis set on all atoms. This is useful for operatidig OP_SKI P and
DW OP_BRA.

2.3.2 Location Description

TheDwar f _Locdesc type represents an ordered listyfar f _Loc records used in the calculation to
locate an item. Note that in marases, the location can only be calculated at runtime of the associated
program.

typedef struct {

Dwar f _Addr I d_I opc;
Dwar f _Addr I d_hi pc;
Dwar f _Unsi gned | d_cents;
Dwar f _Loc* I d_s;

} Dwarf Locdesc;

Thel d_I opc andl d_hi pc fields provide an address range for which this location descriptatids v
Both of these fields are set zero if the location descriptor is valid throughout the scope of the item it is
associated with. These addresses are virtual memory addressedsetstfiim-something. Theirtual
memory addresses do not account for dseement (none of the pcalues from libdwarf do that, it is up to
the consumer to do that).

Thel d_cent s field contains a count of the numbewfar f _Loc entries pointed to by tHed_s field.

Thel d_s field points to an array @war f _Loc records.

2.3.3 Data Block

The Dwarf_Bl ock type is used to contain the value of an attribute whose form is either
DW FORM bl ock1, DW FORM bl ock?2, DW FORM bl ock4, DW FORM bl ocks8, or
DW FORM bl ock. Its intended use is to dedr the value for an attribute of aof these forms.

typedef struct {
Dwar f _Unsi gned bl | en;
Dwarf_ Ptr bl data;
} Dwarf _Bl ock;

Thebl _I en field contains the length in bytes of the data pointed to bylthdat a field.

The bl _dat a field contains a pointer to the uninterpreted data. Since wealxaarf _Ptr here one
must cop the pointer to some other type (typicallywamsi gned char *) so me can add increments to
index through the data. The data pointed tdiby dat a is not necessarily at gruseful alignment.

rev 2.48, Mar 14, 2016 -7-



2.3.4 Frame Operation Codes: DWARF 2

This interface is adequate foMARF2 but not for BVARF3. A separate interface usable foMBRF3
and for DNARF?2 is described belo This interface is deprecated. Use the interface MWABRF3 and
DWARF2. Sealso the section "Lw Levd Frame Operations" belo

The DNARF2Dwar f _Fr ame_Qp type is used to contain the data of a single instruction of an instruction-
sequence of le-level information from the section containing frame informatidthis is ordinarily used
by Internal-le#el Consumers trying to printverything in detail.

typedef struct {
Dwarf _Small fp_base op;
Dwarf_Smal| fp_extended_op;
Dwar f _Hal f fp_register;
Dwarf _Si gned fp_offset;
Dwarf O fset fp_instr_offset;
} Dwarf Frane_ Op;

fp_base _op is the 2-bit basic op codef p_extended_op is the 6-bit extended opcode (if
f p_base_op indicated there was an extended op code) and is zero otherwise.

fp_register is ary (or the first) register value as defined in tBal | Frane Instruction
Encodi ngs figure in thedwar f document. Ifhot used with the Op itis 0.

fp_offset is the address, delta, offset, or second register as defined irCahke Frane
I nstruction Encodi ngs figure in thedwar f document. Ifthis is anaddr ess then the walue
should be cast tbDwar f _Addr ) before being used. In wmmplementation thisiéld *must* be as laje
as the larger of Dwarf_Signed and Dwarf_Addr for this to work propéftyot used with the op it is 0.

fp_instr_of fset is the byte offset (within the instruction stream of the frame instructions) of this
operation. Isstarts at O for a gen frame descriptor.

2.3.5 Frame Regtable: DWARF 2

This interface is adequate fofMARF2 and MIPS but not for\WARF3. Aseparate and preferred inteé
usable for WWARF3 and for DVARF2 is described belo See also the section "o Levd Frame
Operations" belw.

TheDwar f _Regt abl e type is used to contain thegisterrestore information for all registers at aa

PC walue. Normallyused by detggers. Ifyou wish to default to this intexfe and to the use of
DW_FRAME_CFA_COL, specify --enable_oldframecol at libdwarf configure time. Or add a call
dwarf_set frame_cfa_value(dbg,DW_FRAME ACEEOL) after your dwarf_init() call, this call replaces
the default libdwarf-compile-time value with DW_FRAME_CFA_COL.

/* DW_REG_TABLE_SIZE must reflect the number of registers
*(DW_FRAME_LAST_REG_NUM) as defined in dwarf.h

*

#define DW_REG_ABLE_SIZE <iill in size here, 66 for MIPS/IRIX>
typedef struct {

struct {
Dwar f _Smal | dw of fset rel evant;
Dwar f _Hal f dw_r eghum
Dwar f _Addr dw of f set;

} rul es| DW REG TABLE_SI ZE] ;

} Dwarf_Regtabl e;

The array is inded by regster number The field values for each ind@re described n¢. For clarity we

rev 2.48, Mar 14, 2016 -8-



describe the field values for indeules[M] (M being ag legd array element index).

dw_of f set _rel evant is non-zero to indicate théw of f set field is meaningful. If zero then the
dw_of f set is zero and should be ignored.

dw_r egnum is the register number applicabléf. dw_of f set _rel evant is zero, then this is the
register number of the register containing the value for registetfMw_of f set _r el evant is non-
zero, then this is the register number of ttgster to use as a base (M may b& IFRAME_CFA_COL,
for example) and thdw_of f set value applies. The value of register M is therefore the valuegifter
dw_r egnhum

dw_of f set should be ignored dlw_of f set _r el evant is zero. If dw_of f set _rel evant is non-
zero, then the consumer code should add &hgevto the value of thegisterdw_r egnumto produce the
value.

2.3.6 Frame Operation Codes: DWARF 3 (and DWARF2)

This interface is adequate foMARF3 and for BWVARF2 (and DVARF4). Itis new in libdwarf in April
2006. Sealso the section "lw Levd Frame Operations" belo

The DNARF2 Dwarf _Frame_Qp3 type is used to contain the data of a single instruction of an
instruction-sequence of welevel information from the section containing frame informatiorhis is
ordinarily used by Internal-lel Consumers trying to printverything in detalil.

typedef struct {

Dwar f _Smal | fp_base_op;
Dwar f _Smal | f p_ext ended_op;
Dwar f _Hal f fp_register;

/* Val ue may be signed, depends on op.

Any applicable data_alignnment_factor has

not been applied, this is the raw offset. */
Dwarf _Unsigned fp_offset _or_block |en;
Dwar f _Smal | *f p_expr_bl ock;

Dwarf O f fp_instr_offset;
} Dwarf_ Frane_Op3;

fp_base _op is the 2-bit basic op codef p_extended_op is the 6-bit extended opcode (if
f p_base_op indicated there was an extended op code) and is zero otherwise.

fp_register is ary (or the first) register value as defined in tBal | Frane Instruction
Encodi ngs figure in thedwar f document. Ifhot used with the Op itis 0.

fp_offset _or_ bl ock | en is the address, delta, offset, or second register as defined Cakhe
Frame Instruction Encodi ngs figure in thedwar f document. Or (depending on the op, it may
be the length of the davf-expression block pointed to Byp_expr _bl ock. If this is anaddr ess then
the value should be cast f®war f _Addr) before being used. In gnmplementation this field *must*
be as large as the larger of Dwarf_Signed and Dwarf_Addr for this to work proffamiyt used with the
opitis 0.

fp_expr_bl ock (if applicable to the op) points to a drfrexpression block which is
fp_offset or bl ock | en bytes long.

fp_instr_of fset is the byte offset (within the instruction stream of the frame instructions) of this
operation. lIsstarts at O for a gen frame descriptor.

rev 2.48, Mar 14, 2016 -9-



-10 -

2.3.7 Frame Regtable: DWARF 3

This interface is adequate forVMARF3 and for DVARF2. Itis newv in libdwarf as of April 2006.The
default configure of libdwarf inserts BV_FRAME_CF_COL3 as the default @Fcolumn. Oradd a call
dwarf_set frame_cfa_value(dbg,DW_FRAME ACEEOL3) after your dwrf_init() call, this call replaces
the default libdwarf-compile-time value with DW_FRAME_CFA COL3.

TheDwar f _Regt abl e3 type is used to contain thegisterrestore information for all registers at aayi
PC walue. Normallyused by debuggers.

typedef struct Dwarf_ Regtable Entry3 s {

Dwar f _Smal | dw of fset _rel evant;
Dwar f _Smal | dw val ue_type;
Dwar f _Hal f dw_r egnum

Dwar f _Unsi gned dw of fset _or_bl ock_|en;
Dwarf _Ptr dw bl ock _ptr;

} Dwar f _Regtabl e Entry3;

typedef struct Dwarf_ Regtabl e3 s {
struct Dwarf_ Regtable Entry3 s rt3 cfa rule;

Dwar f _Hal f rt3 _reg_table_size;
struct Dwarf_ Regtable Entry3 s * rt3 rules;
} Dwarf Regtabl e3;

The array is indeed by regster number The field values for each indere described ne. For clarity we
describe the field alues for inde rulesfM] (M being ay lega array element inde.
(DW_FRAME_CHA_COL3 DW_FRAME_SAME_\AL, DW_FRAME_UNDEFINED_ML are not lgd
array indees, nor is ap index < 0 a >= rt3_reg_table_size); The caller of routines using this struct must
create data space for rt3 _reg_table size entries of struetf[Regtable Entry3 s and arrange that
rt3_rules points to that space and that rt§ table size is set correcthyfhe caller need not (but may)
initialize the contents of the rt3_cfa rule or the rt3_rules arfég following applies to each rt3_rules rule
M:

dw regnum is the register number applicable. If dw regnum is
DW_FRAME_UNDEFINED_ ML, then the register | has undefinedlve. Ifdw_r egnumis
DW_FRAME_SAME_VAL, then the register | has the same value as in the previous frame.

If dw_r egnumis neither of these two, then the following apply:

dw val ue_t ype determines the meaning of the othetds. Itis one of W _EXPR_OFFSET
(0), DW_EXPR_M\AL_OFFSET(1), DV_EXPR_EXPRESSION(2) or
DW_EXPR_VAL_EXPRESSION(3).

If dw val ue_type is DW_EXPR_OFFSET (0) then this is as ilVBRF2 and the d$et(N)
rule orthe register(R) rule of the\WARF3 and DVARF2 document applies. The value is either:
If dw_of f set _r el evant is non-zero, thedw _r egnumis efectively ignored tut
must be identical to W_FRAME_CF_COL3 (and thedw of f set value applies.
The value of register M is therefore the value oAQ@H#us the value oflw_of f set .
The result of the calculation is the address in memory where the value of register M
resides. Thiss the offset(N) rule of the WARF2 and DVARF3 documents.

dw_of f set _rel evant is zero it indicates théw_of f set field is not meaningful.
The value of register M is the value currently imgiséer dw_r egnum (the \alue

DW_FRAME_CFA_COL3 must not appeaonly real rgisters). Thigs the rgister(R)

rule of the WARF3 spec.

rev 2.48, Mar 14, 2016 -10 -



-11 -

If dw_val ue_t ype is DW_EXPR_OFFSET (1) then this is the tha wfiset(N) rule of the
DWARF3 spec appliesThe calculation is identical to that of DW_EXPR_OFFSET (0) but the
value is interpreted as the value ofjister M (rather than the address where registervlue is
stored).

If dw_val ue_t ype is DW_EXPR_EXPRESSION (2) then this is the the expression(E) rule of
the DWVARF3 document.

dw_of f set _or _bl ock_I| en is the length in bytes of the in-memory blopkinted
at by dw_bl ock_ptr. dw bl ock_ptr is a DNARF epression. Esgluate that
expression and the result is the address where the previous value of register M is found.

If dw value_ type is DW_EXPR_\AL _EXPRESSION (3) then this is the the
val_expression(E) rule of theV\ARF3 spec.

dw_of f set _or _bl ock_I| en is the length in bytes of the in-memory blopkinted
at by dw_bl ock_ptr. dw bl ock_ptr is a DNARF epression. Eagluate that
expression and the result is the previous value of register M.

The rulert 3_cfa_rul e is the current value of the CFA. It is interpreted exactlg bRy
register M rule (as described just aBp except that dw_regnum cannot be
CW_FRAME_CR_REG3 or DV_FRAME_UNDEFINED_M\AL or DW_FRAME_SAME_VAL
but must be a real register number.

2.3.8 Macro Details Record
TheDwar f _Macr o_Det ai | s type gives information about a single entry in the .debug.macinfo section.

struct Dwarf_Macro Details_s {
Dwarf O f dnd_of f set;
Dwarf _Smal|l dnd_type;
Dwar f _Si gned dnd_I i neno;
Dwarf _Si gned dnd_fil ei ndex;
char * dnd_nacr o;
b
typedef struct Dwarf_Macro_Details_s Dwarf_Macro_Details;
dnd_of f set is the byte offset, within the .debug_macinfo section, of this macro information.

dnd_t ype is the type code of this macro info entry (or 0, the type code indicating that this is the end of
macro information entries for a compilation unifee DW MACI NFO defi ne, ec in the DNARF
document.

dnd_| i neno is the line number where this entry was found, or 0 if there is no applicable line number.

dnd_fil ei ndex is the file ind& of the file involved. Thisis only guaranteed meaningful on a
DW MACI NFO start _file dnd _type. Setto -1 if unknown (see the functional inté for more
details).

dnd_nacr o is the applicable stringFor a DW MACI NFO_def i ne this is the macro name andlue.
For a DW MACI NFO_undef , or this is the macro nameror a DW MACI NFO vendor _ext this is the
vendor-defined stringalue. or otherdnd_t ypes this is 0.

2.4 Opaque Types

The opaque types declaredlibdwarf.h are used as descriptors for queries agaiVgARF information
stored in various debugging sections. Each time an instance of an opaque type is returned as a result of a

rev 2.48, Mar 14, 2016 -11-



-12 -

libdwarf operation Dwar f _Debug excepted), it should be freed, usidgar f _deal | oc() when it is

no longer of use (read the folong documentation for details, as in at least one case there is a special
routine provided for deallocation anddwarf _deall oc() is not directly called: see

dwarf _srclines()). Somefunctions return a number of instances of an opaque type in a block, by
means of a pointer to the block and a count of the number of opaque descriptors in the block: see the
function description for deallocation rules for such functions. The list of opaque typesddéf
libdwarf.h that are pertinent to the Consumer Librand their intended use is described lelo

typedef struct Dwarf_Debug_s* Dwarf_Debug;

An instance of thé&war f _Debug type is created as a result of a successful calivar f _init (), or

dwarf _elf_init(),andis used as a descriptor for subsequent access td ntbdar f functions on

that object. The storage pointed to by this descriptor should be not be freed, using the
dwar f _deal | oc() function. Insteadree it withdwar f _fi ni sh().

typedef struct Dwarf_Die_s* Dwarf_Die;

An instance of ebwar f _Di e type is returned from a successful call to thear f _si bl i ngof (),

dwarf _child, or dwarf_of fdi e_b() function, and is used as a descriptor for queries about
information related to that DIE. The storage pointed to by this descriptor should be freed, using
dwar f _deal | oc() with the allocation typ®W DLA DI E when no longer needed.

typedef struct Dwarf_Line_s* Dwarf_Line;

Instances ofDwar f _Li ne type are returned from a successful call to tvaarf _srclines()

function, and are used as descriptors for queries about source lines. The storage pointed to by these
descriptors should be individually freed, usirdwarf_deal | oc() with the allocation type

DW DLA LI NEwhen no longer needed.

typedef struct Dwarf_d obal _s* Dwarf_d obal;

Instances oDwar f _G obal type are returned from a successful call todhar f _get _gl obal s()
function, and are used as descriptors for queries about global names (pubnames).

typedef struct Dwarf_Weak s* Dwarf_Wak;

Instances of Dwarf _\Weak type are returned from a successful call to the SGI-specif
dwar f _get _weaks() function, and are used as descriptors for queries about weak n@heestorage
pointed to by these descriptors should be viddially freed, usingdwarf deal | oc() with the
allocation type DW DLA WEAK CONTEXT (or DW DLA WEAK, an dder name, supported for
compatibility) when no longer needed.

typedef struct Dwarf_Func_s* Dwarf_Func;

Instances of Dwarf _Func type are returned from a successful call to the SGI-specif
dwar f _get funcs() function, and are used as descriptors for queries about static function names.

typedef struct Dwarf_Type_s* Dwarf_Type;
Instances of Dwarf_Type type are returned from a successful call to the SGI-specif

dwarf _get _types() function, and are used as descriptors for queries about user defined types.

t ypedef struct Dwarf_Var_s* Dwarf_Var;

rev 2.48, Mar 14, 2016 -12 -



-13 -

Instances of Dwarf _Var type are returned from a successful call to the SGlI-specif
dwar f _get var s() function, and are used as descriptors for queries about static variables.

typedef struct Dwarf_Error_s* Dwarf_FError;

This descriptor points to a structure that provides detailed information about errors detédtod\ogtr f .
Users typically provide a location fdri bdwar f to store this descriptor for the user to obtain more
information about the error The storage pointed to by this descriptor should be freed, using
dwar f _deal | oc() with the allocation typ®wW DLA ERRCORwhen no longer needed.

typedef struct Dwarf_Attribute_s* Dwarf_Attribute;

Instances obwar f _At t ri but e type are returned from a successful call todtarf _attrlist(),
ordwarf_attr () functions, and are used as descriptors for queries about attrédués.v Thestorage
pointed to by this descriptor should be individually freed, udiwgr f _deal | oc() with the allocation
typeDW DLA_ATTRwhen no longer needed.

typedef struct Dwarf_Abbrev_s* Dwarf_Abbrev;

An instance of @war f _Abbr ev type is returned from a successful calldwar f _get abbrev(),
and is used as a descriptor for queries about ibtions in the .dalg_abbre section. Thestorage
pointed to by this descriptor should be freed, usitvgar f _deal | oc() with the allocation type
DW DLA ABBREV when no longer needed.

typedef struct Dwarf_Fde_s* Dwarf_Fde;

Instances oDwar f _Fde type are returned from a successful call todinar f _get _fde_list(),
dwarf _get _fde for_die(),ordwarf_get fde_at_ pc() functions, and are used as descriptors
for queries about frames descriptors.

typedef struct Dwarf_Cie_s* Dwarf_GCie;

Instances oDwar f _Ci e type are returned from a successful call to derf _get _fde_list()
function, and are used as descriptors for queries about information that is commearaidrsenes.

typedef struct Dwarf_Arange_s* Dwarf_Arange;

Instances oDwar f _Ar ange type are returned from successful calls todkar f _get _ar anges(),
ordwar f _get _arange() functions, and are used as descriptors for queries about address fHmges.
storage pointed to by this descriptor should be individually freed, usiagf deal | oc() with the
allocation typeDW DLA_ARANGE when no longer needed.

typedef struct Dwarf_Gdbi ndex_s* Dwarf _Gdbi ndex;

Instances of Dwarf_Gdbi ndex type are returned from successful calls to the
dwar f _gdbi ndex_header () function and are used to extract information from a .gdbxisdetion.
This section is a gcc/gdb extension and is designed to alldebugger fast access to data in .gghbinfo.
The storage pointed to by this descriptor should be freed using a calbtd _gdbi ndex_free()

with a validDwar f _Gdbi ndex pointer as the argument.

typedef struct Dwarf_Xu_Il ndex_Header _s* Dwarf_Xu_l ndex_header;

Instances of Dwarf _Xu_Il ndex_Header _s type are returned from successful calls to the
dwarf _get xu_i ndex_header () function and are used to xteact information from a

rev 2.48, Mar 14, 2016 -13-



-14 -

.debug_cu_inde or debug_tu_inde section. These sections are used to enpissible access to .aw
sections gthered into a .dwp object as part of the DebugFission project allowing separation of an
executable from most of its WARF debugging information. As of May 2015 these sections are accepted
into DWARF5 but the standard has not been relea3éé. storage pointed to by this descriptor should be
freed using a call todwar f _xh_header _free() with a \alid Dwar f _Xul ndexHeader pointer as

the argument.

typedef struct Dwarf_Line_Context_s * Dwarf_Line_Context;

dwar f_srclines_b() returns a Dwrf_Line_Contgt through an argument and thewnatructure
pointer lets us access line header informatiowvadantly.

typedef struct Dwarf_Loc_c_s * Dwarf_Loc_c;
typedef struct Dwarf_Locdesc_c_s * Dwarf_Locdesc_c;
typedef struct Dwarf_Loc_Head c_s * Dwarf_Loc_Head_c;

Dwarf _Loc* are irvolved in the DVARF5 interfaces to location listsThe nev interfaces are all
functional and contents of the aleoypes are not exposed.

typedef struct Dwarf_Macro_Context_s * Dwarf_Macro_Cont ext;

dwarf _get_macro_context() and dwarf_get _macro_context_by offset() return a
Dwarf_Line_Contgt through an argument and theangtructure pointer lets us access macro data from the
.debug_macro section.

3. UTF-8 strings

libdwarf is defned, at various points, to return string pointers or toy®mings into string areas you deé.
DWARF allows the use ddW AT use_UTF8 (DWARF3 and laterPpW ATE_UTF (DWARF4 and later)

to specify that the strings returned are actually in UTF-8 format. What this means is that if UTF-8 is
specfed on a particular object it is up to callers that wish to print all the characters properly to use
language-appropriate functions to eet the char * to wide characters and print the wide charachdts.
ASCII characters in the strings will print properly whether printed as wide characters dheomethods

to corvert UTF-8 strings so thewill print correctly for all such strings is beyond the scope of this
document.

If UTF-8 is not speciéd then one is probably safe in assuming the strings are iso_8859-15 and normal C
printf() will work fine..

In either case one should beamy of corrupted (accidentally or intentionally) strings with ASCII control
characters in thexé Suchcan cause bad effects if simply printed to a device (such as a terminal).

4. Error Handling

The method for detection and disposition of error conditions that arise during accessugdgirtgb
information vialibdwarf is consistent across dibdwarf functions that are capable of producing an error
This section describes the method usetitwarf in notifying client programs of error conditions.

Most functions withinlibdwarf accept as an argument a pointer tbwar f _Er r or descriptor where a

Dwar f _Error descriptor is stored if an error is detected by the functiRoutines in the client program

that provide this gument can query tHawar f _Er r or descriptor to determine the nature of the error and
perform appropriate processing. The intent is that clients do the appropriate processing immediately on
encountering an error and then the client ahiar f _deal | oc to free the descriptor.

In the rare case where the malloc arenaxlsaested when trying to create a Dwarf_Error descriptor a

rev 2.48, Mar 14, 2016 -14 -



-15-

pointer to a statically allocated descriptor will be return€his static descriptor is mein December 2014.

A call todwar f _deal | oc() to free the statically allocated descriptor is harmless (it sets the aluer v
in the descriptor tabDW_DLE_FAILSAFE_ERRAL). Thepossible conflation of errors when the arena is
exhausted (and a dwf_error descriptor is sed past the next reader call inyathread) is considered better
than havindibdwarf callabor t () (as earlietibdwarf did).

A client program can also specify a function to beoked upon detection of an error at the time the library

is initialized (seedwar f _i ni t () ). Whenalibdwarf routine detects an errahis function is called with

two aguments: a code indicating the nature of the error and a pointer provided by the client at initialization
(again seedwar f _i nit ()). Thispointer argument can be used to relay information between the error
handler and other routines of the client prograinclient program can specify or change both the error
handling function and the pointer argument after initialization uslmgrf _set errhand() and

dwarf _seterrarg().

In the case wherbBbdwarf functions are not provided a pointer tdaar f _Er r or descriptoy and no
error handling function was provided at initializatitibdwarf functions print a short message to stdout and
terminate gectution withabort ().

Before March 2018ibdwarf gave up when there was no error handling by emitting a short message on
st derr callingabort (3C).

The following lists the processing steps taken upon detection of an error:

1. Checkthe error argument; if not aNULL pointer dlocate and initialize ebwar f _Err or
descriptor with information describing the errptace this descriptor in the area pointed to by
error, and return a value indicating an error condition.

2. If anerrhand amgument was provided tdwar f _i ni t () at initialization, caller r hand()
passing it the error descriptor and the value of #werarg amgument provided to
dwarf _init(). If the error handling function returns, retubiV DLV _ERRCR indicating an
error condition.

3. If neither theerror argument nor arerr hand amgument was provided Terminate program
execution by callingabort (3C) .

In all cases, it is clear from thelue returned from a function that an error occurredxatiging the
function, since DW_DLV_ERROR is returned.

As can be seen from the aleogeps, the client program can provide an error handler at initialization, and
still provide aner r or argument tolibdwarf functions when it is not desired toveathe error handler
invoked.

If a libdwarf function is called with imalid arguments, the behavior is unibefd. In particular,
supplying aNULL pointer to al i bdwar f function (except where explicitly permitted), or pointers to
invalid addresses or uninitialized data causes uneefbehavior; the return value in such cases is
undefned, and the function may fail tovioke the caller supplied error handler or to return a meaningful
error number Implementations also may aboxeeution for such cases.

Some errors are so inconsequential that it does not warrant rejecting an object or returning @merror
example would be a frame length not being a multiple of an address-size (ngltiaads the only such
inconsequential error). To make it possible for a client to report such errors the function
dwarf _get harm ess_error_|i st returns strings with errorxein them. This function may be
ignored if client code does not amt to bother with such error reporting. See
DwW DLE DEBUG FRAME LENGTH NOT_MULTI PLE in the libdwarf source code.

rev 2.48, Mar 14, 2016 -15-



-16 -

4.1 Returned valuesin thefunctional interface

Values returned by i bdwar f functions to indicate success and errors are enumerated in Figlife2.
DW DLV_NO ENTRY case is useful for functions need to indicate that while thasen® data to return
there was no error eithefor example,dwar f _si bl i ngof () may returnDW DLV_NO_ENTRY to
indicate that that there was no sibling to return.

SYMBOLIC NAME VALUE MEANING
DW_DLV_ERROR 1 Error
DW_DLV_OK 0 Successful call
DW_DLV_NO_ENTRY -1 No applicable value

Figure 2. Error Indications
Each function in the interface that returns a value returns one of the integers invihégaive.

If DW DLV_ERRORIs returned and a pointer taDwar f _Er r or pointer is passed to the function, then a
Dwarf_Error handle is returned through the point& ather pointer value in the intexée returns aalue.
After the Dwar f _Error is no longer of interest, a
dwar f _deal | oc(dbg, dw_err, DW DLA ERROR) on the error pointer is appropriate to freey an
space used by the error information.

If DW DLV_NO_ENTRY is returned no pointer value in the interface returns a value.

If DW DLV_(Kis returned, th&war f _Er r or pointet if supplied, is not touched, butyanther values to

be returned through pointers are returned. In this case calls (depending wacthfeirgction returning the
error) todwar f _deal | oc() may be appropriate once the particular pointer returned is no longer of
interest.

Pointers passed to allovalues to be returned through them are uniformly the last pointers in each
argument list.

All the interface functions are defined from the point ofwief the writer-of-the-library (as is traditional
for UN*X library documentation), not from the point of wieof the user of the libraryThe caller might
code:

Dwarf _Line |ine;

Dwarf _Signed ret | off;

Dwarf _Error err;

int retval = dwarf _lineoff(line, & et |off, &err);

for the function defined as

int dwarf _|ineoff(Dwarf_Line Iine, Dnarf_Signed *return_Ilineoff,
Dwarf Error* err);

and this document refers to the function as returning ahe=\through *err or *return_linebbr uses the
phrase "returns in the location pointed to by err". Sometimes other similar phrases are used.

5. Memory Management

Several of the functions that comprigéodwarf return pointers (opaque descriptors) to structures that ha
been dynamically allocated by the librarjo ad in the management of dynamic memahe function
dwar f _deal | oc() is provided to free storage allocated as a result of a caliiboveerf function. This
section describes the strategy that should be taken by a client program in managing dynamic storage.

5.1 Read-only Properties

All pointers (opaque descriptors) returned by or as a resultibfhsarf Consumer Library call should be

rev 2.48, Mar 14, 2016 -16 -



-17 -

assumed to point to read-only memofihe results are undeéd forlibdwarf clients that attempt to write
to a region pointed to by a value returned Iyoawarf Consumer Library call.

5.2 Storage Deallocation

See the section "Returned values in the functional axtetf abwe, for the general rules where calls to
dwar f _deal | oc() is appropriate.

In some cases the pointers returned bdwarf call are pointers to data which is not freeable. The library
knows from the allocation type praed to it whether the space is freeable or not and will not free
inappropriately wherdwar f _deal | oc() is called. So it is vital thalwar f _deal | oc() be called
with the proper allocation type.

For most storage allocated byibdwarf, the client can free the storage for reuse by calling
dwar f _deal | oc(), providing it with theDwar f _Debug descriptor specifying the object for which the
storage was allocated, a pointer to the area to be free-ed, and aneidtvatf specifies what the pointer
points to (the allocation type)For example, to free @Dbwarf _Di e di e belonging the the object
represented byDwar f _Debug dbg, dlocated by a call todwarf _si blingof (), the call to
dwar f _deal | oc() would be:

dwar f _deal | oc(dbg, die, DWDLA DI E);

To free storage allocated in the form of a list of pointers (opaque descriptors), each member of the list
should be deallocated, foll@d by deallocation of the actual list itself. The following code fragment uses
an invocation ofdwarf _attrlist() as an example to illustrate a technique that can be used to free
storage from anjibdwarf routine that returns a list:

Figure 3. Examplel dwarf_attrlist()

voi d exanpl el(Dwarf_Di e sonedie)
{

Dwar f _Debug dbg = O0;

Dwar f _Si gned atcount;

Dwarf Attribute *atlist;

Dwarf Error error = O;

Dwarf_Signed i = O;

int errv;

errv = dwarf_attrlist(sonedie, &atlist, &tcount, &error);
if (errv == DWDLV_K) {
for (i =0; i < atcount; ++i) {
/* use atlist[i] */
dwarf deal | oc(dbg, atlist[i], DWDLA ATTR);
}
dwarf deal | oc(dbg, atlist, DWDLA LIST);
}
}

The Dwar f _Debug returned fromdwarf _init() ordwarf _elf _init() cannot be freed using
dwar f _deal | oc(). The functiondwar f fi ni sh() will deallocate all dynamic storage associated
with an instance of Bwar f _Debug type. Inparticular it will deallocate all dynamically allocated space
associated with thewar f _Debug descriptoyand finally male the descriptor valid.

An Dwar f _Error returned frondwarf _init() ordwarf_elf _init() in case of a failure cannot

be freed usinglwar f _deal | oc() . The only way to free thédwar f _Err or from either of those calls
is to usefree(3) directly. Every Dwarf Error must be freed bylwar f _deal | oc() except those

rev 2.48, Mar 14, 2016 -17 -



-18 -

returned bydwar f _init () ordwarf_elf_init().

The codes that identify the storage pointed to in caliver f _deal | oc() are described in figure 4.

IDENTIFIER USED TO FREE
DW_DLA_STRING char*

DW_DLA LOC Dwarf_Loc
DW_DLA_LOCDESC Dvarf_Locdesc
DW_DLA_ELLIST Dwarf_Ellist (not used)
DW_DLA_BOUNDS Dwarf_Bounds (not used)
DW_DLA_BLOCK Dwarf_Block
DW_DLA_DEBUG Dwarf_Debug (do not use)
DW_DLA_DIE Dwarf_Die
DW_DLA_LINE Dwarf_Line
DW_DLA_ATTR Dwarf_Attribute
DW_DLA_TYPE Dwarf_Type (notused)
DW_DLA_SUBSCR Dvarf_Subscr (not used)
DW_DLA_GLOBAL_CONTEXT Dwarf_Global
DW_DLA_ERROR Dwarf_Error
DW_DLA_LIST alist of opaque descriptors
DW_DLA_LINEBUF Dwarf_Line* (not used)
DW_DLA_ARANGE Dwarf_Arange
DW_DLA_ABBREV Dwarf_Abbrev
DW_DLA_FRAME_OP Dvarf_Frame_Op
DW_DLA_CIE Dwarf_Cie

DW_DLA_FDE Dwarf_Fde
DW_DLA_LOC_BLOCK Dwarf_Loc Block
DW_DLA_ FRAME_BLOCK Dwarf_Frame Block (not used
DW_DLA_FUNC_CONTEXT Dvarf_Func
DW_DLA_TYPENAME_CONTEXT Dwarf_Type
DW_DLA_VAR_CONTEXT Dwarf_Var
DW_DLA_WEAK_CONTEXT Dwarf_Weak
DW_DLA_PUBTYPES_CONTEXT Dwarf_Type

Figure 4. Allocation/Deallocation Identifiers

6. Functional Interface
This section describes the functionsitable in thelibdwarf library. Each function description includes its
definition, followed by one or more paragraph describing the funstaperation.

The following sections describe these functions.

6.1 Initialization Operations

These functions are concerned with preparing an objecfdr subsequent access by the functions in
libdwarf and with releasing allocated resources when access is complete.

6.1.1 dwarf _init()

rev 2.48, Mar 14, 2016 -18 -



-19 -

int dwarf _init(
int fd,
Dwar f _Unsi gned access,
Dwar f _Handl er errhand,
Dwarf _Ptr errarg,
Dwar f _Debug * dbg,
Dwarf _Error *error)

When it returnsDW DLV_OK, the functiondwar f _i ni t () returns throughdbg a Dwar f _Debug
descriptor that represents a handle for accessing debugging records associated with tleedeserigdtor

fd. DWDLV_NO ENTRY is returned if the object does not contailV®RF debugging information.
DW DLV_ERRORis returned if an error occurredheaccess argument indicates what access is\atd

for the section.The DW DLC_READ parameter is valid for read access (only read access is defined or
discussed in this documentlhe err hand argument is a pointer to a function that will besdked
whenever an aror is detected as a result ofibdwarf operation. Theer r ar g agument is passed as an
argument to theer r hand function. Thefile descriptor associated with thd argument must refer to an
ordinary file (i.e. not a pipe, socket, device, /proc en&y.), be opened with the at least as much
permission as specified by tlaecess argument, and cannot be closed or used as an argumery to an
system calls by the client until aftdwar f _f i ni sh() is called. The seek position of thkefassociated
with f d is undefined upon return dfvar f _i nit ().

With SGI IRIX, by default it is allowed that the app ose() fd immediately after calling
dwar f _i ni t (), but that is nota portable approach (that it works is an accidental side effect oftte f
that SGI IRIX use€ELF_C READ MVAP in its hidden internal call tel f _begi n()). The portable
approach is to consider thad must be left open till after the correspondingadiwfinish() call has
returned.

Sincedwar f _i ni t () uses the same error handling processing as ttidwarf functions (seeerror
Handling above), client programs will generally supply @nr or parameter to bypass the delt actions
during initialization unless the default actions are appropriate.

6.1.2 Dwarf_Handler function

This is an example of a valid error handler functidnpointer to this (or another likit) may be passed to
dwarf _elf _init() ordwarf_init().

static void
sinple_error_handl er(Dwarf_Error error, Dwarf_Ptr errarg)

{
printf("libdwarf error: % %0,
dwarf _errno(error), dwarf_errmsg(error));
exit(l);
}

This will only be called if an error is detected inside libdwarf and the Dwarf_Error argument passed to
libdwarf is NULL. A Dwarf_Error will be created with the error number assigned by the library and passed
to the error handler.

The second argument is a gopf the value passed in thvarf_el f _init() ordwarf _init() as
theerrarg() agument. Vpically the init function wuld be passed a pointer to an application-created
struct containing the data the application needs to do what it wants to do in the error handler.

In a language with exceptions oxception-like features an exception could be thrown here. Or the
application could simply ge wp and callexi t () as in the samplegn above.

rev 2.48, Mar 14, 2016 -19-



-20 -

6.1.3 dwarf_df_init()

int dwarf_elf _init(
EIf * elf file_pointer,
Dwar f _Unsi gned access,
Dwar f _Handl er errhand,
Dwarf_Ptr errarg,
Dwar f _Debug * dbg,
Dwar f _Error *error)

The functiondwar f _el f _i ni t () is identical todwar f _i nit () except that an opeBl f * pointer

is passed instead of @efdescriptor In systems supportingLF object files this may be more space or
time-eficient than usinglwar f _i nit (). The client is allowed to use thg f * pointer for its avn
purposes without restriction during the time twar f _Debug is open, gcept that the client should not
el f _end() the pointer till afterdwar f _fi ni shis called.

6.1.4 dwarf_get_elf()

int dwarf_get_el f(
Dwar f _Debug dbg,
Elf ** el f,
Dwarf _Error *error)

When it returnW DLV_CK, the functiondwar f _get _el f () returns through the pointet f theEl f
* handle used to access the object represented byowhef Debug descriptordbg. It returns
DW DLV_ERROR 0N error.

Becausa nt dwarf _i nit () opens an EIf descriptor on its fd addar f _fi ni sh() does not close
that descriptgran gp should uselwar f _get _el f and should calel f _end with the pointer returned
through theEl f ** handle created hiynt dwarf _init().

This function is not meaningful for a system that does not use the EIlf format for objects.

6.1.5 dwarf_set tied dbg()

int dwarf_set tied_dbg(
Dwar f _Debug dbg,
Dwar f _Debug ti eddbg,
Dwar f _Error *error)

The functiondwar f _set ti ed_dbg() enables cross-object access WARF data. If a BVARF5
Package object ha®W FORM addr x or DW FORM GNU_addr _i ndex in an address attribute one
needs both the Package file and thecatable to extract the actual address wittar f _f or maddr () .
So one does a normdivarf _el f _init() ordwarf _init() on each object and then tie theotw
together with a call such as:

rev 2.48, Mar 14, 2016 -20-



-21-

Figure5. Example2 dwarf_set_died_dbg()
voi d exanpl e2( Dwar f _Debug dbg, Dwarf_Debug tieddbg)

{
Dwarf Error error = 0;
int res = 0;
/* Do the dwarf_init() or dwarf_elf _init
calls to set
dbg, tieddbg at this point. Then: */
res = dwarf_set _tied_dbg(dbg,tieddbg, &rror);
if (res !'= DWDLV_OK) {
/* Sonet hi ng went w ong*/
}
}

When done with both dbg and tieddbg do the normal finishing operations on boyhoirien

It is possible to undo the tieing operation with
Figure 6. Example3 dwarf_set_tied_dbg() obsolete

voi d exanpl e3( Dwar f _Debug dbg)

{
Dwarf Error error = 0;

int res = 0;
res = dwarf_set _tied_dbg(dbg, NULL, &rror);
if (res !'= DWDLV_OK) {

/* Sonet hi ng went w ong*/

}
}

It is not necessary to undo the tieing operation before finishing on the dbg and tieddbg.
6.1.6 dwarf get tied dbg()

int dwarf_get tied_dbg(
Dwar f _Debug [ *dbg*/,
Dwarf _Debug * /*tieddbg_out*/,
Dwarf _Error * [*error*/)

dwarf get tied _dbg returnsDW DLV_CK and setst i eddbg_out to the pointer to thetied’
Dwarf_Delug. Ifthere is no 'tied’ objecti eddbg out is set to NULL.

On error it return®W DLV_ERROR.
It never returnsDW DLV_NO_ENTRY.

6.1.7 dwarf_finish()

int dwarf _finish(
Dwar f _Debug dbg,
Dwarf _Error *error)

The functiondwar f _fi ni sh() releases alLibdwarf internal resources associated with the descriptor
dbg, and invalidatesdbg. It returnsDW DLV_ERRCRIf there is an error during the finishing operatidh.
returnsDW DLV _COK for a successful operation.

Becausa nt dwarf _i nit () opens an EIf descriptor on its fd addar f _fi ni sh() does not close

rev 2.48, Mar 14, 2016 -21-



-22-

that descriptgran gp should uselwar f _get _el f and should calel f _end with the pointer returned
through theEl f ** handle created hiynt dwarf _init().

6.1.8 dwarf_set_stringcheck()

int dwarf_set stringcheck(
i nt stringcheck)

The functioni nt dwarf_set stringcheck() sets a global flag and returns the previous value of
the global flag.

If the stringcheck global flag is zero (the default) libdwarf does string lemdjttity checks (the checks do
slow libdwarf down very slightly). If the stringcheck global flag is non-zero libdwarf does not do string
length validity checks.

The global flag is really just 8 bits long, upperbits are not noticed or recorded.

6.1.9 dwarf_set_reloc_application()

int dwarf_set _rel oc_application(
int apply)

The functioni nt dwarf _set _rel oc_application() sets a global flag and returns thevias
value of the global flag.

If the reloc_application global flag is non-zero (theaddt) then the applicable .rela section (if onests)
will be processed and applied toyddWARF section when it is read irf the reloc_application global flag
is zero no such relocation-application is attempted.

Not all machine types (elf header e_machine) or all relocations are supported, but thew velyctgion
types apply to BWARF debug sections.

The global flag is really just 8 bits long, upperbits are not noticed or recorded.

It seems unlikely anyone will need to call this function.

6.1.10 dwarf_record_cmdline_options()

int dwarf_record _cndline_options(
Dwarf _Cndl i ne_Options options)

The function int dwarf_record cndline_options() copies a Dwrf Cmdline_Options
structure from consumer code to libdwarf.

The structure is defined In bdwar f . h.

The initial version of this structure has a singield check _ver bose_npde which, if non-zero, tells
libdwarf to print some detailed messages to stdout in case certain errors are detected.

The default for this value is FALSE (0) so the extra messagesfdnedefault.

6.2 Section size operations

These operations are informagitut not normally needed.

rev 2.48, Mar 14, 2016 -22-



-23-

6.2.1 dwarf_get_section_max_offsets b()
int dwarf_get section_max_of fsets_ b(Dwarf_debug dbg,

Dwar f _Unsi gned *
Dwar f _Unsi gned
Dwar f _Unsi gned
Dwar f _Unsi gned
Dwar f _Unsi gned
Dwar f _Unsi gned
Dwar f _Unsi gned
Dwar f _Unsi gned
Dwar f _Unsi gned
Dwar f _Unsi gned
Dwar f _Unsi gned
Dwar f _Unsi gned *

*

L T T A . I

/*debug_info_size*/,

/ *debug_abbrev_si ze*/,
/*debug_|i ne_si ze*/,
/*debug_| oc_si ze*/,

/ *debug_ar anges_si ze*/,
/ *debug_naci nfo_si ze*/,
/ *debug_pubnanes_si ze*/,
/*debug_str_size*/,
/*debug_frane_size*/,

/ *debug_ranges_si ze*/,

/ *debug_pubt ypes_si ze*/,
/*debug _types_size*/);

The functiondwar f _get section_nax_of fsets_b() an open Dwrf Dbg and reports on the
section sizes by pushing section siakues baclkhrough the pointers.

Created in October 2011.

6.2.2 dwarf_get_section_max_offsets()

int dwarf_get _section_max_of f set s(Dwarf _debug dbg,

Dwar f _Unsi gned *
Dwar f _Unsi gned
Dwar f _Unsi gned
Dwar f _Unsi gned
Dwar f _Unsi gned
Dwar f _Unsi gned
Dwar f _Unsi gned
Dwar f _Unsi gned
Dwar f _Unsi gned
Dwar f _Unsi gned
Dwar f _Unsi gned *

EE B T R

The function is the same

/*debug_i nfo_size*/,

[ *debug_abbrev_si ze*/,
/*debug_| i ne_si ze*/,
/*debug_| oc_si ze*/,

/ *debug_ar anges_si ze*/,
/ *debug_naci nfo_si ze*/,
/ *debug_pubnanes_si ze*/,
[ *debug_str_size*/,

[ *debug_frane_size*/,

/ *debug_ranges_si ze*/,

/ *debug_pubt ypes_si ze*/);

abrar f _get _secti on_nmax_of fsets_b() except it is missing the

debug_types_si ze() amgument. Thouglobsolete it is still supported.

6.3 Printf Callbacks
This is nev in August 2013.

Thedwarf _print_|ines() function is intended as a helper to programs divar f dunp and sha
some line internal details in aay only the interals of libdwarf can shdhese details. But using printf
directly in libdwarf means the caller has limited control of where the output appears.wShen¢printf

output is passed back to the caller through a callback function whose implementation is provided by the

caller.

Any code calling libdwarf can ignore the functions described in this section complHtiig functions are
ignored the messages (if any) from libdwarf will simply not appear anywhere.

The |ibdwarf.h header file dehes struct Dwarf Printf_Callback Info_s and
dwarf _regi ster_printf_call back for those libdwarf callers wishing to implement the callback.
In this section we describe \wmne uses that intea€e. Theapplicationsdwar f dunp anddwar f dunp2
are examples of othese may be used.

rev 2.48, Mar 14, 2016

-23-



-24 -

6.3.1 dwarf _register_printf_callback

struct Dwarf_ Printf_Callback Info_s
dwarf _register_printf_call back(Dwarf_ Debug dbg,
struct Dwarf_Printf_ Callback Info_s * newal ues);

The dwarf _register_printf_call back() function can only be called after the Bx Debug
instance has been initialized, the call e&ko sense at other times. The function returns the cuaieet v
of the structure.lf newal ues is non-null then the passed-in values are used to initialize thedibdw
internal callback data (theales returned are the values before tleewal ues are recorded).If
newal ues is null no change is made to the libdwarf internal callback data.

6.3.2 Dwarf Printf_Callback Info s
struct Dwarf_Printf_Callback Info_s {

void * dp_user _pointer;

dwarf _printf_call back_function_type dp_fptr;

char * dp_buffer;

unsi gned int dp_buffer_Ien;

i nt dp_buffer_user_provided,;
void * dp_reserved;

s

First we describe the fields as applicable in setting wup for a «call to
dwarf _regi ster_printf_cal |l back().

The ield dp_user _poi nt er is remembered by libdavf and passed back inyaaall libdwarf makes to
the user allback function. It is otherwise ignored by libdwarf.

The fielddp_f pt r is either NULL or a pointer to a user-implemented function.

If the field dp_buf f er _user _provi ded is non-zero thewp_buf f er _| en anddp_buf f er must
be set by the user and libdwarf will use thaffér without doing ap malloc of space. If theidld
dp_buffer_user_provi ded is zero then the inpuidids dp_buf fer | en anddp_buffer are
ignored by libdwarf and space is malldeis reeded.

The fielddp_r eser ved is ignored, it is reserved for future use.

When the structure is returned dyarf regi ster_printf _cal | back() the values of theidlds
before thedwar f _regi ster_printf_cal | back() call are returned.

6.3.3 dwarf_printf_callback_function_type

typedef void (* dwarf_printf_call back function type)(void * user_pointer,
const char * |linecontent);

Any application using the callbacks needs to use the function
dwarf register_printf_callback() and supply a function matching the abofunction
prototype from libdwarf.h.

6.3.4 Example of printf callback usein a C++ application using libdwarf

rev 2.48, Mar 14, 2016 -24 -



-25-

struct Dwarf_Printf_Callback _Info_s printfcall backdat a;
menset (&printfcal | backdat a, 0, si zeof (printfcal | backdata));
printfcal |l backdata.dp_fptr = printf_callback_for_libdwarf;
dwarf _register_printf_call back(dbg, &rintfcal | backdat a);

Assum ng the user inplenments sonething
like the follow ng function in her application:

voi d
printf_call back_for_libdwarf(void *userdata, const char *data)

{
}

It is crucial that the usex’allback function copies or prints the data immediat8lyce the user callback
function returns theat a pointer may change or become stale without warning.

cout << dat a;

6.4 Debugging Information Entry Delivery Operations

These functions are concerned with accessing debugging information entries, whether fram anfieb
.delug_types, .dalg_info.dwo, or .delig_types.dw . Snce all such sections use similar formats, one set
of functions sufces.

6.4.1 dwarf_get_die section_name()

int

dwarf_get_die_section_name(Dwarf_Debug dbg,
Dwarf_Bool is_info,

const char ** sec_name,
Dwarf_Error * error);

dwarf _get _di e_secti on_name() lets consumers access the object section name when nacspecif
DIE is at hand. This is useful for applicationanting to print the name, but of course the object section
name is not really a part of the\B\RF information. Most applications will probably not call this function.

It can be called at @&n time after the Dwarf Delug initialization is done. See also
dwarf _get _di e_section_name_b().

The function dwar f _get _di e_secti on_nane() operates on the either the .dgbinfo[.dwo]
section (ifi s_i nf o is non-zero) or .debug_types|[.dwo] sectiori §f i nf o is zero).

If the function succeed$,sec_nane is set to a pointer to a string with the object section name and the
function returndDW DLV_COK. Do not free the string whose pointer is returnéar non-EIf objects it is
possible the string pointer returned will be NULL or will point to an empty string. It is up to the calling
application to recognize this possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_EXTR

If there is an internal error detected the function retDkivsDLV_ERROR and sets th&er r or pointer.

6.4.2 dwarf get _die section_name b()

int

dwarf_get_die_section_name_b(Dwarf_Die die,
const char ** sec_name,
Dwarf_Error * error);

dwarf _get di e_section_nanme_b() lets consumers access the object section name when one has a

rev 2.48, Mar 14, 2016 -25-



-26 -

DIE. Thisis useful for applications wanting to print the name, but of course the object section name is not
really a part of the W/ARF information. Most applications will probably not call this function. It can be
called at ap time after the Dwarf Delug initialization is done. See also

dwarf _get di e_section_name().

If the function succeed$,sec_nane is set to a pointer to a string with the object section name and the
function returndW DLV_COK. Do not free the string whose pointer is returnéar non-EIf objects it is
possible the string pointer returned will be NULL or will point to an empty string. It is up to the calling
application to recognize this possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_EXTR
If there is an internal error detected the function retDkivsDLV _ERROR and sets th&er r or pointer.

6.4.3 dwarf_next_cu_header_d()

int dwarf_next cu_header d(
Dwar f _debug dbg,
Dwarf _Bool is_info,
Dwar f _Unsi gned *cu_header | engt h,

Dwar f _Hal f *ver si on_stanp,
Dwar f _Unsi gned *abbrev_offset,
Dwar f _Hal f *addr ess_si ze,
Dwar f _Hal f *of f set _si ze,
Dwar f _Hal f *ext ensi on_si ze,
Dwar f _Si g8 *si gnat ur e,

Dwar f _Unsi gned *typeoffset
Dwar f _Unsi gned *next _cu_header,
Dwar f _Hal f *header cu_type,
Dwar f _Error *error);

The functiondwarf _next cu_header _d() operates on the either the .dgbinfo section(if
i s_i nfo is non-zero) or .daly_types section (if s_i nf o is zero). It returnd©W DLV_ERROR if it
fails, andDW DLV_OK if it succeeds.

If it succeeds* next _cu_header is set to the offset in the .debug_info section of thé cempilation-

unit header if it succeed®n reading the last compilation-unit header in the .debug_info section it contains
the size of the .debug_info or debug_types sectidme next call todwar f _next cu_header _b()
returns DW DLV_NO ENTRY without reading a compilation-unit or settingnext cu_header.
Subsequent calls wwar f _next _cu_header () repeat the cycle by reading thest compilation-unit

and so on.

The other values returned through pointers are the values in the compilation-unit Héaafer of
cu_header | ength, version_stanp, abbrev_offset, address_size, offset_size,
ext ensi on_si ze, si gnat ure, ort ypeof f set, isNULL, the argument is ignored (meaning it is not
an error to provide BULL pointer for ay or dl of these arguments).

cu_header _| engt h returns the length in bytes of the compilation unit header.

ver si on_st anp returns the section version, which would be (for .debug_info) 2 WARF2, 3 for
DWARF4, or 4 for DVARF4.

abbr ev_of f set returns the .debug_abbrsection offset of the abbreviations for this compilation unit.
addr ess_si ze returns the size of an address in this compilation unit. Which is usually 4 or 8.

of f set _si ze returns the size in bytes of an offset for the compilation unit. The offset size is 4 for 32bit

rev 2.48, Mar 14, 2016 -26-



-27-

dwarf and 8 for 64bit darf. Thisis the ofset size in dwarf data, not the address size insidexdoaitable
code. Theoffset size can be 4ven if embedded in a 64bit elflé (which is normal for 64bit elf), and can
be 8 @en in a 2bit elf file (which probably will neer be £en in practice).

Theext ensi on_si ze pointer is only releant if theof f set _si ze pointer returns 8 The value is not
normally useful but is returned through the pointer for completeriBss. pointerext ensi on_si ze
returns 0O if the CU is MIPS/IRIX non-standard 64bitadfv(MIPS/IRIX 64bit dwarf was created years
before DNARF3 defined 64bit dwarf) and returns 4 if the dwarf uses the standard G4bisien (the 4 is
the size in bytes of the Gffff i n the initial length field which indicates the following 8 bytes in the
.debug_info section are the real length). See WARF3 or DNARF4 standard, section 7.4.

Thesi gnat ur e pointer is only releant if
the CU has a type signature, and if vafe the 8 byte type signature of the .debug_types CU header is
assigned through the pointer.

Thet ypeof f set pointer is only releant the CU has a type signature if relet the local offset within

the CU of the the type offset the .debug_types entry represents is assigned through the Tanter

t ypeof f set matters because afD AT _type referencing the type unit may reference an inner type, such
as a C++ class in a C++ namespac#, the type itself has the enclosing namespace in theigdsipe
type_unit.

Theheader _cu_t ype pointer is applicable to all CU headers. Tlaue returned through the pointer is
eitherDW UT_conpi | e DW UT_parti al DW UT_t ype and identifies the header type of this Cld.
DWARF4 a DW UT_t ype will be in . debug_t ypes, but in DWARF5 these compilation units are in
. debug_i nf o and the Debug Fissiardebug_i nf 0. dwo .

6.4.4 dwarf _next_cu_header c()

int dwarf_next cu_header c(
Dwar f _debug dbg,
Dwarf _Bool is_info,
Dwar f _Unsi gned *cu_header | engt h,

Dwar f _Hal f *ver si on_stanp,
Dwar f _Unsi gned *abbrev_offset,
Dwar f _Hal f *addr ess_si ze,
Dwar f _Hal f *of f set _si ze,
Dwar f _Hal f *ext ensi on_si ze,
Dwar f _Si g8 *si gnat ur e,

Dwar f _Unsi gned *typeoffset
Dwar f _Unsi gned *next _cu_header,
Dwar f _Error *error);

The functiondwarf _next cu_header _c() operates on the either the .dgbinfo section(if
i s_i nf ois non-zero) or .debug_types section §f i nf o is zero).

It operates xactly like dwar f _next cu_header _d() butis missing theheader _t ype field. This
is kept for compatibility All code using this should be changed todsar f _next _cu_header _d()

6.4.5 dwarf_next_cu_header_b()

rev 2.48, Mar 14, 2016 -27 -



-28 -

i nt dwarf_next_cu_header b(
Dwar f _debug dbg,
Dwar f _Unsi gned *cu_header _I engt h,

Dwar f _Hal f *ver si on_st anp,
Dwar f _Unsi gned *abbrev_of fset,
Dwar f _Hal f *addr ess_si ze,
Dwar f _Hal f *of f set _si ze,
Dwar f _Hal f *ext ensi on_si ze,

Dwar f _Unsi gned *next _cu_header,
Dwarf _Error *error);

This is obsolete as of October 2011 though supported.

The functiondwar f _next _cu_header _b() operates on the .debug_info section. It operatastly
like dwar f _next cu_header _c() butis missing thesi gnat ur e, andt ypeof f set fields. Thigs
kept for compatibility All code using this should be changed todwsar f _next _cu_header _c()

6.4.6 dwarf _next_cu_header()

The following is the original form, missing thd f set _si ze, ext ensi on_si ze, si gnat ur e, and
typeof f set fields indwar f _next cu_header c(). This is kept for compatibility All code using
this should be changed to ubsar f _next _cu_header c()

i nt dwarf_next cu_header (
Dwar f _debug dbg,
Dwar f _Unsi gned *cu_header | engt h,

Dwar f _Hal f *ver si on_stanp,
Dwar f _Unsi gned *abbrev_offset,
Dwar f _Hal f *addr ess_si ze,

Dwar f _Unsi gned *next _cu_header,
Dwar f _Error *error);

6.4.7 dwarf_siblingof_b()

i nt dwarf_siblingof_b(
Dwar f _Debug dbg,
Dwarf_Di e die,

Dwarf _Bool is_info,
Dwarf_Die *return_sib,
Dwarf _Error *error)

The functiondwar f _si bl i ngof _b() returnsDW DLV_ERROR and sets ther r or pointer on erraor
If there is no sibling it return®W DLV_NO _ENTRY. When it succeedsjwar f _si bl i ngof _b()
returnsDW DLV_OK and setdr et ur n_si b to theDwar f _Di e descriptor of the sibling afi e.

If i s_i nf o is non-zero then theli e is assumed to refer to a .dgp info DIE. If i s_i nf 0 is zero then
the di e is assumed to refer to a .deptypes DIE. Note that the first call (the call that gets the
compilation-unit DIE in a compilation unit) passes in a NUWlilLe so haing the caller pass ins_i nf o

is essential. And ifli e is non-NULL it is still essential for the call to passiis_i nf o set properly to
reflect the section the DIE came from. The functibmar f _get di e_i nfotypes_flag() is of
interest as it returns the proper is_info value fromran-NULL di e pointer.

If di e is NULL, the Dwar f _Di e descriptor of the first die in the compilation-unit is returned. This die
has theDW TAG conpi | e_unit,DW TAG partial _unit,or DW TAG type_unit tag.

rev 2.48, Mar 14, 2016 -28-



-29 -

Figure 7. Example4 dwarf_siblingof()

voi d exanpl e4( Dwar f _Debug dbg, Dwarf_Die in_di e, Dwarf_Bool is_info)
{

Dwarf Die return_sib = 0;

Dwarf Error error = 0;

int res = O;

/* in_die mght be NULL or a valid Dwarf_Die */
res = dwarf_siblingof _b(dbg,in_die,is_info,&eturn_sib, &error);
if (res == DWDLV_OK) {

/* Use return_sib here. */

dwar f _deal | oc(dbg, return_sib, DWDLA D E);

/* return_sib is no longer usable for anything, we

ensure we do not use it accidentally with: */
return_sib = 0;

6.4.8 dwarf_siblingof()

i nt dwarf _siblingof(
Dwar f _Debug dbg,
Dwarf _Die die,
Dwarf _Die *return_sib,
Dwar f _Error *error)

i nt dwarf_siblingof() operates exactly the sameiast dwarf _si bl i ngof b(), butint
dwar f _si bl i ngof () refers only to .debug_info DIEs.

6.4.9 dwarf_child()

int dwarf_chil d(
Dwarf_Di e die,
Dwarf _Die *return_kid,
Dwarf _Error *error)

The functiondwar f _chi | d() returnsDW DLV_ERRCR and sets ther r or die on error If there is no
child it returnsDW DLV_NO_ENTRY. When it succeedsjwarf _chi |l d() returnsDW DLV_OK and
sets *return_kid to the Dwarf_Di e descriptor of the ifst child of die. The function
dwar f _si bl i ngof () can be used with the return value abfiar f _chi |l d() to access the other
children ofdi e.

Figure 8. Example5 dwarf_child()

rev 2.48, Mar 14, 2016 -29-



-30-

voi d exanpl e5( Dwar f _Debug dbg, Dwarf_Di e in_die)
{

Dwarf Die return_kid = 0;

Dwarf Error error = 0;

int res = 0;

res = dwarf_child(in_die, &eturn_kid, &error);
if (res == DWDLV_OK) {
/* Use return_kid here. */
dwar f _deal | oc(dbg, return_kid, DWDLA D E);
/* return_die is no longer usable for anything, we
ensure we do not use it accidentally with: */
return_kid = 0;

6.4.10 dwarf_offdie b()

int dwarf_offdie b(
Dwar f _Debug dbg,
Dwarf O f offset,
Dwarf _Bool is_info,
Dwarf _Die *return_die,
Dwar f _Error *error)

The functiondwar f _of f di e_b() returnsDW DLV_ERROR and sets ther r or die on error When it
succeedsgwar f _of fdi e_b() returnsDW DLV_OK and setgr et urn_di e to the theDwarf _Di e
descriptor of the delyging information entry aif f set in the section containing debugging information
entries i.e the .debug_info sectioA return of DW DLV_NO _ENTRY means that thef f set in the
section is of a byte containing all 0 bits, indicating that there is no abbreviation code. Meanidg this ’
offset’ is not the offset of a real die, but is instead &ebbf a null die, a padding die, or of some random
zero byte: this should not be returned in normal use.

It is the uses responsibility to mad sure thatof f set is the start of a valid delgging information entry
The result of passing it anvidid offset could be chaos.

If i s_i nfo is non-zero theof f set must refer to a .debug_info sectiorfset. Ifi s_i nf o zero the
of f set must refer to a .debug_types sectiofsef Errorreturns or misleading values may result if the
i s_i nf o flag or theof f set value are incorrect.

Figure 9. Example6 dwarf_offdie_b()

rev 2.48, Mar 14, 2016 -30-



-31-

voi d exanpl e6( Dwar f _Debug dbg, Dwarf O f di e_of fset, Dnarf _Bool is_info)
{

Dwarf Error error = 0;

Dwarf Die return_die = 0;

int res = 0;

res = dwarf_offdie_b(dbg,die offset,is_info,&eturn_die, &error);
if (res == DWDLV_OK) {
/* Use return_die here. */
dwar f _deal | oc(dbg, return_die, DWDLA D E);
/* return_die is no longer usable for anything, we
ensure we do not use it accidentally with: */
return_die = 0;
} else {
/* res could be NO ENTRY or ERROR, soO no
deal | oc necessary. */

6.4.11 dwarf_offdig()

int dwarf_offdie(
Dwar f _Debug dbg,
Dwarf O f offset,
Dwarf _Die *return_die,
Dwar f _Error *error)

The functiondwar f _of f di e() is obsolete, usedwar f _of fdi e_b() instead. Theunction is still
supported in the librapyut only references the .debug_info section.

6.4.12 dwarf_validate _die _sibling()

int validate_die_sibling(
Dwarf _Di e sibling,
Dwarf O f *of fset)

When used correctly in a depth-first walk of a DIE tree this functaitates that anDW_AT_sibling
attribute gves the same offset as the direct treglkyv Thatis the only purpose of this function.

The functiondwar f _val i date_di e_si bl i ng() returnsDW DLV_CXK if the last die processed in a
depth-frst DIE tree walk vas the same offset as generated by a calwar f _si bl i ngof (). Meaning
that the DW_AT _sibling attribute value, ifyrwas correct.

If the conditions are not met thenAD DLV_ERROR is returned and of f set is set to the offset in the
.dehug_info section of the last DIE processéfithe application prints the offset a knowledgeable user may
be able to figure out what the compiler did wrong.

6.5 Debugging Information Entry Query Operations

These queries return specific information aboutudgbng information entries or a descriptor that can be
used on subsequent queries whererga Dwar f _Di e descriptor Note that some operations are specif
to debugging information entries that are representedwaaf Di e descriptor of a specific typeror
example, not all debugging information entries contain an attribute having a name, so consexahtly

rev 2.48, Mar 14, 2016 -31-



-32-

to dwar f _di ename() using aDwar f _Di e descriptor that does not Ve a rmme attribute will return
DW DLV_NO _ENTRY. This is not an erroii.e. calling a function that needs a specific attebis not an
error for a die that does not contain that specific attribute.

There are seral methods that can be used to obtain the value of an attributevienaigi:

1. Calldwarf _hasattr() to determine if the debugging information entry has the attribute of
interest prior to issuing the query for information about the attribute.

2. Supplyaner ror amgument, and check itsalue after the call to a query indicates an unsuccessful
return, to determine the nature of the problérheer r or argument will indicate whether an error
occurred, or the specific attribute needed was missing in that die.

3. Arrange to hare a eror handling function iwmoked upon detection of an error (see
dwarf _init()).

4. Calldwarf _attrlist() and iterate through the returned list of attributes, dealing with each one
as appropriate.

6.5.1 dwarf _get_die infotypes flag()
Dwar f _Bool dwarf _get die infotypes flag(Dwarf Die die)

The functiondwar f _t ag() returns the section flag indicating which section the DIE originates fibm.
the returned value is non-zero the DIE originates from theigdéhfo section. If the returned value is zero
the DIE originates from the .debug_types section.

6.5.2 dwarf_tag()

int dwarf_tag(
Dwarf_Di e die,
Dwarf _Hal f *tagval,
Dwarf _Error *error)

The functiondwar f _t ag() returns thet ag of di e through the pointert agval if it succeeds.lIt
returnsDW DLV_K if it succeeds. It returnBW DLV_ERROR on error.

6.5.3 dwarf_dieoffset()

i nt dwarf _di eof fset(
Dwarf _Die die,
Dwarf O f * return_offset,
Dwar f _Error *error)

When it succeeds, the functiondwarf di eoffset() returns DWDLV_OK and sets
*return_of fset to the position ofdi e in the section containing defging information entries (the
return_of f set is a section-relate dfset). Inother words, it setset ur n_of f set to the offset of
the start of the debugging information entry describeddbg in the section containing dies i.e
.delug_info. ItreturnsDW DLV_ERROR0on error.

6.5.4 dwarf_debug_addr_index_to_addr()

rev 2.48, Mar 14, 2016 -32-



-33-

int dwarf_debug_addr_index_to_addr(Dwarf_Die /*die*/,
Dwarf_Unsigned inde
Dwarf_Addr *return_addr,
Dwarf_Error *error);

Attributes with form DW_FORM_addrx, the operation DW_OP_addrx, or certain of the splif-dw
location list entries ge an index value to a machine address in the .debug_addr section (whietais ah
.debug_addrwen when the form/operation are in a split dwarf adsgction).

On successful return this function turns such anxrdé a taget address value through the pointer
return_addr .

If there is an error this may returrAD DW DLV_ERROR and it will have returned an error through
*error.

If there is no wailable .debug_addr section this may retDklf DLV_NO_ENTRY.

6.5.5 dwarf_die CU_offset()

int dwarf_di e CU of fset(
Dwarf _Die die,
Dwarf O f *return_offset,
Dwar f _Error *error)

The functiondwar f _di e_CU of f set () is similar todwar f _di eof f set (), except that it puts the
offset of the DIE represented by tiwarf Di e di e, from the start of the compilation-unit that it
belongs to rather than the start of .debug_infor(teur n_of f set is a CU-relatre dfset).

6.5.6 dwarf_die offsets()

int dwarf_die_of fsets(
Dwarf_Die die,
Dwarf O f *gl obal _off,
Dwarf O f *cu_off,
Dwarf _Error *error)

The function dwarf_die_offsets() is a combination of dwarf_dieoffset() and
dwar f _di e_cu_of fset () in that it returns both the global .debug_infdset and the CU-relai
offset of thedi e in a single call.

6.5.7 dwarf _ptr_CU_offset()

int dwarf_ptr_ CU of fset(
Dwar f _CU Cont ext cu_cont ext,
Dwarf Byte ptr di_ptr ,
Dwarf_OF f *cu_of f)

Given a wlid CU context pointer and a pointer into that CU ceintethe function
dwarf ptr_CU of fset() returns OW_DLV_OK and set$ cu_of f to the CU-relatie (ocal) ofset
in that CU.

6.5.8 dwarf_CU_dieoffset_given_die()

rev 2.48, Mar 14, 2016 -33-



-34 -

int dwarf_CU di eof fset_given_di e(
Dwarf_Di e given_di e,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _CU _di eof f set _gi ven_di e() is similar todwarf _di e_CU of fset (),
except that it puts the global offset of the CU DIRvning gi ven_di e of .debug_info (the
return_of f set is a global section offset).

This is useful when processing a DIE tree and encountering an error or other surprise in a DIE, as the
return_of f set can be passed twar f _of f di e_b() to return a pointer to the CU die of the CU
owning thegi ven_di e passed tawar f _CU _di eof f set _gi ven_di e() . The consumer carxgact
information from the CU die and tlgg ven_di e (in the normal way) and print it.

An example (asnippet) of code using this function follows. It assumes thatdi e is a DIE in
.delug_info that, for some reason, you vbha cecided needs CU context printed (assuming
print _di e_dat a does some reasonable printing).

Figure 10. Example7 dwarf_CU_dieoffset \gin_die()

voi d exanpl e7(Dwar f _Debug dbg, Dwarf_Die in_die, Dnarf_Bool is_info)
{

int res = 0;

Dwarf O f cudi eoff = 0;

Dwarf Die cudie = 0;

Dwarf Error error = 0;

print _die_data(dbg,in_die);
res = dwarf_CU di eof fset _given_di e(in_die, &udi eoff, &rror);
if(res = DWDLV_OK) {
/* FAIL */
return;
}
res = dwarf_offdie_b(dbg, cudi eoff,is_info, &udi e, &rror);
if(res = DWDLV_OK) {
/* FAIL */
return;
}
print_di e_data(dbg, cudie);
dwar f _deal | oc(dbg, cudie, DWDLA DI E);

—

6.5.9 dwarf_die CU_offset_range()

int dwarf_di e CU of fset_range(
Dwarf _Die die,
Dwarf O f *cu_gl obal of fset,
Dwarf O f *cu_l ength,
Dwar f _Error *error)

The functiondwar f _di e_CU of f set _range() returns the déet of the beginning of the CU and the
length of the CU. The offset and length are of the entire CU that this DIE is a pdttiefused by

rev 2.48, Mar 14, 2016 -34 -



-35-

dwarfdump (for example) to check the validity ofsgits. Mostapplications will hae ro reason to call this
function.

6.5.10 dwarf_diename()

i nt dwarf _di enane(
Dwarf _Die die,
char ** return_nane,
Dwar f _Error *error)

When it succeeds, the functidwar f _di enanme() returnsDW DLV_OK and setgr et ur n_nane to a
pointer to a null-terminated string of characters that represents the name attriloite. oft returns
DW DLV_NO ENTRY if di e does not hae a rame attrilite. It returnsDW DLV_ERROR if an error
occurred. Thestorage pointed to by a successful returdwr f _di enanme() should be freed using the
allocation typeDW DLA STRI NGwhen no longer of interest (sdear f _deal | oc()).

6.5.11 dwarf_die text()

int dwarf_die_text(
Dwarf_Die die,
Dwarf_ Hal f attr,
char ** return_nane,
Dwarf _Error *error)

When it succeeds, the functidmar f _di e_t ext () returnsDW DLV_OK and set$r et ur n_nane to

a pointer to a null-terminated string of characters that represents a string-value attrithuge df returns
DW DLV_NO ENTRY if di e does not hee te attritute at t r. It returnsDW DLV_ERROR if an error
occurred. Thestorage pointed to by a successful returdwidr f _di ename() should be freed using the
allocation typeDW DLA_STRI NGwhen no longer of interest (sdear f _deal | oc()).

6.5.12 dwarf_die abbrev_code()
int dwarf_di e_abbrev_code( Dwarf _Die die)

The function returns the abbreviation code of the DIBat is, it returns the abbreviation "index" into the
abbreiation table for the compilation unit of which the DIE is a pdtrtcannot fail. No errors are possible.
The pointerdi e() must not be NULL.

6.5.13 dwarf_die _abbrev_children_flag()

int dwarf_di e_abbrev_children_flag( Dwarf_Di e die,
Dwarf _Hal f *has_chil d)

The function returns the has-children flag of thee passed in through thehas_chi | d passed in and
returnsDW DLV_OK on successA non-zero value of has_chi | d means theli e has children.

On failure it return©wW DLV_ERROR.

The function vas deeloped to let consumer code do better error reporting in some circumstances, it is not
generally needed.

6.5.14 dwarf_die abbrev_global offset()

rev 2.48, Mar 14, 2016 -35-



-36 -

int dwarf_di e_abbrev_gl obal offset(Dwarf_Die die,

Dwarf O f * abbrev_of fset,
Dwar f _Unsigned * abbrev_count,
Dwar f _Error* error);

The function allows more detailed printing of abliadion data. It is handy for analyzing abbreviations b
is not normally needed by applications. The function first appears in March 2016.

On success the function returB8V DLV_OK and sets*abbrev_of f set to the global offset in the

. debug_abbr ev section of the abbwétion. It also sets*abbrev_count to the number of
attribute/form pairs in the abbrmtion entry It is possible, though unusual, for the count to be zero
(meaning there is abbreviation instance ané&@ instance which he ro atributes).

On failure it returnW DLV_ERROR and set$ er r or
It should neer returnDW DLV_NO_ENTRY, but callers should alle for that possibility..

6.5.15 dwarf_get version_of_dig()

int dwarf_get version_of die(Dwarf_Die die,
Dwarf _Hal f *versi on,
Dwarf Hal f *of fset size)

The function returns the CU corteversion throught ver si on and the CU context offset-size through
*of f set _si ze and return®W DLV_OK on success.

In case of errqrthe only errors possiblevialve an nappropriate NULLdi e pointer so no Darf _Debug
pointer is &ailable. Thereforesetting a Dwarf Error would not be very meaningful (there is no
Dwarf_Debug to attach it to). The function returns DW_DLV_ERROR on error.

The values returned through the pointers are the valueargqwments to dwarf_get form_class() requires.

6.5.16 dwarf_attrlist()

int dwarf_attrlist(
Dwarf_Di e die,
Dwarf Attribute** attrbuf,
Dwar f _Si gned *attrcount,
Dwarf _Error *error)

When it returndW DLV_CK, the functiondwar f _attrli st () setsattrbuf to point to an array of
Dwar f _Attri but e descriptors corresponding to each of the aitéb in die, and returns the number of
elements in the array througtt t r count . DW DLV_NO _ENTRY is returned if the count is zero (no
att r buf is allocated in this casePDW DLV_ERROR is returned on errorOn a siccessful return from
dwarf _attrlist(), each of theDwarf _Attri but e descriptors should be individually freed using
dwar f _deal | oc() with the allocation typ®W DLA ATTR, followed by free-ing the list pointed to by
*at tr buf using dwar f _deal | oc() with the allocation typeDW DLA LI ST, when no longer of
interest (seewar f _deal | oc()).

Freeing the attrlist:

Figure11. Example8 dwarf_attrlist() free

rev 2.48, Mar 14, 2016 -36 -



-37-

voi d exanpl e8(Dwarf _Debug dbg, Dwarf_Di e sonedie)
{

Dwar f _Si gned at count = O;

Dwarf Attribute *atlist = O;

Dwarf Error error = 0;

int errv = 0;

errv = dwarf_attrlist(sonmedie, &atlist, &tcount, &error);
if (errv == DWDLV_X) {
Dwarf_Signed i = 0;

for (i =0; i < atcount; ++i) {
/* use atlist[i] */
dwarf _deal | oc(dbg, atlist[i], DWDLA ATTR);
}
dwarf _deal | oc(dbg, atlist, DWDLA LIST);
}
}

6.5.17 dwarf_hasattr()

int dwarf _hasattr(
Dwarf _Die die,
Dwarf Hal f attr,
Dwar f _Bool *return_bool,
Dwar f _Error *error)

When it succeeds, the functiolwar f _hasattr () returnsDW DLV_OK and sets r et ur n_bool to
non-zero if di e has the attributat t r andzero otherwise. Ifit fails, it returnsDW DLV_ERROR.

6.5.18 dwarf_attr()

int dwarf_attr(
Dwarf_Di e die,
Dwarf_ Hal f attr,
Dwarf Attribute *return_attr,
Dwarf _Error *error)

When it returns DW DLV_OK, the function dwarf_attr() sets *return_attr to the
Dwar f _Attri but e descriptor ofdi e having the attrilnte att r. It returnsDW DLV_NO_ENTRY if
at tr is not contained idi e. It returnsDW DLV _ERRORIf an error occurred.

6.5.19 dwarf_lowpc()

int dwarf | owpc(
Dwarf _Die di e,
Dwarf _Addr * return_I| owpc,
Dwarf _Error * error)

The functiondwar f _| owpc() returnsDW DLV_OK and sets‘r et ur n_| owpc to the lav program
counter value associated with tthiee descriptor ifdi e represents a debugging information entry with the
DW AT _| ow_pc attribute. ItreturnsDW DLV_NO _ENTRY if di e does not hae this attribute. Itreturns
DW DLV_ERRORIf an error occurred.

rev 2.48, Mar 14, 2016 -37 -



-38 -

6.5.20 dwarf_highpc b()
i nt dwarf _hi ghpc_b(

Dwarf _Die di e,
Dwar f _Addr * ret urn_hi ghpc,
Dwarf Hal f * return_fornt/,

enum Dwarf _Form C ass * return_class*/,
Dwar f _Error *error)

The functiondwar f _hi ghpc_b() returnsDW DLV_OK and sets‘r et ur n_hi ghpc to the value of
the DW AT _hi gh_pc attribute. Italso setg et urn_f or mto the FORM of the attrilte. Italso sets
ret ur n_cl ass to the form class of the attribute.

If the form class returned BW FORM CLASS ADDRESS ther et ur n_hi ghpc is an actual pc address
(1 higher than the address of the last pc in the address range).. If the formrefassed is
DW FORM CLASS CONSTANT ther et ur n_hi ghpc is an offset from the value of the the DdElow
PC address (see/IARF4 section 2.17.2 Contiguous Address Range).

It returnsDW DLV_NO_ENTRY if di e does not hee the DW AT _hi gh_pc attribute.

It returnsDW DLV_ERRORf an error occurred.

6.5.21 dwarf_highpc()

i nt dwarf _hi ghpc(
Dwarf_Di e die,
Dwar f _Addr * return_highpc,
Dwarf _Error *error)

The functiondwar f _hi ghpc() returnsDW DLV_OK and sets‘r et ur n_hi ghpc the high program
counter value associated with tthiee descriptor ifdi e represents a debugging information entry with the
DW AT_high_pc attribute and the form isDW FORM addr (meaning the form is of class
address).

This function is useless for@N AT _hi gh_pc which is encoded as a constant (which was first possible
in DWARF4).

It returnsDW DLV_NO _ENTRY if di e does not hee this attribute.

It returnsDW DLV _ERRCRIf an error occurred or if the form is not of class address.

6.5.22 dwarf_dietype offset()

int dwarf_dietype offset(Dwarf_Die /*die*/,
Dwarf O f * [*return_off*/,
Dwarf _Error * /[*error*/);

On success the functiahwar f _di et ype_of f set () returns the offset referred to YW AT _t ype
attribute ofdi e.

DW DLV_NO _ENTRY is returned if thali e has ndDW AT _t ype attribute.
DW DLV_ERRORIis returned if an error is detected.

This feature was introduced in February 2016.

rev 2.48, Mar 14, 2016 -38-



-39 -

6.5.23 dwarf_offset_list()
int dwarf_offset |ist(Dwarf_Debug dbg,

Dwarf O f of f set,
Dwar f _Bool is_info,
Dwarf O f ** of f buf,

Dwarf _Unsigned * offcnt,
Dwar f _Error * error);

On success The functiawar f _of f set _|i st () returnsDW DLV_OK and set$ of f buf to point to
an array of the offsets of the direct children of the def ditset . It sets* of f cnt to point to the count of
entries in thef f set array

In case of error it returrBW DLV_OK.
It does not returdW DLV_NO_ENTRY but callers should alle for that possibility anyway.
This feature was introduced in March 2016.
Freeing the offset_list is done as follows.:
Figure 12. Exampleoffset_list dwarf_offset_list() free

voi d exanpl eof fset |ist(Dwarf_Debug dbg, Dwarf O f dieoffset,
Dwar f _Bool is_info)

{
Dwar f _Unsi gned offcnt = 0;
Dwarf O f *of fbuf = 0;
Dwarf _Error error = 0;
int errv = 0;
errv = dwarf_offset I|ist(dbg, dieoffset, is_info,
&of f buf , &offcnt, &error);
if (errv == DWDLV_X) {
Dwarf _Unsigned i = 0;
for (i =0; i < offcnt; ++i) {
/* use offbuf[i] */
}
dwar f _deal | oc(dbg, offbuf, DWDLA LIST);
}
}

6.5.24 dwarf_bytesize()
Dwar f _Si gned dwarf _bytesi ze(

Dwarf_Di e di e,
Dwarf _Unsigned *return_size,
Dwar f _Error *error)

When it succeedsiwar f _byt esi ze() returnsDW DLV_OK and sets r et ur n_si ze to the number
of bytes needed to contain an instance of the gggreebugging information entry representedibe. It
returnsDW DLV_NO _ENTRY if di e does not contain the byte size atitddDW AT _byte_si ze. It
returnsDW DLV_ERRORIf an error occurred.

rev 2.48, Mar 14, 2016 -39-



-40 -

6.5.25 dwarf_bitsize()

int dwarf_bitsize(
Dwarf _Die die,
Dwarf _Unsigned *return_size,
Dwar f _Error *error)

When it succeedsiwar f _bi t si ze() returnsDW DLV_OK and set$r et ur n_si ze to the number of
bits occupied by the bit field value that is an attribute of thengiie. It returnsDW DLV_NO _ENTRY if
di e does not contain the bit size attrib DW AT _bit _si ze. It returnsDW DLV_ERROR if an error
occurred.

6.5.26 dwarf_bitoffset()

int dwarf_bitoffset(
Dwarf_Di e die,
Dwarf _Unsigned *return_size,
Dwarf _Error *error)

When it succeedsiwar f _bi t of f set () returnsDW DLV_OK and setér et ur n_si ze to the number
of bits to the left of the most significant bit of the bit fiellwe. Thishit offset is not necessarily the net bit
offset within the structure or class , sirfid&/ AT_dat a_nmenber _| ocat i on may give a lyte offset to
this DI E and the bit offset returned through the pointer does not include the bits in the fogte df
returnsDW DLV_NO _ENTRY if di e does not contain the bit offset attrte DW AT _bit _of fset. It
returnsDW DLV_ERRORIf an error occurred.

6.5.27 dwarf_srclang()

i nt dwarf _srcl ang(
Dwarf _Die die,
Dwarf _Unsigned *return_|ang,
Dwar f _Error *error)

When it succeedsgwar f _srcl ang() returnsDW DLV_CK and sets*return_|l ang to a code
indicating the source language of the compilation unit represented by the desdriptort returns
DW DLV_NO _ENTRY if di e does not represent a souride flebugging information entry (i.e. contain the
attributeDW AT | anguage). It returnsDW DLV_ERRORIf an error occurred.

6.5.28 dwarf_arrayorder()

int dwarf_arrayorder(
Dwarf_Di e die,
Dwar f _Unsigned *return_order,
Dwarf _Error *error)

When it succeedgjwar f _arrayorder () returnsDW DLV_OK and sets*r et ur n_order a oode
indicating the ordering of the array represented by the descdptor It returnsDW DLV_NO_ENTRY if
di e does not contain the array order atitdkeDW AT _or der i ng. It returnsDW DLV_ERRCRIf an error
occurred.

6.6 Attribute Queries

Based on the attributes form, these operations are concerned with returning uninterpretivel ddtidh
Since it is not abays obvious from the returnalue of these functions if an error occurred, one should
always supply anerror parameter or ha aranged to hee an eror handling function imoked (see
dwar f _i nit())to determine the validity of the returned value and the natureyoéraors that may hae

rev 2.48, Mar 14, 2016 - 40 -



-41 -

occurred.

A Dwarf_ Attribute descriptor describes an attribute of a specific die. Thus, each
Dwar f _Att ri but e descriptor is implicitly associated with a specific die.

6.6.1 dwarf_hasform()

i nt dwarf _hasforn{
Dwarf Attribute attr,
Dwarf Half form
Dwarf _Bool *return_hasform
Dwar f _Error *error)

The functiondwar f _hasf or m() returnsDW DLV_OK and andbuts anon-zero

value in the*r et urn_hasf or m boolean if the attribute represented by thearf Attri bute
descriptorat t r has the attribute formior m If the attribute does not & that form zero is put into
*return_hasform DW DLV_ERRORIs returned on error.

6.6.2 dwarf_whatfor m()

i nt dwarf_what f orm
Dwarf Attribute attr,
Dwar f _Hal f *return_form
Dwarf _Error *error)

When it succeedsiwar f _what f or n{) returnsDW DLV_CK and setg r et ur n_f or mto the attrilute
form code of the attribute represented by thearf Attri bute descriptorattr. It returns
DW DLV_ERROR on error.

An attribute using DW_FORM_indirectfettively has two forms. Thisfunction returns the "final’ form
for DW FORM i ndi r ect , not theDW FORM i ndi r ect itself. This function is what most applications
will want to call.

6.6.3 dwarf_whatform_direct()

int dwarf_whatformdirect(
Dwarf Attribute attr,
Dwar f _Hal f *return_form
Dwar f _Error *error)

When it succeedsjwar f _what form di rect () returnsDW DLV_OK and sets'ret urn_f ormto
the attrilute form code of the attribute represented by Barf _Attri but e descriptorattr. It
returns DW DLV_ERROR on error An atribute usingDW FORM i ndi r ect effectively has two forms.
This returns the form 'directly’ in the initial fornield. Thatis, it returns the "initial’ form of the attribute.

So when the formidld is DW FORM i ndi r ect this call returns th®W FORM i ndi r ect form, which
is sometimes useful for dump utilities.

It is confusing that the _direct() function returns DW_FORM _indirect if an indirect fornvabsad. Just
think of this as returning the initial form the first form value seen for the attribute, which is alsoathe f
form unless the initial form iIBW FORM i ndi r ect .

6.6.4 dwarf_whatattr()

rev 2.48, Mar 14, 2016 -41 -



=42 -

int dwarf_whatattr(
Dwarf Attribute attr,
Dwar f _Hal f *return_attr,
Dwarf _Error *error)

When it succeedsiwar f _what attr () returnsDW DLV_OK and setgret urn_at tr to the attrilute
code represented by tbear f _At t ri but e descriptorat t r. It returns DW DLV_ERROR on error.

6.6.5 dwarf_formref()

int dwarf_fornref(
Dwarf Attribute attr,
Dwarf O f *return_of fset,
Dwar f _Error *error)

When it succeedgjwar f _fornref () returnsDW DLV_COK and sets'ret ur n_of f set to the CU-
relative dfset represented by the descripaott r if the form of the attribute belongs to tREFERENCE
class. attr must be a CuU-local reference, not forrDW FORM ref addr and not
DW FORM sec_of fset . Itis an eror for the form to not belong to tiREFERENCE class. Itreturns
DwW DLV_ERROR 0N error.

Beginning November 2010: All DW DLV_ERROR returns set*r et urn_of f set. Most errors set
*return_of fset to zero, lut for error DW DLE ATTR FORM OFFSET_BAD the function sets
*return_of f set to the irvalid offset (which allows the caller to print a more detailed error message).

See alsalwar f _gl obal _f or nr ef below.

6.6.6 dwarf_global formref()

i nt dwarf _gl obal _fornref(
Dwarf Attribute attr,
Dwarf_ O f *return_of fset,
Dwarf _Error *error)

When it succeedsiwar f _gl obal _fornref () returnsDW DLV_OK and setsr et urn_of f set to
the section-relate dfset represented by the descripgdrt r if the form of the attribte belongs to the
REFERENCE or other section-references classes.

attr can be am legd REFERENCE class form plus DWFORM ref _addr or
DW FORM sec_of fset. It is an eror for the form to not belong to one of the reference claskes.
returnsDW DLV_ERRORon error See alsadwar f _f or nr ef above.

The caller must determine which section thefsetf returned applies to. The function
dwarf _get form cl ass() is useful to determine the applicable section.

The function cowerts CU relatve dfsets from forms such as DW_FORM_ref4 into global section offsets.

6.6.7 dwarf_convert_to global offset()

int dwarf_convert _to_gl obal offset(
Dwarf Attribute attr,
Dwarf O f of f set,
Dwarf O f *return_of fset,
Dwar f _Error *error)

When it succeeds,dwarf convert to gl obal offset() returns DWDLV_OK and sets

rev 2.48, Mar 14, 2016 -42 -



-43-

*return_of f set to the section-relate dfset represented by the cu-ralaetdfsetof f set if the form
of the attribute belongs to tHREFERENCE class. att r must be a CU-local reference \IARF class
REFERENCE) or fornrDW FORM r ef _addr and theat t r must be directly relent for the calculated
*ret ur n_of f set to mean anything.

The function return®W DLV_ERRCR on error.

The function is not strictly necessary but may be a@uance for attribute printing in case of error.

6.6.8 dwarf_formaddr()

i nt dwarf _fornmaddr(
Dwarf Attribute attr,
Dwar f _Addr * return_addr,
Dwar f _Error *error)

When it succeedsiwar f _f or maddr () returnsDW DLV_OK and set$r et ur n_addr to the address
represented by the descriptdrt r if the form of the attribte belongs to thADDRESS class. lItis an error
for the form to not belong to this class. It retubM DLV_ERRCR on error.

One possible error that can arise (in a advebject fle or a .dwp package file) is
DW DLE M SSI NG NEEDED DEBUG ADDR SECTI ON. Such an error means that thdwo or dwp
file is missing the debug_addr section. Wheropening a .dw object file or a .dwp package file one
should also open the correspondingositable and uselwarf _set tied _dbg() to associate the
objects before calling dwarf_formaddr().

H 3 "dwarf_get debug_addr_index()"

int dwarf_get debug addr i ndex(
Dwarf Attribute attr,
Dwarf _Unsigned * return_index,
Dwar f _Error *error)

dwar f _get debug_addr i ndex() is only valid on attriotes with form
DW FORM GNU_addr _i ndex or DW FORM addr x.

The function makes it possible to print the indi®m a dwarf dumper program.

When it succeeds, dwarf _get debug addr i ndex() returns DWDLV_OK and sets
*r et urn_i ndex to the attributes index (into the. debug_addr section).

It returnsDW DLV_ERROR on error.

6.6.9 dwarf_get_debug_str_index()

i nt dwarf_get debug_str_i ndex(
Dwarf Attribute attr,
Dwar f _Unsi gned * return_index,
Dwarf _Error * error);

rev 2.48, Mar 14, 2016 -43 -



-44 -

For an atribute with form DW FORM st r x or DW FORM GNU st r i ndex this function retriges the
index (which refers to a .debug_str_offsets section in this .dwo).

If successful, the functiodwar f _get debug_str_i ndex() returnsDW DLV_K and returns the
index through the et ur n_i ndex() pointer.

If the passed in attribute does nowéahis form or there is no valid compilation unit context for the
attribute the function returridV DLV _ERROR.

DW DLV_NO _ENTRY is not returned.

6.6.10 dwarf_formflag()

int dwarf fornflag(
Dwarf Attribute attr,
Dwar f _Bool * return_bool,
Dwar f _Error *error)

When it succeedsjwar f _fornfl ag() returnsDW DLV_OK and sets‘r et urn_bool to the (one
unsigned byte) flagalue. Ary non-zero value means trué zero value means false.

Before 29 Neember 2012 this wuld only return 1 or zero through the pointaut that was alays a
strange thing to do. TheWARF specification has wbys been clear that gmon-zero value means true.
The function should report the value found truthfuglyd naw it does.

It returnsDW DLV_ERROR on error or if theat t r does not hee form flag.

6.6.11 dwarf_formudata()

i nt dwarf_fornudat a(
Dwarf_ Attribute attr,
Dwarf _Unsigned * return_uval ue,
Dwar f _Error * error)

The function dwarf _forrudata() returns DWDLV_OK and sets*return_uval ue to the
Dwar f _Unsi gned value of the attribute represented by the descrigtdrr if the form of the attribte
belongs to theCONSTANT class. Itis an error for the form to not belong to this class.returns
DW DLV_ERROR 0N error.

Never returnsDW DLV_NO_ENTRY.

For DWARF2 and WARF3, DW FORM dat a4 and DW FORM dat a8 are possibly clas€ONSTANT,
and for DNVARF4 and later theare definitely clas€CONSTANT.

6.6.12 dwarf_formsdata()

int dwarf_fornsdata(
Dwarf Attribute attr,
Dwarf _Signed * return_sval ue,
Dwar f _Error *error)

The function dwarf formsdata() returns DWDLV_OK and sets*return_sval ue to the
Dwar f _Si gned vaue of the attribute represented by the descriptarr if the form of the attribte
belongs to th&CONSTANT class. Itis an error for the form to not belong to this class. If the size of the
data attribute referenced is smaller than the size dhe f _Si gned type, its value is signxéended. It
returnsDW DLV_ERROR on error.

rev 2.48, Mar 14, 2016 -44 -



-45 -

Never returnsDW DLV_NO_ENTRY.

For DWARF2 and WARF3, DW FORM dat a4 and DW FORM dat a8 are possibly clas€ONSTANT,
and for DNVARF4 and later theare definitely clas€CONSTANT.

6.6.13 dwarf_formblock()

int dwarf _fornbl ock(
Dwarf Attribute attr,
Dwarf Bl ock ** return_bl ock,
Dwar f _Error * error)

The functiondwar f _f or nbl ock() returnsDW DLV_OK and setsr et ur n_bl ock to a pointer to a
Dwar f Bl ock structure containing the value of the attribute represented by the desatiptorif the
form of the attribute belongs to tBt OCK class. Itis an error for the form to not belong to this cla¥he
storage pointed to by a successful returnhwér f _f or nbl ock() should be freed using the allocation
type DW DLA BLOCK, when no longer of interest (seelwarf _dealloc()). It returns
DwW DLV_ERROR 0N error.

6.6.14 dwarf_formstring()

int dwarf_fornmstring(
Dwarf Attribute attr,
char ** return_string,
Dwarf _Error *error)

The functiondwar f _f or mst ri ng() returnsDW DLV_OK and set$r et urn_stri ng to a pointer to
a rull-terminated string containinghe value of the attribute represented by the desciptor if the form
of the attrilute belongs to th&TRI NG class. lItis an error for the form to not belong to this clasbe
storage pointed to by a successful returdwér f _f or mst ri ng() should not be freed. The pointer
points into existing BVARF memory and the pointer becomes stalelith after a call to
dwarf _finish. dwarf_fornstring() returnsDW DLV_ERRCRon error.

6.6.15 dwarf_formsig8()

int dwarf fornsig8(
Dwarf Attribute attr,
Dwarf _Sig8 * return_sig8,
Dwar f _Error * error)

The function dwarf _fornsi g8() returns DW DLV_OK and copies the 8 byte signature to a
Dwarf _Si g8 structure provided by the caller if the form of the attdb is of form
DW FORM r ef _si g8 ( a member of theREFERENCE class). Itis an error for the form to be whing

but DW FORM r ef _si g8. It returnsDW DLV_ERROR 0N error.

This form is used to refer to a type unit.

6.6.16 dwarf_formexprloc()

rev 2.48, Mar 14, 2016 -45 -



- 46 -

i nt dwarf_fornmexprl oc(
Dwarf Attribute attr,
Dwarf _Unsigned * return_exprlen,
Dwarf_Ptr * bl ock_ptr,
Dwarf _Error * error)

The functiondwar f _f or mexpr | oc() returnsDW DLV_OK and sets the tavvalues thru the pointers to
the length and bytes of theWD FORM_eprloc entry if the form of the attikhe is of form
DW FORM exper | oc. It is an eror for the form to be anythingubDW FORM expr | oc. It returns
DW DLV_ERROR 0N error.

On success the value set throughrtleé ur n_expr | en pointer is the length of the locatiompeession.
On success the value set through Beock_ptr pointer is a pointer to the bytes of the location
expression itself.

6.6.17 dwarf_get form_class()

enum Dwarf _Form Cl ass dwarf_get formcl ass(
Dwarf _Hal f dwersion,
Dwarf Hal f attrnum
Dwarf Hal f of fset_si ze,
Dwarf_Hal f form

The function is just for the caenience of libdvarf clients that might wish to categorize the FORM of a
particular attrilnte. TheDWARF specification diides FORMs into classes in Chapter 7 and this function
figures out the correct class for a form.

Thedwver si on passed in shall be the dwarf version of the compilation wobiad (2 for DVARF2, 3
for DWARF3, 4 for DNVARF 4). The att r numpassed in shall be the attite number of the attnilbe
involved (for kample,DW AT _nane ). Theof f set _si ze passed in shall be the length of an offset in
the current compilation unit (4 for 32bit dwarf or 8 for 64bitadf. Thef or mpassed in shall be the
attribute form number If f or mDW FORM i ndi r ect is passed ildW FORM CLASS UNKNOWN will

be returned as this form has no defined 'class’.

When it returnsDW FORM CLASS UNKNOWN the function is simply saying it could not determine the
correct class gen the arguments presented. Some user-defined attributes mighthlsaproblem.

The functiondwar f _get versi on_of _di e() may be helpful in filling out @uments for a call to
dwarf _get formclass().

6.7 Location List operations
6.7.1 dwarf _get_loclist_c()

int dwarf_get_loclist_c (Dwarf_Attribute attr,
Dwarf Loc_Head_ c * loclist_head,
Dwarf_Unsigned #HocCount,
Dwarf Error  *error);

This function returns a pointer that is, in turn, used toarailssible calls to return the details of the
location list.

The incoming argumerdt t r should hae ;e of the FORMs of a location expression or location list.

On success this returB® DLV_OK and set$ | ocl i st _head to a pointer used in further calls (see the
example and descriptions that follat). | ocCount is set to the number of entries in the location list (or
if the FORM is of a locationxpression thé ocCount will be set to one). At this point one cannot yet tell
if it was a location list or a location expression (sevar f _get | ocdesc_entry_c{}).

rev 2.48, Mar 14, 2016 - 46 -



-47 -

In case of errobW DLV_ERRORIs returned andler r or is set to an error designation.

Areturn ofDW DLV_NO_ENTRY may be possible but is a bit odd.

rev 2.48, Mar 14, 2016 -47 -



voi d

-48 -

exanpl e_l ocl i stc(Dwarf_Debug dbg, Dwarf _Attri bute soneattr)

{

Dwar f _Unsi gned | count = 0;
Dwarf Loc_Head c | oclist_head = 0;
Dwarf_Error error = 0;

int Ires

Ires = dwarf_get loclist_c(someattr, & oclist_head, & count, &rror);

= 0;

if (lres == DWDLV_OK) {
Dwarf _Unsigned i = 0;
Dwarf _Locdesc_c |l ocentry = 0;
/* Before any return renenber to cal
dwarf | oc_head_c_deal | oc(l oclist_head); */
for (i =0; i <lcount; ++i) {
Dwarf_Small 1oclist_source = 0;
Dwarf _Small Ile_value = 0; /* DWARF5 */

Dwar f _Addr | opc = O;

Dwar f _Addr hi pc = O;

Dwar f _Unsi gned ul ocentry_count = O;
Dwarf _Locdesc_c |l ocentry = 0;

/* section_offset is the section offset of the expression,

the | ocation description prefix. */
Dwar f _Unsi gned section_offset = 0;

/* locdesc_offset is the section offset of the
| ocation description prefix. */
Dwar f _Unsi gned | ocdesc_offset = 0;

Ires = dwarf_get | ocdesc_entry_c(l oclist_head,
I,
&1 e_val ue, & opc, &hi pc,
&ul ocentry_count,
&l ocentry,
& oclist_source,
&section_of fset,
&l ocdesc_of f set,
&error);
if (lres == DWDLV_OK) {
/* Here, use loclist_source and
I1e value to determ ne what
sort of loclist it is and what to do with

the values. locentry count will only be
nore than zero if there is a set of |ocation
operators.

One mnust use Ile value to determ ne how
to interpret |opc, hipc as sonetinmes they
are a target address and sometines an
i ndex into .debug_addr or even a length. */
Dwarf _Unsigned j = O;
int opres = O;
Dwarf_Small op = O;

rev 2.48, Mar 14, 2016 -48 -

not



- 49 -

for (j =0; i < ulocentry_count; ++i) {
Dwar f _Unsi gned opdl = O;
Dwar f _Unsi gned opd2 = 0;
Dwar f _Unsi gned opd3 = 0;

Dwar f _Unsi gned of fsetforbranch = 0;

opres = dwarf_get_| ocation_op_val ue_c(locentry,
i, &op, &opdl, &opd2, &opd3, &of f set f or br anch,
&error);

if (opres == DWDLV_K) {
/* Do sonething with the operators. */

} else {
/*Something is wong. */

}
}

} else {
/* Something is wong. Do sonething. */

}
}

/* In case of error or any other situation where one

is giving up one can call dwarf_l oc_head c_deal | oc()

to free all the nenory associated with loclist_head. */
dwarf | oc_head_c_deal | oc(l ocl i st _head);
| oclist_head = O;

}
6.7.2 dwarf _get_locdesc_entry c()

int dwarf_get_locdesc_entry _c(Dwarf_Loc_Head_c /*loclist_head?*/,
Dwarf_Unsigned /*inde*/,

/* identifies type of locdesc entry*/
Dwarf_Small * /*lle_value_out*/,
Dwarf_Addr * /*lowpc_out*/,
Dwarf_Addr * /*hipc_out*/,
Dwarf_Unsigned * /*loclist_count_out*/,

/* Returns pointer to specific Locdesc ixdefers to */
Dwarf_Locdesc_c * /*locentry_out*/,

Dwarf_Small * /*loclist_source_out*/, /* 0,1, or 2 */
Dwarf_Unsigned * /*expression_offset_out*/,
Dwarf_Unsigned * /*locdesc_offset out*/,
Dwarf_Error * [*error*/);

This function returns werall information about a location list or location descriptioDetails about
location operators are retvigl by a @ll to dwarf _get | ocati on_op_val ue c() (described
belov). The values returned here ta been unified, hiding irreleant differences between WARF2
location expressions/lists and\NB\RF5 split-dwarf location expressions/lists.

In case of succeddW DLV_K is returned and arguments are set through the pointers to return values to
the caller Now we describe each argument.

Return walue*| ocl i st _sour ce_out is critical as it identies the sort of entry we ha If its value is

rev 2.48, Mar 14, 2016 - 49 -



-50 -

zero (0) it identifies the location description is a locatigpression. Inthat case*l | e_val ue_out,
*| owpc_out, and *hi pc_out are not really interesting. And because it is a location expression the
i ndex has to hae keen zero as there is no real list, just an expression made to leakisikentry.

If *I ocl i st_source_out is one (1) then this is a location list entry ilVBRF2,3,4 loclist form.Here
the*I | e_val ue_out has been created by libdw to match the split-darf DW LLE_ value that the
standard loclist entry represents ( DWLLE end_of list_entry,

DW LLE base_address_sel ection_entry,or DWLLE offset_pair_entry).

If *I oclist_source_out is two (2) then this is a location list entry iniEARF5 split-dwarf (.dw)
location-entry-form.*| | e_val ue_out is set to theDW LLE value that the split-dwarf loclist entry
contains.

The DW LLE_ value determines o one is to interpret opc_out andhi pc_out. See the DVARF5
standard.

The agumentl ocl i st _count _out returns the number of operators in the location expressiotvéd
(which may be zero).

The agument | ocentry_out returns an identifier used in calls to
dwarf _get | ocation_op_value_c().

The agument expression_offset _out returns the offset (in the .debug_loc(.dso) or
.debug_info(.dwo) of the location expression itself (possibly useful for debugging).

The agumentl ocdesc_of f set _out returns the déet (in the .debug_loc(.dso) of the location list
entry itself (possibly useful for debugging).

In case of errobW DLV_ERRORIs returned andler r or is set to an error designation.

Areturn ofDW DLV_NO_ENTRY may be possible but is a bit odd.

6.7.3 dwarf_get_location_op_value c()

int dwarf_get_location_op_value_c(Dwarf_Locdesc_c locdesc,
Dwarf_Unsigned inde
Dwarf_Small *atom_out,
Dwarf_Unsigned * operandl,
Dwarf_Unsigned * operand2,
Dwarf_Unsigned * operand3,
Dwarf_Unsigned * offset_for_branch,
Dwarf_Error*  error);

On sucess The functiodwar f _get | ocati on_op_val ue_c() returns the information for the
single operator numbémdex from the location expressidrocdesc. It sets the following values.

at om out is set to the applicable operator code, for exarDeOP_r eg5.

oper andl, operand2, and oper and3 are set to the operator operands as applicable ($¢€RB
documents on the operands for each operatp®r and3 is nev as of DNARF5.

When a DVARF operand is not of a sizixéd by dwarf, or is possibly too large for a dwarf stack entry
libdwarf will insert a pointer (to memory in the dvf data somewhere) as the operaralue.
DWOP_ inplicit_value operand 2, DWOP [GNU ]Jentry value operand 2, and
DW OP_[ GNU_] const _type operand 3 are instances of this.

of fset _for_branch is set to the déet (in bytes) in this expression of this operaftine value maés
it possible for callers to implement the operator branch operators.

In case of an errpthe function return®W DLV _ERROR and setg er r or to an error value.

DW DLV_NO_ENTRY is probably not a possible return value, but please test for it anyway.

rev 2.48, Mar 14, 2016 -50 -



-51 -

6.7.4 dwarf loclist_from_expr_c()

int dwarf_loclist_from_expr_c(Dwarf_Debug dbg,
Dwarf_Ptr pression_in,
Dwarf_Unsigned xpression_length,
Dwarf_Half address_size,
Dwarf_Half of'set_size,
Dwarf_Small  dvarf_version,
Dwarf_Loc_Head c* loc_head,
Dwarf_Unsigned Histlen,
Dwarf_Error  *error);

Frame operators such asWDCFA def cfa ®pression hee a bcation expression and the
location_expression is accessed with this function.

On success it returdV DLV_OK and sets the tareturn arguments (explained avfénes later here).

The expression_i n agument must contain a valid pointer to location expression byide
expr essi on_| engt h argument must contain the length of that location expression in bytes.

The addr ess_si ze agument must contain the size of an address on the target machine for this
expression (normally 4 or 8)The of f set _si ze amgument must contain the size of an offset in the
expression (normally 4, sometimes 8yhe ver si on agument must contain the dw_wersion of the
expression (2,3,4, or 5).

The returned alue*| oc_head is usedo actually access the location expression details (seaadhgpée
following).

The returned alue *1 i st en is the number of location expressions (ie 1) in the location list (for
uniformity of access we malkt look like a sngle-entry location list).

On error the function retur®dV DLV_ERROR and set$ er r or to reflect the error.

A return of DW DLV_NO _ENTRY is probably impossible,ub callers should assume it is possibio
return arguments are set in this case.

rev 2.48, Mar 14, 2016 -51-



-52 -

void

example_locexprc(Dwarf_Debug dbg,Dwarf_Ptr expr_bytes,
Dwarf_Unsigned expr_len,
Dwarf_Half addr_size,
Dwarf_Half offset_size,
Dwarf_Half version)

{
Dwarf Loc_Head c head = 0;
Dwarf_Locdesc_c locentry = 0;
int res2 = 0;
Dwarf_Unsigned lopc = 0;
Dwarf_Unsigned hipc = 0;
Dwarf_Unsigned ulistlen = 0;
Dwarf_Unsigned ulocentry_count = 0;
Dwarf_Unsigned section_offset = 0;
Dwarf_Unsigned locdesc_offset = 0;
Dwarf_Small lle_value = 0;
Dwarf_Small loclist_source = 0;
Dwarf_Unsigned i = 0;
Dwarf_Error error = 0;

res2 = dwarf_loclist_from_expr_c(dbg,
expr_bytes,expr_len,
addr_size,
offset_size,
version,
&head,
&ulistlen,
&error);

if(res2 == DW_DLV_NO_ENTRY) {
return;

}

if(res2 == DW_DLV_ERROR) {
return;

}

[* Theseare a location expression, not loclist.
So we just need the Oth enttry

res2 = dwarf_get_locdesc_entry c(head,
0, /* Data from Oth LocDesc */
&lle_value,
&lopc, &hipc,
&ulocentry_count,
&locentry,
&loclist_source,
&section_offset,
&locdesc_offset,
&error);

if (res2 == DW_DLV_ERROR) {
dwarf_loc_head_c_dealloc(head);
return;

}else if (res2 == DW_DLV_NO_ENTRY) {
dwarf_loc_head_c_dealloc(head);
return;

}

rev 2.48, Mar 14, 2016 -52-



-53 -

[* ASSERT: ulistlen == 1 */

for (i = 0; i < ulocentry_count;++i) {
Dwarf_Small op = 0;
Dwarf_Unsigned opd1l = 0;
Dwarf_Unsigned opd2 = 0;
Dwarf_Unsigned opd3 = 0;
Dwarf_Unsigned offsetforbranch = 0;

res2 = dwarf_get_location_op_value_c(locentry,

i, &op,&opd1,&opd2,&opd3,&offsetforbranch,

&error);
/* Do something with the expression operator and operands */
if (res2 '= DW_DLV_OK) {

dwarf_loc_head_c_dealloc(head);

return;

}
}

dwarf_loc_head_c_dealloc(head);
}

6.7.5 dwarf_loc_head c dealloc()
void dwarf_loc_head_c_dealloc(Dwarf_Loc_Head_c loclist_head);

This function frees all the memory associated with thel i st _head. There is no return value.

6.7.6 dwarf_loclist_n()

int dwarf_loclist_n(
Dwarf Attribute attr,
Dwarf _Locdesc ***|| buf,
Dwarf _Signed *listlen,
Dwarf _Error *error)

This interface cannot handleWARF5 or Split Dvarf. Use dwarf _get | oclist_c() and related
functions instead (as of Member 2015). The functiodwar f _I ocl i st _n() sets*| | buf to point to

an array oDwar f _Locdesc pointers corresponding to each of the location expressions in a location list,
and setsl i stl en to the number of elements in the array and retwsDLV_CK if the attribute is
appropriate.

This is the preferred function for Dwarf_Locdesc as it is the interfac&iaticaccess to an entire loclist.
(use ofdwar f _I ocl i st_n() is suggested as the better interface, thaghr f _| ocl i st () is still
supported.)

If the attribute is a reference to a location list (DW_FORM_data4 or DW_FORM_data8) the location list
entries are used to fill in all the fields of thear f _Locdesc(s) returned.

If the attritute is a location description (DW_FORM_block2 or DW_FORM_block4) then some of the
Dwar f _Locdesc values of the singl®war f _Locdesc record are set to 'sensibletibarbitrary \alues.
Specifically Id_lopc is set to 0 and Id_hipc is set to all-bits-on. Ahdst | en is set to 1.

If the attribute is a reference to a locatiorpression (V_FORM_loceper) then some of the
Dwar f _Locdesc vaues of the singl®war f _Locdesc record are set to 'sensibletibarbitrary \alues.
Specifically Id_lopc is set to 0 and Id_hipc is set to all-bits-on. Ahdst | en is set to 1.

It returnsDW DLV_ERROR on error.

rev 2.48, Mar 14, 2016 -53-



-54 -

dwarf _loclist_n() works on DWAT |ocation, DWAT data_nenber_I| ocation,
DW AT vtabl e _el em | ocation, DWAT string_|ength, DWAT use_ |location, and
DW AT return_addr attributes.

If the attribute is DW AT _dat a_nenber _| ocati on the value may be of class CONSNT.
dwarf | oclist_n() isunable to read class CON&GNT, so you need toifst determine the class using
dwarf_get _formclass() and if it is class CONSANT call dwarf_formsdata() or
dwar f _f ornudat a() to get the constant value (you may need to call bothVésRF4 does not dafe
the signedness of the constant value).

Storage allocated by a successful caliwér f _| ocl i st _n() should be deallocated when no longer of
interest (seelwar f _deal | oc()). Theblock of Dwar f _Loc structs pointed to by thied_s field of
eachDwar f _Locdesc structure should be deallocated with the allocation HypeDLA LOC BLOCK.
and thel | buf [] space pointed to should be deallocated with allocation@yVgéLA LOCDESC. This
should be followed by deallocation of thebuf using the allocation typPW DLA LI ST.

voi d

exanpl e9( Dwar f _Debug dbg, Dnarf _Attri bute soneattr)

{
Dwar f _Si gned | count = 0;
Dwar f _Locdesc **I| buf =
Dwarf Error error = 0
int lres = 0;

0;

Ires = dwarf_loclist_n(soneattr, & Ibuf, & count, &rror);
if (lres == DWDLV_X) {
Dwarf_Signed i = 0;
for (i =0; i <lcount; ++i) {
/* Use Ilbuf[i]. Both Dwarf_Locdesc and the
array of Dwarf_Loc it points to are
defined in libdwarf.h: they are
not opaque structs. */
dwar f _deal | oc(dbg, Ilbuf[i]->d_s, DWDLA LOC BLOCK);
dwar f _deal | oc(dbg, |1 buf[i], DWDLA LOCDESC);

}
dwar f _deal | oc(dbg, |l buf, DWDLA LIST);

6.7.7 dwarf_loclist()

int dwarf | oclist(
Dwarf Attribute attr,
Dwarf _Locdesc **I | buf,
Dwarf _Signed *listlen,
Dwar f _Error *error)

Use dwarf get | oclist_c() and related functions instead (as ofvimber 2015). The function
dwarf loclist() sets*||buf to point to aDwarf _Locdesc pointer for the single location
expression it can return. It setsi st ento 1. and returnBW DLV_Kif the attribute is appropriate.

It is less flexible thardwar f _| ocl i st_n() in thatdwarf | ocli st() can handle a maximum of
one location expression, not a full location list. If a location-list is present it returns oniystHedation-
list entry location description. Ushwvarf _| ocl i st_n() instead.

It returns DWDLV_ERROR on error dwarf loclist() works on DWAT |ocation,
DW AT dat a_nenber | ocati on, DW AT vtabl e _el em | ocati on,

rev 2.48, Mar 14, 2016 -54 -



-55-

DW AT _string_I| engt h, DW AT use_l ocati on,andDW AT_r et ur n_addr attributes.

Storage allocated by a successful caldear f _| ocli st () should be deallocated when no longer of
interest (seelwar f _deal | oc()). Theblock of Dwar f _Loc structs pointed to by thied_s field of
eachDwar f _Locdesc structure should be deallocated with the allocation HyeDLA LOC BLOCK.
This should be followed by deallocation of thebuf using the allocation typeW DLA L OCDESC.

Figure 13. Examplea dwarf_loclist()

voi d exanpl ea( Dwar f _Debug dbg, Dwarf _Attri bute soneattr)
{

Dwar f _Si gned | count = 0;

Dwar f _Locdesc *I|1buf = 0;

Dwarf Error error = 0;

int lres = 0;

Ires = dwarf_loclist(soneattr, & |buf, & count, &rror);
if (lres == DWDLV_X) {
/* lcount is always 1, (and has al ways been 1) */
/* Use || buf here. */

dwar f _deal | oc(dbg,
dwar f _deal | oc(dbg,

uf->ld_s, DWDLA LOC BLOCK);

I1b
Il buf, DWDLA LOCDESC);

6.7.8 dwarf _loclist_from_expr()

int dwarf_loclist _fromexpr/(
Dwar f _Debug dbg,
Dwarf Ptr bytes_in,
Dwar f _Unsi gned bytes | en,
Dwarf _Locdesc **I | buf,
Dwarf _Signed *listlen,
Dwar f _Error *error)

Usedwar f | oclist_from expr_b() instead. Thigunction is obsolete.

The functiondwar f _| ocli st_from expr () sets*| | buf to point to abwar f _Locdesc pointer
for the single locationx@ression which is pointed to Byoyt es_i n (whose length isbytes_| en). It
sets*listlen to 1. and returnW DLV_X if decoding is successfulSome sources of bytes of
expressions are dwarf expressions in frame operations MW CFA def cfa_expression,
DW CFA expressi on,and DW CFA val _expression.

Any address_size data in the location expression is assumed to be the same size as the default address_size
for the object being read (normally 4 or 8).

It returnsDW DLV_ERROR on error.

Storage allocated by a successful caltlefir f _| ocl i st _from expr () should be deallocated when
no longer of interest (sedwar f _deal | oc()). Theblock of Dwar f _Loc structs pointed to by the

I d_s field of eachDwarf _Locdesc structure should be deallocated with the allocation type
DW DLA LOC BLOCK. This should be follwed by deallocation of thiel buf using the allocation type
DW DLA LOCDESC.

Figure 14. Exampleb dwarf_loclist_from_expr()

rev 2.48, Mar 14, 2016 -55-



-56 -

voi d exanpl eb(Dwar f _Debug dbg, Dwarf_Ptr data, Dwarf_Unsigned | en)
{

Dwar f _Si gned | count = 0;

Dwar f _Locdesc *I|1buf = O;

Dwarf Error error = 0;

int lres = 0O;

Ires = dwarf_loclist_fromexpr(dbg,data,len, & Ibuf,& count, &error);
if (lres == DWDLV_X) {

/* lcount is always 1 */

/* Use |l buf here.*/

dwar f _deal | oc(dbg,
dwar f _deal | oc(dbg,

}
}

6.7.9 dwarf loclist_from_expr_b()

uf->ld_s, DWDLA LOC BLOCK);

I1b
Il buf, DWDLA LOCDESC);

int dwarf _loclist _fromexpr_a(
Dwarf Ptr bytes_in,
Dwar f _Unsi gned bytes | en,
Dwarf _Hal f addr_si ze,
Dwarf Hal f of fset_si ze,
Dwarf _Hal f version_stanp,
Dwarf _Locdesc **I | buf,
Dwarf _Signed *listlen,
Dwarf Error *error)

The function dwarf _loclist _fromexpr_b() is identical to
dwarf | oclist _fromexpr_a() in every way except that the caller passes an additiomgalraent
ver si on_st anp containing the version stamp (2 foMBBRF2, etc) of the CU using this location
expression and an additionalgament of the offset size of the CU using this locatinpression. The
DW_OP_GNU_implicit_pointer operation requires this version and offset information to be correctly
processed.

The addr _si ze argument (from 27April2009) is needed to correctly interpret frame information as
different compilation units can ha dfferent address size®DWARF4 adds address_size to the CIE header.

6.7.10 dwarf_loclist_from_expr_a()

int dwarf_loclist_fromexpr_a(
Dwarf _Ptr bytes_in,
Dwar f _Unsi gned bytes_I en,
Dwarf Hal f addr_si ze,
Dwarf _Locdesc **I| buf,
Dwarf _Signed *listlen,
Dwarf _Error *error)

Usedwar f | oclist_from expr_b() instead. Thigunction is obsolete.

The functiondwar f _| ocl i st _from expr_a() is identical todwarf | ocli st_from expr ()
in every way except that the caller passes the additiogainaentaddr _si ze containing the address size
(normally 4 or 8) applying this location expression.

The addr _si ze agument (added 27April2009) is needed to correctly interpret frame information as
different compilation units can ha dfferent address sizeDWARF4 adds address_size to the CIE header.

rev 2.48, Mar 14, 2016 -56 -



-57-

6.8 Line Number Operations

These functions are concerned with accessing line number entries, mapping debugging information entry
objects to their corresponding source lines, and providing a mechanism for obtaining information about line
number entries. Although, the intacke talks of "lines" what is really meant is "statements". In case there

is more than one statement on the same line, there will be at least one descriptor per statement, all with the
same line numberlf column number is also being represented thél have the column numbers of the

start of the statements also represented.

There can also be more than one Dwarf_Line per staterfentexample, if a fle is preprocessed by a
language translatpthis could result in translator output shing 2 or more sets of line numbers per
translated line of output.

As of October 2015 there aredwets of werall access and release functioff$e older set of functions is
dwarf _srclines() with dwarf_srclines_dealloc(). This set does not handle line table
headers with no lines.

A newer set isdwarf _srclines_b() with dwarf_srclines fromlinecontext() and
dwarf _srclines_dealloc_b(). These functions pxade for handling both W/ARF2 through
DWARF5 details and ge acess to line header informationen if there are no lines in a particular
compilation units line table.

6.8.1 Get A Set of Lines (including skeleton line tables)

This set of functions works on WDWARF wersion. DIWARF2,3,4,5 and the\WARF4 basedxperimental
two-level line tables are all supported. What was once done by dwarf_srclines() alome dsmewith
two calls as described here.

The interfaces support reading GNUotlevel line tables. The format of such tables is a topiohd the
scope of this document.

6.8.2 dwarf_srclines b()
This is the

int dwarf_srclines_b(
Dwarf _Die die,
Dwar f _Unsi gned *versi on_out,
Dwar f _Bool *is_single_table,
Dwarf _Li ne_Context *context_out,
Dwar f _Error *error)

dwarf _srclines_b() takes a single gument as input, a pointer to a compilation-unit (CDIE.
The other arguments are used to return values to the callesuccesDW DLV _(Kis returned andalues
are returned through the pointers. If there is no line @AWeDLY_NO ENTRY is returned and noalues
are returned though the pointerd. DW DLV_ERRCR is returned the wolved is returned through the
error pointer.

The values returned on success are:

*ver si on_out () is set to the version number from the line table header for thisT@E.experimental
two-level line table value is 0xf006. Standard numbers are 2,3,4 and 5.

*is_single_tabl e() is set to non-zero if the line table is an ordinary single line table. If the line

rev 2.48, Mar 14, 2016 -57 -



-58 -

table is anything else (either a line table header with no lines omp@nirmental tw-level line table) it is
set to zero.

*cont ext _out () is set to an opaque pointer taDaar f _Li ne_Cont ext record which in turn is
used to get other data from this line table. Seewbelo

See*dwar f _srclines_deal | oc_b() for examples showing correct use.

6.8.3 dwarf_get_line section_name from_die()

int dwarf_get line_section_name_fromdie(
Dwarf _Die die,
const char ** sec_nane,
Dwar f _Error *error)

*dwarf _get |ine_section_nane_fromdie() retrieves the object file section name of the
applicable line section. This is useful for applicatiorenting to print the name, but of course the object
section name is not really a part of th&/BRF information. Most applications will probably not call this
function. Itcan be called at griime after the Dwarf_Debug initialization is done.

If the function succeed$,sec_nane is set to a pointer to a string with the object section name and the
function returnsdDW DLV_COK. Do not free the string whose pointer is returnéar non-EIf objects it is
possible the string pointer returned will be NULL or will point to an empty string. It is up to the calling
application to recognize this possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_EXTR

If there is an internal error detected the function retDkivsDLV _ERROR and sets th&er r or pointer.

6.8.4 dwarf_srclines_from_linecontext()

int dwarf_srclines_from.linecontext(
Dwarf _Line_Context |ine_context,
Dwarf_Line ** |inebuf,
Dwar f _Si gned *1inecount,
Dwarf _Error *error)

*dwarf _srclines_fromlinecontext() gives acess to the line tables. On success it returns
DW DLV_OK and passes back line tables through the pointers.

ThoughDwW DLV_OK will not be returned callers should assume it is possible.

On errorDW DLV_ERRORis returned and the error code set throughretheor pointer.
On success:

*| i nebuf is set to an array of Dwarf_Line pointers.

*| i necount is set to the number of pointers in the array.

6.8.5 dwarf_srclines two_levelfrom_linecontext()

rev 2.48, Mar 14, 2016 -58 -



-59 -

int dwarf_srclines_from.linecontext(
Dwarf _Line_Context |ine_context,
Dwarf_Line ** |inebuf,
Dwar f _Si gned *1inecount,
Dwarf _Line ** |inebuf_ actuals,
Dwar f _Si gned *linecount _actual s,
Dwarf _Error *error)

*dwarf _srclines_two_| evel fromlinecontext () gives acess to the line table©n success
it returnsDW DLV_CK and passes back line tables through the pointers.

ThoughDwW DLV_OK will not be returned callers should assume it is possible.

On errorDW DLV_ERRORs returned and the error code set throughretheor pointer.
On success:

*| i nebuf is set to an array of Dwarf_Line pointers.

*| i necount is set to the number of pointers in the array.

If one is not intending that the experimentabilevel line tables are of interest then pass NULL for
*| i nebuf _actual s and*| i necount _actual s. The NULL pointers notify the library that the
second table is not to be passed back.

If a line table is actually a wvlevel tables* | i nebuf is set to point to an array of Logicals lines.
*| i necount is set to the number of Logical¥l i nebuf _act al s is set to point to an array of Actuals
lines. *1 i necount _act ual s is set to the number of Actuals.

6.8.6 dwarf_srclines dealloc_b()

void dwarf_srclines_deal |l oc_bh(
Dwarf _Line_Context |ine_context,
Dwar f _Error *error)

This does a complete deallocation of the memory obtker f _Li ne_Cont ext and theDwar f _Li ne
array (or arrays) that came from timarf Li ne_Cont ext. On return you should set gnocal
pointers to theseuffers to NULL as a reminder that yamse of the local pointers would be to stale
memory.

Figure 15. Examplec dwarf_srclines_b()

rev 2.48, Mar 14, 2016 -59-



-60 -

voi d exanpl ec(Dwarf_Di e cu_die)
{
/* EXAMPLE: DWARF5 style access. */
Dwarf _Line *linebuf = 0;
Dwar f _Si gned |inecount = 0;
Dwarf _Line *l|inebuf _actuals =
Dwar f _Si gned |inecount_actuals = 0;
Dwarf _Line_Context |ine_context = O;
Dwar f _Si gned |inecount _total = O;
Dwar f _Unsi gned t abl e_count
Dwar f _Unsi gned | i neversion
Dwarf Error err = 0;
int sres = 0;
[* ... %
/* we use 'return’ here to signify we can do nothing nore
at this point in the code. */
sres = dwarf_srclines_b(cu_die, & ineversion
&t abl e_count, & i ne_cont ext, &err);
if (sres !'= DWDLV_X) {
/* Handle the DWDLV_NO ENTRY or DWDLV_ERROR
No nenory was al located so there nothing
to dealloc. */

:0,
= 0;

return;
}
if (table_count == 0) {
/* Aline table with no actual I|ines.
But with a line table header. */
/*...do sonething, see dwarf_srclines files_count()
etc below. */
dwarf _srclines_deall oc_b(line_context);
/* Al the menory is released, the |line_context
and |inebuf zeroed now
as a reninder they are stale. */
i nebuf = 0;
line_context = O;
} else if (table_count == 1) {
Dwarf_Signed i = 0;

/* Standard dwarf 2,3,4, or 5 line table */
/* Do something. */
/* For this case where we have a line table we will likely
wi sh to get the Iine details: */
sres = dwarf_srclines_fromlinecontext(line_context,
&l i nebuf, & i necount,
&err);
if (sres !'= DWDLV_X) {
/* Error. Clean up the context information. */
dwarf _srclines_deall oc_b(line_context);

return;
}
/* The lines are normal line table lines. */
for (i =0; i < linecount; ++i) {
/* use linebuf[i] */
}

rev 2.48, Mar 14, 2016 - 60 -



-61 -

dwarf _srclines_deall oc_b(line_context);
/* Al the menory is released, the |ine_context
and |inebuf zeroed now as a reninder they are stale */
i nebuf = 0;
line_context = O;
i necount = O;

} else {
/* EXPERI MENTAL. NOT | N STANDARD DWARF */
Dwarf_Signed i = 0;
/* ASSERT: table count == 2,
Experimental two-level line table. Version 0xf006

We do not define the neaning of this non-standard
set of tables here. */

/* For 'something C (two-level line tables)
one codes sonething like this
Note that we do not define the neaning or use of two-level line

tabl es as these are experinmental, not standard DWARF. */
sres = dwarf_srclines_two_|level _fromlinecontext(line_context,
&l i nebuf, & i necount,
&l i nebuf actual s, & i necount _actual s,

&err);
if (sres == DWDLV_X) {

for (i =0; i < linecount; ++i) {

/* use linebuf[i], these are the '"logicals’ entries. */
}
for (i = 0; i < linecount_actuals; ++i) {

/* use linebuf _actuals[i], these are the actuals entries */

}

dwarf _srclines_deall oc_b(line_context);
line_context = O;
i nebuf = 0;
i necount = O;
| i nebuf actuals = 0O;
|l i necount actuals = 0;
se if (sres == DWDLV_NO ENTRY) {
/* This should be inpossible, but do sonething. */
/* Then Free the |ine_context */
dwarf _srclines_deall oc_b(line_context);
line_context = O;
i nebuf = 0;
i necount = O;
| i nebuf _actuals =
| i necount _actual s
} else {
/* ERROR, show the error or sonething.
Free the line_context. */
dwarf _srclines_deall oc_b(line_context);
line_context = O;
i nebuf = 0;
i necount = O;
| i nebuf _actuals =
| i necount _actual s

—
@

0;
= 0,

0;
= 0,

rev 2.48, Mar 14, 2016 -61-



-62 -

6.9 Line Context Details (DWARFS5 style)

New in October 2015. When a Dwarf_Line Context has been returned by
dwar f _srclines_b() thatline context data'details can be retried with the following set of calls.

6.9.1 dwarf_srclines table offset()

int dwarf_srclines_table_ offset(Dwarf_Line_Context |ine_context,
Dwar f _Unsi gned * of fset,
Dwar f _Error * error);

On success, this function returns the offset (in the ohjedlirfe section) of the actual line data (i.e. after
the line header for this compilation unit) through tifef set pointer The offset is probably only of
interest when printing detailed information about a line table header.

In case of error DW DLV_ERROR is returned and the error is set through #er or pointer.
DW DLV_NO_ENTRY will not be returned.

6.9.2 dwarf_srclines version()

int dwarf_srclines_version(Dwarf_ Line_Context |ine_context,
Dwar f _Unsi gned * versi on,
Dwar f _Error * error);

On succes®W DLV_(K is returned and the line table version number is returned thrthebher si on
pointer.

In case of errgr DW DLV_ERROR is returned and the error is set through #wer or pointer.
DW DLV_NO_ENTRY will not be returned.

6.9.3 dwarf_srclines_comp_dir()

int dwarf_srclines_conp_dir(Dwarf_Line_Context |ine_context,
const char ** conpilation_directory,
Dwarf _Error * error);

On success this returns a pointer to the compilation directory string for this line table in
*conpi | ati on_di rect ory. That compilation string may be NULL or the empty string.

In case of error DW DLV_ERROR is returned and the error is set through #er or pointer.
DW DLV_NO_ENTRY will not be returned.

6.9.4 dwarf_srclines files count()

int dwarf_srclines files count(Dwarf_Line Context |ine_context,
Dwarf _Signed * count,
Dwar f _Error * error);

On success, the number of files in the files list of a line table header will be returned thooungh

In case of errgr DW DLV_ERROR is returned and the error is set through #wer or pointer.
DW DLV_NO_ENTRY will not be returned.

rev 2.48, Mar 14, 2016 -62 -



-63 -

6.9.5 dwarf_srclines files data()

int dwarf_srclines files data(Dwarf Line_Context |ine_context,
Dwar f _Si gned i ndex,
const char ** name,
Dwarf _Unsigned * directory_index,
Dwarf _Unsigned * |last_nod tine,
Dwarf _Unsigned * file_length,
Dwar f _Error * error);
On success, data about a single file in ihes flist will be returned through the pointers. Se&/ARF
documentation for the meaning of theselds. count. Valid i ndex. values are 1 throughount,
reflecting the way the table is defined bWBRF.

This returns the mfiles data from the line table header.

In case of errgr DW DLV_ERROR is returned and the error is set through #wer or pointer.
DW DLV_NO_ENTRY will not be returned.

6.9.6 dwarf_srclines_include_dir_count()

int dwarf_srclines_include_dir_count(Dwarf_Line_Context |ine_context,
Dwar f _Si gned * count,
Dwarf _Error * error);

On success, the number of files in the includes list of a line table header will be returned clononigh
Valid i ndex. values are 1 throughount , reflecting the way the table is defined bWBRF.

In case of errgr DW DLV_ERROR is returned and the error is set through #wer or pointer.
DW DLV_NO_ENTRY will not be returned.

6.9.7 dwarf_srclines include dir_data()

int dwarf_srclines_include_dir_data(Dwarf_Line Context |ine_context,
Dwar f _Si gned i ndex,
const char ** narmre,
Dwarf_Error * error);

On success, data about a single file in the include files list will be returned through the p&eters.
DWARF documentation for the meaning of these fields.

Valid i ndex. values are 1 throughount , reflecting the way the table is defined bWBRF.

In case of errgr DW DLV_ERROR is returned and the error is set through #wer or pointer.
DW DLV_NO_ENTRY will not be returned.

6.9.8 dwarf_srclines_subprog_count()

int dwarf_srclines_subprog_count (Dwarf_Li ne_Context |ine_context,
Dwar f _Si gned * count,
Dwarf _Error * error); Thisis only useful with experimental twovk [ine tables.

6.9.9 dwarf_srclines subprog_data()

int dwarf_srclines_subprog_data(Dwarf _Line_ Context |ine_context,
Dwar f _Si gned i ndex,
const char ** name,
Dwarf _Unsigned * decl file,
Dwar f _Unsigned * decl _|ine,
Dwar f _Error * error); Thisis only useful with experimental twovks line tables.

rev 2.48, Mar 14, 2016 -63 -



-64 -

6.10 Get A Set of Lines (DWARF2,34 style)

The function returns information aboutveey source line for a particular compilation-unifThe
compilation-unit is spediéd by the corresponding die. It does not support line tables with no kmgs v
well nor does it support experimental twadd inetables.

6.10.1 dwarf_srclines()

int dwarf_srclines(
Dwarf_Die die,
Dwar f _Li ne **|inebuf,
Dwar f _Si gned *1inecount,
Dwarf _Error *error)

This function is not useful for WARF5 skeleton line tables nor for dvlevel line tables. It works for
DWARF2,3,4,5 ordinary single line table3he functiondwar f _srcli nes() places all line number
descriptors for a single compilation unit into a single block, sktsnebuf to point to that block, sets
*| i necount to the number of descriptors in this block and retDwWsDLV_COK.

To get a more detailed weof the contents of a dwarf line table headercdsar f _srcl i nes_b()
and the routines that wuse the &dWline_Contgt information, such as
dwarf _srcfiles_conp_dir(), dwarf_srclines_files_count(),
dwar f _srclines_include_dir_count () and similar functions.

The compilation-unit is indicated by thevgn di e which must be a compilation-unit die. It returns
DW DLV_ERROR on error On auccessful return, line number information should be freed using
dwar f _srclines_deal | oc() when no longer of interest.

Figure 16. Exampled dwarf_srclines()

/* dwarf_srclines_b() should be used instead. */
voi d exanpl ed( Dwar f _Debug dbg, Dwarf _Di e sonedi e)
{

Dwar f _Si gned count = O;

Dwarf _Line *linebuf = 0;

Dwarf_Signed i = 0;

Dwarf_Error error = 0;

int sres = 0;

sres = dwarf_srclines(sonedie, & inebuf,&ount, &error);
if (sres == DWDLV_OK) {

for (i =0; i < count; ++i) {

/* use linebuf[i] */

}

dwarf _srclines_deal |l oc(dbg, |inebuf, count);
}

}

An alternatve wisingdwar f _deal | oc() directly is no longer (as of 2015) described here. It works as
well as @er, but it has been obsolete since 2085l works, but does not completely free all data allocated.
Thedwar f _srcli nes_deal | oc() routine was created to fix the problem of incomplete deallocation.

rev 2.48, Mar 14, 2016 -64 -



-65 -

6.11 Get the set of Source File Names

The function returns the names of the source files thag @mtributed to the compilation-unit represented
by the gven DIE. Onlythe source files named in the statement program prologue are returned.

6.11.1 dwarf_srcfiles()
This works for for all line tables.

int dwarf_srcfil es(
Dwarf_Die die,
char ***srcfil es,
Dwar f _Si gned *srccount,
Dwarf _Error *error)

When it succeeddwar f _srcfil es() returnsDW DLV_CK and puts the number of sourdes named
in the statement program prologue indicated by thiengii e into *sr ccount . Source files defined in
the statement program are ignored. Theemidi e should hae the tagDW TAG conpil e_unit,
DW TAG partial _unit, oo DW TAG type_unit The location pointed to bgrcfil es is set to
point to a list of pointers to null-terminated strings that name the source files.

On a successful return frordwar f _srcfil es() each of the strings returned should be\iatially
freed usingdwar f _deal | oc() with the allocation typ®W DLA STRI NG when no longer of interest.
This should be followed by free-ing the list usinyvarf _deal | oc() with the allocation type
DW DLA LI ST. It returnsDW DLV_ERROR on error It returnsDW DLV_NO_ENTRY if there is no
corresponding statement program (i.e., if there is no line information).

Figure 17. Exampled dwarf_srcfiles()

voi d exanpl ee( Dwar f _Debug dbg, Dwarf _Di e sonedi e)
{

Dwar f _Si gned count = O;

char **srcfiles = 0;

Dwarf_Signed i = 0;

Dwarf _Error error = O;

int res = 0;

res = dwarf_srcfil es(sonedie, &srcfiles, &ount, &rror);
if (res == DWDLV_CK) {
for (i =0; i < count; ++i) {
/* use srcfiles[i] */
dwarf _deal | oc(dbg, srcfiles[i], DWDLA STRING;
}
dwar f _deal | oc(dbg, srcfiles, DWDLA LIST);
}
}
}

6.12 Get Information About a Single Line Table Line

The following functions can be used on twear f _Li ne descriptors returned tgwar f _srcl i nes()
ordwarf_srclines_from.linecontext () to obtain information about the source lines.

6.12.1 dwarf_linebeginstatement()

rev 2.48, Mar 14, 2016 - 65 -



-66 -

int dwarf_|inebegi nstatemnent (
Dwarf_Line |ine,
Dwarf _Bool *return_bool,
Dwarf _Error *error)

The functiondwar f _| i nebegi nst at enent () returnsDW DLV_OK and sets*r et urn_bool to
non-zero (if 1 i ne represents a line number entry that is marked gsheg a statement)or zero ((if

i ne represents a line number entry that is not marked as beginning a statement). It returns
DW DLV_ERRORoOnN error It neve returnsDW DLV_NO_ENTRY.

6.12.2 dwarf_lineendsequence()

int dwarf _|ineendsequence(
Dwarf _Line |ine,
Dwar f _Bool *return_bool,
Dwar f _Error *error)

The functiondwar f _| i neendsequence() returnsDW DLV_OK and setsr et urn_bool non-zero

(in which casd i ne represents a line number entry that is redrles ending a text sequenceyap (in

which casd i ne represents a line number entry that is not marked as ending setpience).A line

number entry that is marked as endingxa $equence is an entry with an address one beyond the highest
address used by the current sequence of line table entries (that is, the table entry is a
DW_LNE_end_sequence entry (see thARF specification)).

The function dwar f _| i neendsequence() returns DW DLV_ERROR on error It neva returns
DW DLV_NO_ENTRY.

6.12.3 dwarf_lineno()

int dwarf _l|ineno(
Dwar f _Li ne line,
Dwar f _Unsigned * returned_Iineno,
Dwar f _Error * error)

The functiondwarf _| i neno() returnsDW DLV_OK and sets*return_l i neno to the source
statement line number corresponding to the descriptore. It returnsDW DLV_ERROR on error It
never returnsDW DLV_NO _ENTRY.

6.12.4 dwarf_line srcfileno()

int dwarf _line_srcfileno(
Dwar f _Li ne line,
Dwarf _Unsigned * returned_fil eno,
Dwar f _Error * error)

The functiondwar f _|i ne_srcfil eno() returnsDW DLV_OK and set$ret urned_fil eno to the
source statement line number corresponding to the desdript@a nunber. When the number returned
through*r et ur ned_fi | eno is zero it means the file name is unkm(see the WARF2/3 line table
specifcation). Whernthe number returned throudh et ur ned_fi | eno is non-zero it is aile number:
subtract 1 from thisile number to get an indénto the array of strings returned war f _srcfil es()
(verify the resulting indeis in range for the array of strings before irithg into the array of strings)The
file number may exceed the size of the array of strings returnetivlayf srcfil es() because
dwarf _srcfil es() does not return files names defined with B¢/ DLE defi ne_fi | e operator.
The function dwarf line_srcfil eno() returns DW DLV_ERRCOR on error It neve returns
DW DLV_NO_ENTRY.

rev 2.48, Mar 14, 2016 - 66 -



-67 -

6.12.5 dwarf_lineaddr()

int dwarf _|ineaddr(
Dwar f _Li ne line,
Dwarf _Addr *return_lineaddr,
Dwar f _Error *error)

The functiondwar f _| i neaddr () returnsDW DLV_OK and set$ret urn_| i neaddr to the address
associated with the descriptdri ne. It returns DW DLV_ERROR on error It neve returns
DW DLV_NO_ENTRY.

6.12.6 dwarf_lineoff()

int dwarf _lineoff(
Dwarf_Line |ine,
Dwar f _Si gned * return_lineoff,
Dwarf _Error *error)

The functiondwar f _| i neof f () returnsDW DLV_(K and setsret urn_I i neof f to the column
number at which the statement representeldibhe begins.

It setsret urn_l i neof f to zero if the column number of the statement is not represented (meaning the
producer library call was gén zero as the column numberXero is the correct value meaning "left edge"
as defined in the WARF2/3/4 specication (section 6.2.2).

Before December 2011 zero was not returned througtr t#teur n_I| i neof f pointer -1 was returned
through the pointerThe reason for this oddity is unclekost in history But there is no good reason for -1.

The type ofreturn_l i neof f is a pointer-to-signed, but there is no good reason for the value to be
signed, the BWARF speciication does not deal with gdaive mlumn numbers.However, changing the
declaration would cause compilation errors for little benefit, so the pointer-to-signed is left unchanged.

On error it return®W DLV_ERROR. It neve returnsDW DLV_NO _ENTRY.
6.12.7 dwarf_lineoff_b()

int dwarf _|ineoff b(
Dwarf _Line |ine,
Dwar f _Unsi gned * return_Ilineoff,
Dwar f _Error *error)

The functiondwar f _| i neof f _b() returns exactly the same dsarf | i neof f () except the line
offset returned throughet ur n_I i neof f () is an unsignedalue. Thesigned return offset ner made
much sense but was harmless since line lengths are limited by most language standards.

6.12.8 dwarf_linesrc()

int dwarf _linesrc(
Dwarf_Line |ine,
char ** return_linesrc,
Dwarf _Error *error)

The functiondwar f _| i nesrc() returnsDW DLV_CK and set$ret urn_I i nesrc to a pointer to a
null-terminated string of characters that represents the name of the sleumbdrel i ne occurs. It
returnsDW DLV_ERRCR on error.

If the applicableife name in the line table Statement Program Prolog does not start with a '/’ character the
string in DW AT_conp_di r (if applicable and present) or the applicable directory name from the line
Statement Program Prolog is prepended to the file name in the line table Statement Program Protg to mak

rev 2.48, Mar 14, 2016 - 67 -



-68 -

a full path.

The storage pointed to by a successful returndegarf |inesrc() should be freed using
dwar f _deal | oc() with the allocation typeDW DLA STRI NG when no longer of interest. It v
returnsDW DLV_NO _ENTRY.

6.12.9 dwarf_lineblock()

int dwarf _|inebl ock(
Dwarf _Line |ine,
Dwar f _Bool *return_bool,
Dwar f _Error *error)

The functiondwar f _| i nebl ock() returnsDW DLV_OK and sets‘return_| i nesrc to non-zero
(i.e. true)(if the line is marked as beginning a basic block) or zero (i.e. false) (if the line edraarkot
beginning a basic block). It returi®V DLV_ERROR on error It neve returnsDW DLV_NO_ENTRY.

6.12.10 dwarf_is addr_set()

int dwarf_line_is_addr_set(
Dwarf_Line |ine,
Dwarf _Bool *return_bool,
Dwarf _Error *error)

The functiondwar f _| i ne_i s_addr _set () returnsDW DLV_OK and set$r et ur n_bool to non-
zero (i.e. true)(if the line is marked as being\WW I NE_set address operation) or zero (i.e. false) (if the
line is marled as not being a DW_LNE_set _address operation). It reBMhBLY ERROR on error It
never returnsDW DLV_NO _ENTRY.

This is intended to alle consumers to do a more useful job printing and analyzW#\RF data, it is not
strictly necessary.

6.12.11 dwarf prologue end_etc()

int dwarf_prol ogue_end etc(Dwarf_Line |ine,
Dwar f _Bool * pr ol ogue_end,
Dwar f _Bool * epi | ogue_begi n,
Dwarf _Unsigned * isa,
Dwar f _Unsi gned * discrimnator,
Dwar f _Error * error)

The functiondwar f _prol ogue_end_etc() returnsDW DLV_OK and sets the returned fields to
values currently set. While it is pretty safe to assume that ¢l@eanddi scri ni nat or values returned
are \ery small integers, there is no restriction in the standard. It rebWWhBLY ERROR on error It neve
returnsDW DLV_NO_ENTRY.

This function is n& in December 2011.

6.13 Global Name Space Operations

These operations operate on the .debug_pubnames section of the debugging information.

rev 2.48, Mar 14, 2016 - 68 -



-69 -

6.13.1 Debugger Interface Operations

6.13.1.1 dwarf_get_globals()

i nt dwarf_get gl obal s(
Dwar f _Debug dbg,
Dwar f _d obal **gl obal s,
Dwarf _Signed * return_count,
Dwarf Error *error)

The functiondwar f _get gl obal s() returnsDW DLV_OK and set$ r et ur n_count to the count of
pubnames represented in the section containing pubnames i.ag_.debnames. lalso stores at
*gl obal s, a pointer to a list ofbwar f _Ad obal descriptors, one for each of the pubnames in the
.delug_pubnames section. The returned results are for the entire section. It Bs&UBisY/ ERROR on
error. It returnsDW DLV_NO_ENTRY if the .debug_pubnames section does not exist.

On a successful return frodwar f _get gl obal s(), theDwar f _G obal descriptors should be freed
usingdwar f _gl obal s_deal | oc(). dwarf _gl obal s_deal | oc() is nev as of dily 15, 2005 and
is the preferred approach to freeing this memory..

Global names referxelusively to names and offsets in the .dgbinfo section. See section 6.1.1 "Lookup
by Name" in the dwarf standard.

Figure 18. Exampled dwarf_get_globals()

voi d exanpl ef (Dwar f _Debug dbg)
{
Dwar f _Si gned count = O;
Dwarf _G obal *globs = 0;
Dwarf_Signed i = 0;
Dwarf _Error error = 0;
int res = 0;

res = dwarf _get gl obal s(dbg, &gl obs, &ount, &error);
if (res == DWDLV_CK) {
for (i =0; i < count; ++i) {
/* use globs[i] */
}

dwar f gl obal s_deal | oc(dbg, gl obs, count);

}
}

The following code is deprecated as of July 15, 2005 as it does not freevalttredemory This approach
still works as well as it ver did. On a successful return fromdwar f _get gl obal s(), the
Dwar f _d obal descriptors should be individually freed usihgar f _deal | oc() with the allocation
type DW DLA GLOBAL_CONTEXT, (or DW DLA GLOBAL, an dder name, supported for compatibility)
followed by the deallocation of the list itself with the allocation ¢ DLA LI ST when the descriptors
are no longer of interest.

rev 2.48, Mar 14, 2016 - 69 -



-70 -

Dwar f _Si gned cnt;
Dwar f _d obal *gl obs;
int res;

res = dwarf_get gl obal s(dbg, &gl obs, &nt, &error);
if (res == DWDLV_OK) {

/* OBSOLETE: DO NOT USE to deal | ocate*/
for (i =0; i <cnt; ++i) {
/* use globs[i] */
dwar f _deal | oc(dbg, globs[i], DWDLA G.OBAL_CONTEXT);

}
dwar f _deal | oc(dbg, gl obs, DWDLA LIST);

6.13.1.2 dwarf_globname()

i nt dwarf _gl obnanme(
Dwar f _d obal gl obal,
char ** return_nane,
Dwarf _Error *error)

The functiondwar f _gl obname() returnsDW DLV_OK and sets‘r et ur n_nane to a pointer to a
null-terminated string that names the pubname represented byiné G obal descriptor,gl obal .

It returnsDW DLV_ERROR on error On a successful return from this function, the string should be freed
usingdwar f _deal | oc(), with the allocation typddW DLA_ STRI NG when no longer of interestit
never returnsDW DLV_NO_ENTRY.

6.13.1.3 dwarf_global_die offset()

int dwarf_gl obal die offset(
Dwar f _d obal gl obal,
Dwar f _Of f *return_of fset,
Dwar f _Error *error)

The functiondwar f _gl obal di e _of fset () returnsDW DLV_COK and setsret urn_of f set to

the ofset in the section containing DIEs, i.e. .debug_info, of the DIE representing the pubname that is
described by th®war f _G obal descriptorgl ob. It returnsDW DLV_ERRORon error It neve returns

DW DLV_NO_ENTRY.

6.13.1.4 dwarf_global_cu_offset()

int dwarf_gl obal cu_offset(
Dwar f _d obal gl obal,
Dwarf O f *return_of fset,
Dwar f _Error *error)

The functiondwar f _gl obal _cu_of fset () returnsDW DLV_OK and setgr et ur n_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the pubname described by Earf G obal descriptor, gl obal . It returns

DW DLV_ERRCRon error It neve returnsDW DLV_NO_ENTRY.

6.13.1.5 dwarf_get_cu_die offset_given_cu_header_offset()

rev 2.48, Mar 14, 2016 -70 -



-71-

int dwarf_get _cu_die_offset_given_cu_header_offset_ b(
Dwar f _Debug dbg,
Dwarf O f i n_cu_header offset,
Dwarf Bool is_info,
Dwarf O f * out_cu_di e offset,
Dwarf _Error *error)

The functiondwar f _get cu_di e_of f set _gi ven_cu_header _of f set () returnsDW DLV_CK
and sets*out _cu_di e_offset to the offset of the compilation-unit DIE wgh the ofset
i n_cu_header _of f set of a compilation-unit headeit returnsDW DLV_ERROR on error It neve
returnsDW DLV_NO _ENTRY.

If i s_i nfo is non-zero thé n_cu_header _of f set must refer to a .debug_info sectiorfset. If
i s_i nfo zero thei n_cu_header _of f set must refer to a .debug_types sectiofsetf Chaognay
result if thei s_i nf o flag is incorrect.

This efectively turns a compilation-unit-header offset into a compilation-unit DIE offset (by adding the
size of the applicable CU header). This function is also sometimes useful with the
dwarf_weak cu_offset(), dwarf_func_cu_offset(), dwarf_type_cu_offset(), and

int dwarf_var_cu_of fset () functions, though for those functions the data is only inugeinfo

by definition.

6.13.1.6 dwarf_get_cu_die offset_given_cu_header_offset()

int dwarf_get _cu_die_offset_given_cu_header_offset(
Dwar f _Debug dbg,
Dwarf_ O f i n_cu_header offset,
Dwarf O f * out_cu_di e of fset,
Dwarf _Error *error)

This function is superseded byarf _get cu_di e_of f set _gi ven_cu_header _of fset _b(),
a function which is still supported thought it refers only to the .debug_info section.

dwarf _get cu_di e_offset _given_cu_header of fset () added Re 1.45, June, 2001.

This function is declared as ’optional’ in libdwarf.h on IRIX systems so the _MIPS_SYMBOL_PRESENT
predicate may be used at run time to determine if ¢hgion of libdwarf linked into an application has this
function.

6.13.1.7 dwarf_global_name_offsets()

i nt dwarf _gl obal nanme_of f set s(
Dwar f _d obal gl obal,
char **return_nane,
Dwarf O f *die_offset,
Dwarf O f *cu_offset,
Dwar f _Error *error)

The functiondwar f _gl obal nane_of f set s() returnsDW DLV_OK and set$ret urn_nane to a
pointer to a null-terminated string thaveg the name of the pubname described byDivar f _Qd obal
descriptorgl obal . It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO _ENTRY. It aso
returns in the locations pointed to Biye_of f set, andcu_of f set , the offsets of the DIE representing
the pubname, and the DIE representing the compilation-unit containing the pubname,vebsp€rii a
successful return frordwar f _gl obal _nane_of f set s() the storage pointed to byet ur n_nane
should be freed usingwar f _deal | oc(), with the allocation typdW DLA STRI NG when no longer
of interest.

rev 2.48, Mar 14, 2016 -71-



-72 -

6.14 DWARF3 Type Names Oper ations
Section ".debug_pubtypes" issmen DWARF3.

These functions operate on the .debug pubtypes section of the debugging infornigtien.
.delug_pubtypes section contains the namesl®fstope usedefined types, the offsets of th# Es that
represent the definitions of those types, and tfeetsf of the compilation-units that contain theirdgébns
of those types.

6.14.1 Debugger I nterface Operations

6.14.1.1 dwarf_get_pubtypes()

i nt dwarf_get pubtypes(
Dwar f _Debug dbg,
Dwar f _Type **types,
Dwar f _Si gned *typecount,
Dwarf _Error *error)

The functiondwar f _get pubt ypes() returnsDW DLV_CK and sets't ypecount to the count of
user-dehed type names represented in the section containing-deteed type names, i.e.
.delug_pubtypes. lalso stores dtt ypes, a pinter to a list oDwar f _Type descriptors, one for each of

the userdefined type names in the .debug_pubtypes section. The returned results are for the entire section.
It returnsDW DLV_NOCOUNT on error It returnsDW DLV_NO _ENTRY if the .debug_pubtypes section

does not exist.

On a successful return frodwar f _get _pubt ypes(), theDwar f _Type descriptors should be freed
using dwarf_types_deal | oc(). dwar f _types_deal | oc() is used for both
dwarf _get pubtypes() anddwarf_get types() asthe data types are the same.

Global type names refex@usively to names and offsets in the .debug_info section. See section 6.1.1
"Lookup by Name" in the dwarf standard.

Figure 19. Exampled dwarf_get_pubtypes()
voi d exanpl eg( Dwar f _Debug dbg)

{
Dwarf Error error = 0;
Dwar f _Si gned count = O;
Dwar f _Type *types = 0;
Dwarf_Signed i = 0;
int res = 0;
res = dwarf_get_ pubtypes(dbg, &types, &ount, &error);
if (res == DWDLV_OK) {
for (i =0; i < count; ++i) {
/* use types[i] */
}
dwarf _types_deal | oc(dbg, types, count);
}
}

rev 2.48, Mar 14, 2016 -72-



-73-

6.14.1.2 dwarf_pubtypename()

i nt dwarf_pubt ypename(
Dwar f _Type type,
char **return_narme,
Dwarf _Error *error)

The functiondwar f _pubt ypename() returnsDW DLV_COK and set$ r et ur n_nane to a pointer to a
null-terminated string that names the wdefned type represented by thear f _Type descriptorf ype.
It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO_ENTRY. On a successful return from
this function, the string should be freed usidgwarf _deal | oc(), with the allocation type
DW DLA STRI NGwhen no longer of interest.

6.14.1.3 dwarf_pubtype type die offset()

int dwarf_pubtype type die offset(
Dwar f _Type type,
Dwarf O f *return_offset,
Dwarf Error *error)

The function dwarf _ pubtype type die offset() returns DWDLV _OK and sets
*return_of f set to the ofset in the section containing DIEs, i.e. .debug_info, of the DIE representing
the userdefined type that is described by thear f _Type descriptort ype. It returnsDW DLV_ERROR

on error It neve returnsDW DLV_NO_ENTRY.

6.14.1.4 dwarf_pubtype cu_offset()

int dwarf_pubtype cu_of fset(
Dwar f _Type type,
Dwarf O f *return_offset,
Dwarf Error *error)

The functiondwar f _pubt ype_cu_of f set () returnsDW DLV_OK and setsr et urn_of f set to
the offset in the section containing DIEs, i.e. wgbnfo, of the compilation-unit header of the
compilation-unit that contains the usiafined type described by tHanar f _Type descriptort ype. It
returnsDW DLV_ERROR on error It neve returnsDW DLV_NO_ENTRY.

6.14.1.5 dwarf_pubtype_name_offsets()

i nt dwarf_pubtype nanme_of f set s(
Dwar f _Type type,
char ** returned_nane,
Dwarf Of * die_ offset,
Dwarf O f * cu_offset,
Dwarf Error *error)

The functiondwar f _pubt ype _nane_of f set s() returnsDW DLV_COK and set$r et ur ned_nane

to a pointer to a null-terminated string thavegi the name of the useleined type described by the
Dwar f _Type descriptort ype. It also returns in the locations pointed to bye of fset, and
cu_of fset, the ofsets of the DIE representing the udefined type, and the DIE representing the
compilation-unit containing the usdefined type, respectely. It returnsDW DLV _ERROR on error It
never returns DW DLV_NO ENTRY. On a successful return from
dwar f _pubt ype nane_of f set s() the storage pointed to hyet ur ned_nane should be freed
usingdwar f _deal | oc(), with the allocation typ®W DLA STRI NGwhen no longer of interest.

rev 2.48, Mar 14, 2016 -73-



-74 -

6.15 User Defined Static Variable Names Operations
This section is SGI specific and is not part of standaM\RF version 2.

These functions operate on the ugbarnames section of the debugging informatioimhe
.debug_warnames section contains the names of file-scope static variables, the offsetDioEshibat
represent the definitions of those variables, and the offsets of the compilation-units that contain the
definitions of those variables.

6.16 Weak Name Space Operations
These operations operate on the .debug_weaknames section of the debugging information.

These operations are SGI specific, not part of standadiRF.

6.16.1 Debugger Interface Operations

6.16.1.1 dwarf_get_weaks()

int dwarf_get weaks(
Dwar f _Debug dbg,
Dwar f _Weak **weaks,
Dwar f _Si gned *weak_count,
Dwar f _Error *error)

The functiondwar f _get weaks() returnsDW DLV_OK and set$ weak count to the count of weak
names represented in the section containing weak names i.eug_deaknames. Itreturns
DW DLV_ERROR on error It returnsDW DLV_NO _ENTRY if the section does nokist. It also stores in
*weaks, a pointer to a list ofDwar f _Weak descriptors, one for each of the weak names in the
.debug_weaknames section. The returned results are for the entire section.

On a successful return from this function, tBearf Weak descriptors should be freed using
dwar f _weaks_deal | oc() when the data is no longer of interestwar f _weaks_deal | oc()is
new as of dily 15, 2005.

Figure 20. Exampleh dwarf_get_weaks()

rev 2.48, Mar 14, 2016 -74 -



-75 -

voi d exanpl eh( Dwar f _Debug dbg)
{
Dwarf Error error = 0;
Dwar f _Si gned count = O;
Dwar f _Weak *weaks = 0;
Dwarf_Signed i = 0;
int res = 0;

res = dwarf_get weaks(dbg, &weaks, &count, &error);
if (res == DWDLV_OK) {

for (i =0; i < count; ++i) {

/* use weaks[i] */

}

dwar f _weaks_deal | oc(dbg, weaks, count);
}

}

The following code is deprecated as of July 15, 2005 as it does not freeahteteemory This approach
still works as well as itver did. Ona auccessful return frordwar f _get _weaks() the Dwar f _Weak
descriptors should be individually freed usindwarf_deal | oc() with the allocation type
DW DLA WEAK CONTEXT, (or DW DLA WEAK, an dder name, supported for compatibility) followed by
the deallocation of the list itself with the allocation tyip@&/ DLA LI ST when the descriptors are no
longer of interest.

Figure 21. Examplei dwarf_get_weaks() obsolete

voi d exanpl ei (Dwarf _Debug dbg)
{
/* (Obsol ete. See exanpleh instead. */
Dwarf Error error = 0;
Dwar f _Si gned count = O;
Dwar f _Weak *weaks = 0;
Dwarf_Signed i = 0;
int res = 0;

res = dwarf_get weaks(dbg, &weaks, &count, &error);
if (res == DWDLV_OK) {
/* OBSOLETE: do not use dealloc for this.
See above */
for (i =0; i < count; ++i) {
/* use weaks[i] */
dwar f _deal | oc(dbg, weaks[i], DWDLA WEAK);
}
dwar f _deal | oc(dbg, weaks, DWDLA LI ST);
}
}

6.16.1.2 dwarf_weakname()

rev 2.48, Mar 14, 2016 -75-



-76 -

i nt dwarf_weaknane(
Dwar f _Weak weak,
char ** return_nane,
Dwarf _Error *error)

The functiondwar f _weakname() returnsDW DLV_OK and sets‘r et ur n_nane to a pointer to a
null-terminated string that names the weak name represented bywdané Weak descriptorweak. It
returnsDW DLV_ERROR on error It neve returnsDW DLV_NO ENTRY. On a successful return from
this function, the string should be freed usidgwarf deal | oc(), with the allocation type
DW DLA STRI NGwhen no longer of interest.

int dwarf_weak _die_of fset(
Dwar f _Weak weak,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _weak_di e_of f set () returnsDW DLV_OK and setsr et ur n_of f set to the
offset in the section containing DIEs, i.e. .dgbinfo, of the DIE representing the weak name that is
described by th®war f _Weak descriptorweak. It returnsDW DLV_ERRCR on error It neve returns

DW DLV_NO_ENTRY.

6.16.1.3 dwarf_weak_cu_offset()

int dwarf_weak_cu_offset(
Dwar f _Weak weak,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _weak_cu_of f set () returnsDW DLV_OK and sets‘r et ur n_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the weak name described by @warf_ \Weak descriptor, weak. It returns

DW DLV_ERRORoON error It neve returnsDW DLV_NO_ENTRY.

6.16.1.4 dwarf weak_name offsets()

int dwarf_weak nane_of f set s(
Dwar f _Weak weak,
char ** weak_nane,
Dwnarf O f *die_offset,
Dwarf O f *cu_offset,
Dwar f _Error *error)

The functiondwarf _weak name_of fsets() returns DW DLV_OK and sets*weak nane to a

pointer to a null-terminated string thaves the name of the weak name described byDiher f _Weak
descriptorweak. It aso returns in the locations pointed to tiye of f set, and cu_of f set, the

offsets of the DIE representing the weakname, and the DIE representing the compilation-unit containing the
weakname, respeedly. It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO _ENTRY. On

a aiccessful return fromdwar f _weak name_of f set s() the storage pointed to byweak nane

should be freed usingwar f _deal | oc(), with the allocation typdW DLA STRI NG when no longer

of interest.

6.17 Static Function Names Operations
This section is SGI specific and is not part of standaM\RF version 2.

These function operate on the .debug_funcnames section of the debugging inforniEtien.

rev 2.48, Mar 14, 2016 -76 -



-77 -

.delug_funcnames section contains the names of static functioimedléf the object, the offsets of the
Dl Es that represent the deitions of the corresponding functions, and the offsets of the start of the
compilation-units that contain the definitions of those functions.

6.17.1 Debugger Interface Operations

6.17.1.1 dwarf_get_funcs()

int dwarf_get_funcs(
Dwar f _Debug dbg,
Dwar f _Func **funcs,
Dwar f _Si gned *func_count,
Dwarf Error *error)

The functiondwar f _get _funcs() returnsDW DLV_COK and sets$ f unc_count to the count of static
function names represented in the section containing static function names, ug. faetnames. klso
stores, at f uncs, a inter to a list oDwar f _Func descriptors, one for each of the static functions in
the .debug_funcnames sectiofhe returned results are for the entire section. It refDfdOLV ERROR

on error ItreturnsDW DLV_NO_ENTRY if the .debug_funcnames section does not exist.

On a successful return frodwar f _get funcs(), theDwar f _Func descriptors should be freed using
dwarf funcs_deal l oc(). dwarf _funcs_deal | oc() is nev as of dily 15, 2005.

Figure 22. Examplej dwarf_get funcs()

voi d exanpl ej (Dwarf _Debug dbg)
{
Dwarf Error error = 0;
Dwar f _Si gned count = O;
Dwar f _Func *funcs = 0;
Dwarf_Signed i = 0;
int fres = 0O;

fres = dwarf _get funcs(dbg, &funcs, &count, &error);
if (fres == DWDLV_OK) {
for (i =0; i < count; ++i) {
/* use funcs[i] */
}

dwarf funcs_deal | oc(dbg, funcs, count);

}
}

The following code is deprecated as of July 15, 2005 as it does not freeahtefeemory This approach
still works as well as itver did. Ona auccessful return fromdwar f _get funcs(), theDwarf _Func
descriptors should be individually freed usindwarf deal | oc() with the allocation type
DW DLA FUNC_CONTEXT, (or DW DLA_FUNC, an dder name, supported for compatibility) followed by
the deallocation of the list itself with the allocation tyip@&/ DLA LI ST when the descriptors are no
longer of interest.

Figure 23. Examplek dwarf_get funcs() obsolete

rev 2.48, Mar 14, 2016 -77 -



-78 -

voi d exanpl ek( Dwar f _Debug dbg)
{
Dwarf _Error error 0;
Dwar f _Func *funcs 0;
Dwar f _Si gned count = O;
Dwarf_Signed i = 0;
int fres = 0;

fres = dwarf_get funcs(dbg, &funcs, &ount, &error);
if (fres == DWDLV_XK) {
/* OBSOLETE: see dwarf_funcs_deal |l oc() exanplei */
for (i =0; i < count; ++i) {
/* use funcs[i] */
dwar f _deal | oc(dbg, funcs[i], DWDLA FUNC);
}
dwar f _deal | oc(dbg, funcs, DWDLA LIST);
}
}

6.17.1.2 dwarf_funcname()

i nt dwarf_funcnanme(
Dwar f _Func func,
char ** return_nane,
Dwarf _Error *error)

The functiondwar f _f uncname() returnsDW DLV_OK and sets‘r et ur n_nane to a pointer to a
null-terminated string that names the static function represented Byéing _Func descriptorf unc. It
returnsDW DLV_ERROR on error It neve returnsDW DLV_NO _ENTRY. On a successful return from
this function, the string should be freed usidgwarf _deal | oc(), with the allocation type
DW DLA STRI NGwhen no longer of interest.

6.17.1.3 dwarf_func_die offset()

int dwarf_func_di e of fset(
Dwar f _Func func,
Dwarf O f *return_offset,
Dwar f _Error *error)

The functiondwar f _func_di e_of f set (), returnsDW DLV_OK and setgr et ur n_of f set to the
offset in the section containing DIEs, i.e. .dgbinfo, of the DIE representing the static function that is
described by thé&war f _Func descriptor,f unc. It returnsDW DLV_ERRCR on error It neve returns
DW DLV_NO_ENTRY.

6.17.1.4 dwarf_func_cu_offset()

int dwarf_func_cu_offset(
Dwar f _Func func,
Dwarf O f *return_offset,
Dwar f _Error *error)

The functiondwar f _func_cu_of fset () returnsDW DLV_OK and sets r et ur n_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the static function described by Bw&rf Func descriptor,func. It returns

DW DLV_ERRCRon error It neve returnsDW DLV_NO_ENTRY.

rev 2.48, Mar 14, 2016 -78 -



-79-

6.17.1.5 dwarf_func_name offsets()

int dwarf_func_name_of f set s(
Dwar f _Func func,
char **func_narne,
Dwarf_ O f *die_offset,
Dwarf O f *cu_of fset,
Dwarf _Error *error)

The functiondwar f _func_name_of f set s() returns DW DLV_OK and sets*func_nane to a
pointer to a null-terminated string thaveg the name of the static function described byDhar f _Func
descriptorf unc. It also returns in the locations pointed to tiye_ of f set, and cu_of f set, the

offsets of the DIE representing the static function, and the DIE representing the compilation-unit containing
the static function, respeedly. It returns DWDLV_ERROR on error It neve returns

DW DLV_NO ENTRY. On a siccessful return frondwarf _func_nanme_of f set s() the storage
pointed to by func_nane should be freed usinglwarf _deal | oc(), with the allocation type

DW DLA_STRI NGwhen no longer of interest.

6.18 User Defined Type Names Oper ations

Section "debug_typenames" is SGI specific and is not part of stantléddRP version 2.(However, an
identical section is part of\BARF version 3 named ".def pubtypes", seelwar f _get pubt ypes()
abore)

These functions operate on the ughtypenames section of the debugging informatiorhe
.delug_typenames section contains the name#es§éope usedefned types, the offsets of th Es that
represent the definitions of those types, and tfeetsf of the compilation-units that contain theirdébns
of those types.

6.18.1 Debugger Interface Operations

6.18.1.1 dwarf_get_types()

int dwarf_get _types(
Dwar f _Debug dbg,
Dwar f _Type **types,
Dwar f _Si gned *typecount,
Dwarf _Error *error)

The functiondwar f _get _t ypes() returnsDW DLV_OXK and sets't ypecount to the count of user
defined type names represented in the section containinglefieed type names, i.e. .dalp typenames.

It also stores att ypes, a minter to a list oDwar f _Type descriptors, one for each of the udefined
type names in the .debug_typenames section. The returned results are for the entire Iseetioms
DW DLV_NOCOUNT on error It returnsDW DLV_NO_ENTRY if the .debug_typenames section does not
exist.

On a successful return frodwar f _get _t ypes(), theDwar f _Type descriptors should be freed using
dwarf _types_deal l oc(). dwarf_types_deal | oc() is nev as of dily 15, 2005 and frees all
memory allocated bgiwar f _get _types().

Figure 24. Examplel dwarf_get_types()

rev 2.48, Mar 14, 2016 -79-



-80-

voi d exanpl el (Dwarf _Debug dbg)

{

}

Dwarf Error error = 0;
Dwar f _Si gned count = O;
Dwar f _Type *types = 0;
Dwarf_Signed i = 0;

int res = 0;

res = dwarf_get _types(dbg, &types, &ount, &error);
if (res == DWDLV_OK) {
for (i =0; i < count; ++i) {
/* use types[i] */
}
dwarf _types_deal | oc(dbg, types, count);

}

The following code is deprecated as of July 15, 2005 as it does not freeahteteemory This approach
still works as well as itver did. Ona auccessful return fromdwar f _get _t ypes(), theDwarf _Type
descriptors should be individually freed usindwarf_deal | oc() with the allocation type
DW DLA TYPENAME_CONTEXT, (or DW DLA TYPENAME, an dder name, supported for compatibility)
followed by the deallocation of the list itself with the allocation tgéDLA LI ST when the descriptors
are no longer of interest.

Figure 25. Examplel dwarf_get_types() obsolete

voi d exanpl em( Dwar f _Debug dbg)

{

}

Dwarf Error error = 0;
Dwar f _Si gned count = O;
Dwar f _Type *types = 0;
Dwarf_Signed i = 0;

int res = 0;

/* OBSOLETE: see dwarf_types_deal | oc() exanpl el above */
res = dwarf_get_types(dbg, &types, &ount, &error);
if (res == DWDLV_OK) {
for (i =0; i < count; ++i) {
/* use types[i] */
dwarf _deal | oc(dbg, types[i], DWDLA TYPENAME);
}
dwar f _deal | oc(dbg, types, DWDLA LIST);
}

6.18.1.2 dwarf_typename()

rev 2.48, Mar 14, 2016 -80 -



-81-

i nt dwarf _typenange(
Dwar f _Type type,
char **return_narme,
Dwarf _Error *error)

The functiondwar f _t ypename() returnsDW DLV_OK and sets‘r et ur n_nane to a pointer to a
null-terminated string that names the udefned type represented by tbear f _Type descriptort ype.
It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO _ENTRY. On a successful return from
this function, the string should be freed usidgwarf deal | oc(), with the allocation type
DW DLA STRI NGwhen no longer of interest.

6.18.1.3 dwarf_type die offset()

int dwarf_type_die_offset(
Dwar f _Type type,
Dwarf O f *return_offset,
Dwarf _Error *error)

The functiondwar f _t ype_di e_of f set () returnsDW DLV_OK and setsr et ur n_of f set to the
offset in the section containing DIEs, i.e. .debug_info, of the DIE representing thdeiised type that is
described by th®war f _Type descriptort ype. It returnsDW DLV_ERRCR on error It neve returns
DW DLV_NO_ENTRY.

6.18.1.4 dwarf_type cu_offset()

int dwarf_type cu_offset(
Dwar f _Type type,
Dwarf O f *return_offset,
Dwarf Error *error)

The functiondwar f _type _cu_of fset () returnsDW DLV_OK and sets r et ur n_of f set to the

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the usdefined type described by thewar f _Type descriptor,t ype. It returns

DW DLV_ERRORo0N error It neve returnsDW DLV_NO_ENTRY.

6.18.1.5 dwarf_type name offsets()

int dwarf_type nanme_of fsets(
Dwar f _Type type,
char ** returned_nane,
Dwarf Of * die_ offset,
Dwarf Of * cu_offset,
Dwar f _Error *error)

The functiondwar f _t ype_name_of f set s() returnsDW DLV_OK and set$r et urned_nane to a
pointer to a null-terminated string thatves the name of the uselefined type described by the
Dwar f _Type descriptort ype. It also returns in the locations pointed to bye of fset, and
cu_of f set, the offsets of the DIE representing the udeined type, and the DIE representing the
compilation-unit containing the usdefined type, respectely. It returnsDW DLV_ERROR on error It
never returnsDW DLV_NO_ENTRY. On a successful return frodwar f _t ype _nane_of f set s() the
storage pointed to byet ur ned_nane should be freed usindgwar f _deal | oc(), with the allocation
typeDW DLA_STRI NGwhen no longer of interest.

rev 2.48, Mar 14, 2016 -81-



-82-

6.19 User Defined Static Variable Names Operations
This section is SGI specific and is not part of standaM\RF version 2.

These functions operate on the uagbarnames section of the dejging information. The
.debug_warnames section contains the names of file-scope static variables, the offsetDioEghibat
represent the digfitions of those variables, and the offsets of the compilation-units that contain the
definitions of those variables.

6.19.1 Debugger I nterface Operations
6.19.1.1 dwarf_get_vars()

i nt dwarf_get_vars(
Dwar f _Debug dbg,
Dwarf_Var **vars,
Dwar f _Si gned *var _count,
Dwarf _Error *error)

The functiondwar f _get vars() returnsDW DLV_OK and sets*var _count to the count ofife-

scope static ariable names represented in the section containing file-scope static variable names, i.e.
.debug_wrnames. lalso stores, atvar s, a pointer to a list oDwar f _Var descriptors, one for each of

the file-scope static variable names in the udebarnames sectionThe returned results are for the entire
section. ItreturnsDW DLV_ERRCR on error It returnsDW DLV_NO_ENTRY if the .delug_varnames
section does not exist.

The following is nev as of dily 15, 2005. On a successful return fromwar f _get _vars(), the
Dwar f _Var descriptors should be freed usithgar f _vars_deal | oc() .

Figure 26. Examplen dwarf_get_vars()

voi d exanpl en( Dwar f _Debug dbg)
{
Dwarf Error error = 0;
Dwar f _Si gned count = O;
Dwarf _Var *vars = 0;
Dwarf_Signed i = 0;
int res = 0;
res = dwarf_get_vars(dbg, &vars, &ount, &error);
if (res == DWDLV_OK) {
for (i =0; i < count; ++i) {
/* use vars[i] */
}
dwarf _vars_deal | oc(dbg, vars, count);
}
}

The following code is deprecated as of July 15, 2005 as it does not freevalhtredemory This approach
still works as well as itver did. Ona successful return frondwar f _get _vars(), the Dwar f_Var
descriptors should be individually freed usindwarf_deal | oc() with the allocation type
DW DLA VAR _CONTEXT, (or DW DLA VAR, an dder name, supported for compatibility) followed by the

rev 2.48, Mar 14, 2016 -82-



-83-

deallocation of the list itself with the allocation tyP&/ DLA LI ST when the descriptors are no longer of
interest.

Figure 27. Exampleo dwarf_get_vars() obsolete

voi d exanpl eo( Dwar f _Debug dbg)
{
Dwarf Error error = 0;
Dwar f _Si gned count = O;
Dwarf _Var *vars = 0;
Dwarf_Signed i = 0;
int res = 0;
res = dwarf_get_vars(dbg, &vars, &ount, &error);
if (res == DWDLV_OK) {
/* DO NOT USE: see dwarf_vars_deal | oc() exanpl en above */
for (i =0; i < count; ++i) {
/* use vars[i] */
dwar f _deal | oc(dbg, vars[i], DWDLA VAR);
}
dwar f _deal | oc(dbg, vars, DWDLA LIST);
}
}

6.19.1.2 dwarf_varname()

i nt dwarf_var nanme(
Dwarf_Var var,
char ** returned_nane,
Dwarf _Error *error)

The functiondwar f _var nane() returnsDW DLV_CK and setsr et ur ned_name to a pointer to a
null-terminated string that names the file-scope static variable representedwattfe Var descriptor,
var . It returnsDW DLV_ERROR on error It neve returnsDW DLV_NO _ENTRY. On a siccessful return
from this function, the string should be freed usiohgar f _deal | oc(), with the allocation type
DW DLA STRI NGwhen no longer of interest.

6.19.1.3 dwarf_var_die offset()

int dwarf_var _die_offset(
Dwar f _Var var,
Dwar f O f *returned_of fset,
Dwar f _Error *error)

The functiondwar f _var _di e_of f set () returnsDW DLV_COK and set$ r et ur ned_of f set to the
offset in the section containing DIEs, i.e. .debug_info, of the DIE representing the file-scopeasitie v
that is described by thBwar f _Var descriptor,var. It returnsDW DLV_ERROR on error It neve
returnsDW DLV_NO_ENTRY.

6.19.1.4 dwarf_var_cu_offset()

int dwarf_var_cu_of fset(
Dwar f _Var var,
Dwarf O f *returned_of fset,
Dwar f _Error *error)

The functiondwar f _var _cu_of f set () returnsDW DLV_OK and setsr et ur ned_of f set to the

rev 2.48, Mar 14, 2016 -83-



-84 -

offset in the section containing DIEs, i.e. .debug_info, of the compilation-unit header of the compilation-
unit that contains the file-scope static variable described biphef Var descriptoryvar . It returns
DW DLV_ERRORoOnN error It neve returnsDW DLV_NO_ENTRY.

6.19.1.5 dwarf_var_name_offsets()

i nt dwarf_var_name_of f set s(
Dwarf_Var var,
char **returned_narme,
Dwarf_ O f *die_offset,
Dwarf O f *cu_of fset,
Dwarf _Error *error)

The functiondwar f _var _name_of f set s() returnsDW DLV_OK and sets r et ur ned_nane to a
pointer to a null-terminated string thatveg the name of the file-scope static variable described by the
Dwar f _Var descriptorvar. It aso returns in the locations pointed to loy e of f set, and
cu_of f set , the offsets of the DIE representing the file-scope statiable, and the DIE representing the
compilation-unit containing the file-scope static variable, respebgti It returns DW DLV_ERROR on
error, It neve returns DW DLV_NO ENTRY. On a  successful return from
dwar f _var_nane_of f set s() the storage pointed to hyet ur ned_nane should be freed using
dwar f _deal | oc() , with the allocation typ®W DLA STRI NGwhen no longer of interest.

6.20 Macro Information Operations (DWARF4, DWARF5)

This section refers to WARF4 and later macro information from the .dgbmacro section.While
standard operations are supported there is as yet no support for implementaiih-@efnsions. Once
someone has defined such things it will matnse to design an interface for extensions.

6.20.1 Getting access

The opaque struct pointer wi_Macro_Contet is allocated by either
dwarf _get _macro_context() ordwarf_get _macro_context by offset() and once the
context is no longer needed one frees up all its storadedoyf _deal | oc_macro_cont ext ().

6.20.1.1 dwarf_get_macro_context()

int dwarf_get_macro_context (Dwarf_Di e die,
Dwar f _Unsi gned * version_out,

Dwarf _Macro_Cont ext * macro_cont ext,

Dwar f _Unsi gned * macro_unit_offset out,
Dwar f _Unsi gned * macro_ops_count _out,
Dwar f _Unsi gned * macro_ops_data_| engt h_out,
Dwar f _Error * error);

Given a mpilation Unit (CU) die, on succesdwarf_get_ nacro_context() opens a
Dwar f _Macr o_Cont ext and returns a pointer to it and some data from the macro unit for thaTl@J.
Dwar f _Macr o_Cont ext is used to get at the details of the macros.

The walue ver si on_out is set to the WARF version number of the macro daftdersion 5 means
DWARFS5 version information. Version 4 means th&/ARF5 format macro data is present as deresion
of DWARF4.

The waluermacr o_uni t _of f set _out is set to the offset in the .dedp macro section of the first byte of
macro data for this CU.

The waluenmacr o_ops_count _out is set to the number of macro entries in the macro data data for this
CU. Thecount includes the final zero entry (which is not really a macro, it is a termiaasero byte

rev 2.48, Mar 14, 2016 -84 -



-85 -

ending the macro unit).

The waluemacr o_ops_dat a_I| engt h_out is set to the number of bytes of data in the macro unit,
including the macro unit header.

If DW DLV_NO_ENTRY is returned the CU has no macro data attélor there is no .debug_macro section
present.

On errorDW DLV_ERRCRIs returned and the error details are returned through the peinter .

6.20.1.2 dwarf_get_macro_context_by offset()

int dwarf_get _macro_context by offset(Dwarf_Die die,
Dwar f _Unsi gned of f set,
Dwar f _Unsi gned versi on_out,
Dwar f _Macr o_Cont ext macr o_cont ext,
Dwar f _Unsi gned macr o_ops_count _out,
Dwar f _Unsi gned macro_ops_total _byte_ | en,
Dwar f _Error error);

EE B

Given a Ompilation Unit (CU) die and the fset of an imported macro unit
dwarf _get _macro_context by offset() opens aDwarf_Macro_Context and returns a
pointer to it and some data from the macro unit for that CU on success.

On success the function produces the same output valuhsaa$ get _macro_cont ext () except
there is no offset returned ( the caller provides it).

If DW DLV_NO _ENTRY is returned there is no .debug_macro section present.
On errorDW DLV_ERRORis returned and the error details are returned through the peinterr .

6.20.1.3 dwarf_dealloc_macro_context()
voi d dwarf_deal | oc_nacro_cont ext (Dwarf _Macro_Cont ext nacro_context);

The functiondwar f _deal | oc_nmacro_cont ext () cleans up memory allocated by a successful call
todwarf _get macro_context () ordwarf _get _nmacro_context by offset().

Figure 28. Examplep5 dwarf_dealloc_macro_context()

rev 2.48, Mar 14, 2016 -85-



-86 -

/* This builds an list or sone other data structure
(not defined) to give an inport sonmewhere to |ist
the inmport offset and then later to enquire
if the list has unexam ned of fsets.

A candi date set of hypothetical functions that
callers would wite:

has_unchecked_inport _in_list()

get _next _inport_fromlist()

mark_t hi s_of fset _as_exanm ned(macro_unit_of fset);
add_offset _to list(offset);

*/

voi d exanpl ep5(Dwarf_Debug dbg, Dwarf_Die cu_die)

{
int lres = 0;

Dwar f _Unsi gned version = 0;

Dwar f _Macro_Cont ext macro_context = O;
Dwar f _Unsi gned macro_unit_offset = 0;
Dwar f _Unsi gned nunber _of _ops = 0;

Dwar f _Unsi gned ops_total _byte len = O;
Dwar f _Bool is_primry = TRUE

unsi gned k = 0;

Dwarf Error err = 0;

for(;;) {
if (is_primary) {

Ires = dwarf_get _macro_context (cu_di e,
&ver si on, &racr o_cont ext
&racro_unit_offset,
&nunber _of _ops,
&ops_total _byte |len,

&err);
is_primary = FALSE
} else {

i f (has_unchecked_inport_in_list()) {

macro_unit_offset = get_next_inmport_fromlist();

} else {
/* W& are done */
br eak;

}

Ires = dwarf_get _macro_context by of fset (cu_die,
macro_unit_of fset,
&version,
&macr o_cont ext,
&nunber _of _ops,
&ops_total _byte |en,
&err);
mark_t hi s_of fset _as_exani ned(macro_unit_of fset);

}

if (lres == DWDLV_ERROR) {
/* Sonething is wong. */
return;

}
if (lres == DWDLV_NO ENTRY) {

rev 2.48, Mar 14, 2016 - 86 -



-87-

/* W are done. */

br eak;
}
/* |res == DVV_DLV_O() */
for (k = 0; k < nunber_of _ops; ++k) {

Dwar f _Unsi gned section_offset = 0;
Dwar f _Hal f macro_operator = 0;
Dwar f _Hal f fornms_count = O;

const Dwarf_Small *forntode_array = O;
Dwar f _Unsi gned |ine_nunber = 0;
Dwar f _Unsi gned index = O;

Dwar f _Unsi gned offset =0;

const char * macro_string =0;

int lres = 0;

Ires = dwarf_get _macro_op(macro_cont ext,
k, &section_offset, &mcro_operator,
& ornms_count, &fornctode_array, &err);
if (lres !'= DWDLV_XK) {
print_error(dbg,
"ERROR from dwarf_get_macro_op()",

Ires,err);
dwar f _deal | oc_nacro_cont ext (nmacro_cont ext);
return;
}
swi tch(macro_operator) {
case O:
/* Nothing to do. */
br eak;

case DW MACRO end fil e:
/* Do sonething */
br eak;
case DW MACRO defi ne:
case DW MACRO undef:
case DW MACRO define_strp:
case DW MACRO undef _strp:
case DW MACRO defi ne_strx:
case DW MACRO undef strx:
case DW MACRO defi ne_sup:
case DW MACRO undef_sup: {
Ires = dwarf_get _macro_def undef (rmacro_cont ext,
K,
&l i ne_nunber,
& ndex,
&of f set,
&f orms_count,
&macro_string,
&err);
if (lres !'= DWDLV_XK) {
print_error(dbg,

"ERROR from sup dwarf_get _rmacro_defundef ()",

Ires,err);
dwar f _deal | oc_nmacro_cont ext (nmacro_cont ext);
return;

rev 2.48, Mar 14, 2016 -87 -



-88 -

}

/* do sonething */
}
br eak;
case DW MACRO start_file: {
Ires = dwarf_get _macro_startend_fil e(macro_cont ext,
k, & i ne_nunber,
& ndex,
&macro_string, &err);
if (lres !'= DWDLV_XK) {
print_error(dbg,
"ERROR from dwarf_get_macro_startend_file()(sup)"”
Ires,err);
dwar f _deal | oc_nmacro_cont ext (nmacro_cont ext);
return;
}
/* do sonething */
}
br eak;
case DW MACRO i mport: {
Ires = dwarf_get _macro_i nmport (macro_cont ext,
k, &of f set, &err);
if (lres !'= DWDLV_XK) {
print_error(dbg,
"ERROR from dwarf_get _macro_inport()(sup)",
Ires,err);
dwar f _deal | oc_nmacro_cont ext (nmacro_cont ext);
return;

add_offset _to list(offset);
}
br eak;
case DW MACRO i nport_sup: {
Ires = dwarf_get _macro_i nmport (macro_cont ext,
k, &of f set, &err);
if (lres !'= DWDLV_XK) {
print_error(dbg,
"ERROR from dwarf_get _macro_inport()(sup)",
Ires,err);
dwar f _deal | oc_nmacro_cont ext (nmacro_cont ext);
return;
}

/* do sonething */

}

br eak;
}
}
dwar f _deal | oc_nmacro_cont ext (nmacro_cont ext);
macr o_context = 0;

rev 2.48, Mar 14, 2016 -88 -



-89 -

6.20.2 Getting Macro Unit Header Data
6.20.2.1 dwarf_macro_context_head()

int dwarf_nacro_context head(Dwarf_ Macro_Cont ext nacro_cont ext,
Dwar f _Hal f * version,

Dwar f _Unsi gned * mac_of f set,
Dwar f _Unsigned * mac_| en,

Dwar f _Unsi gned * mac_header _| en,
unsi gned * flags,

Dwar f _Bool * has_|ine_offset,
Dwar f _Unsi gned * |ine_of fset,

Dwar f _Bool * has_offset_size 64,
Dwar f _Bool * has_operands_t abl e,
Dwar f _Hal f * opcode_count,

Dwar f _Error * error);

Given aDwar f _Macr o_Cont ext pointer this function returns the basic fields of a macro unit header
(Macro Information Header) on success.

The waluever si on is set to the WARF version number of the macro unit headéersion 5 means
DWARFS5 version information. Version 4 means th&/&ARF5 format macro data is present as éeresion
of DWARFA4.

The waluenac_of f set is set to the offset in the .debug_macro section of the first byte of macro data for
this CU.

The waluerac_| en is set to the number of bytes of data in the macro unit, including the macro unit
header.

The waluenmac_header | en is set to the number of bytes in the macro unit header (not a field that is
generally useful).

The valuef | ags is set to the value of tid ags field of the macro unit header.

The waluehas_| i ne_of f set is set to non-zero if thdebug_| i ne_of f set _f | ag bit is set in the
f1 ags field of the macro unit headelf has_| i ne_of f set is set therl i ne_of f set is set to the
value of thedebug_| i ne_of f set field in the macro unit headelf has_I i ne_of f set is not set
there is naebug_| i ne_of f set field present in the macro unit header.

The waluehas_of f set _si ze_64 is set non-zero if thef f set _si ze_f| ag bit is set in thd | ags
field of the macro unit header and in this case offset fields in this macro unit are 64f bits.
has_of f set _si ze_ 64 is not set then offset fields in this macro unit are 32 bits.

The \aluehas_oper ands_t abl e is set to non-zero if thepcod_oper ands_t abl e fl ag bit is
setin thef | ags field of the macro unit header.

If has_operands_t abl e is set non-zero then Thelue opcode_count is set to the number of
opcodes in the macro unit headgrcode_oper ands_t abl e. Seedwar f _get _nacro_op().

DW DLV_NO_ENTRY is not returned.
On errorDW DLV_ERRCRIs returned and the error details are returned through the peinter .

6.20.2.2 dwarf_macro_operands_table()

rev 2.48, Mar 14, 2016 -89 -



-90 -

int dwarf_nacro_operands_t abl e( Dwar f _Macr o_Cont ext macro_cont ext,
Dwar f _Hal f index, /* 0 to opcode_count -1 */
Dwarf_Hal f * opcode_nunber,
Dwarf_Half * operand_count,
const Dwarf_Small ** operand_array,
Dwarf _Error * error);

dwar f _macro_operands_t abl e() is used to inde through the operands table in a macro unit
header if the operands table exists in the macro unit he&@tleroperands table provides the mechanism
for implementations to add extensions to the macro operations while allowing clients to skip macro
operations the client code does not recognize.

The macr o_cont ext field passed in ideni#fs the macro unit imlved. Thei ndex field passed in
identifies which macro operand to look atalid index values are zero through tlmpcode_count -1
(returned bydwar f _macr o_cont ext _head()).

Theopcode_nunber value returned through the pointer is the the macro operation dddeoperation
code could be one of the standard codes or if there are user extensions there would be an extension code in
theDW MACRO | o_user to DW MACRO hi _user range.

The oper and_count returned is the number of form codes in the form codes array of unsigned bytes
operand_arr ay.

DW DLV_NO _ENTRY is not returned.
On errorDW DLV_ERRCRIs returned and the error details are returned through the peinter .

6.20.3 Getting Individual Macro Operations Data

6.20.3.1 dwarf_get_macro_op()

int dwarf_get macro_op(Dwarf_Macro_Context macro_context,
Dwar f _Unsi gned op_nunber,
Dwarf _Unsigned * op_start_section_offset,
Dwar f _Hal f * macro_operator,
Dwar f _Hal f * forms_count,
const Dwarf_Small ** forntode_array,
Dwar f _Error * error);

Usedwar f _get nmacro_op() to access the macro operations of this macro unit.

Thermacr o_cont ext field passed in identifies the macro unitalved. Theop_nunber field passed
in identifies which macro operand to look at. Valid ixdevalues are zero through
macro_ops_count _out-1  (field returned by dwarf _get macro_context () or

dwarf get macro_context by offset())

On success the function returns values through the pointers.

The op_start _section_offset returned is useful for debugging but otherwise is not normally
useful. ltis the byte offset of the beginning of this macro operatiata.

The macr o_oper at or returned is one of the defined macro operations sudAMACRO def i ne.
This is the feld you will use to choose what call to use to get the data for a macro op&mtexample,
for DW MACRO undef one would calldwarf _get macro_def undef () (see below) to get the
details about the undefine.

Thef or ns_count returned is useful for debugging but otherwise is not normally uskfiglthe number
of bytes of form numbers in tHeor rcode_ar r ay of this macro operata’gplicable forms.

rev 2.48, Mar 14, 2016 -90 -



-91 -

DW DLV_NO ENTRY is not returned.
On errorDW DLV_ERRCRIs returned and the error details are returned through the peinter .

6.20.3.2 dwarf_get_macro_defundef()

int dwarf_get _rmacro_def undef (Dwarf_Macro_Cont ext nmacro_cont ext,
Dwar f _Unsi gned op_nunber,

Dwar f _Unsigned * |ine_nunber,
Dwar f _Unsi gned * i ndex,
Dwar f _Unsi gned * of fset,
Dwar f _Hal f * forms_count,
const char * macro_string,
Dwar f _Error * error);

Calldwar f _get _macr o_def undef for ary of the macro défie/undeine operators. Which fields are
set through the pointers depends on the particular operator.

Themacr o_cont ext field passed in identifies the macro unitalved. Theop_nunber field passed
in identifies which macro operand to look at. Valid irdevalues are zero through
macro_ops_count _out-1  (field returned by dwarf_get_rmacro_context () or

dwarf _get _macro_context by offset()).

Thel i ne_nunber field is set with the source line number of the macro.

The i ndex field only set meaningfully if the macro operator 8V MACRO defi ne_strx or
DW MACRO undef _strx. If setitis an indeinto an array of offsets in the .debug_str_offsets section.

The of fset field only set meaningfully if the macro operator D8 MACRO defi ne_strx,
DW MACRO undef _st rx DW MACRO defi ne_strp, or DW MACRO undef _strp If set it is an
offset of a string in the .debug_str section.

Thef or ns_count is set to the number of forms that apply to the macro operator.

Themacr o_stri ng pointer is used to return a pointer to the macro strifithe actual string cannot be
found (as when section with the string is in a different objectsseet i ed_dbg() ) the string returned
may be "<:No string\ailable>" or "<.debug_str_offsets notailable>" (without the quotes).

The function return®W DLV_NO_ENTRY if the macro operation is not one of the define/undef operations.
On errorDW DLV_ERRORIs returned and the error details are returned through the peirterr .
6.20.3.3 dwarf_get_macro_startend_file()

int dwarf_get macro_startend file(Dwarf_Macro_Context nacro_context,
Dwar f _Unsi gned op_nunber,
Dwar f _Unsigned * |ine_nunber,
Dwarf _Unsigned * nane_index _to |ine_tab,
const char ** gsrc_file_nane,
Dwar f _Error * error);

Call dwarf_get macro_startend file for operators DW MACRO start file or
DW MACRO end_fil e.

Themacr o_cont ext field passed in identifies the macro unitdved.

The op_nunber field passed in identifs which macro operand to look at. Valid irdalues are zero
through macro_ops_count _out-1 (field returned by dwarf get nmacro_context() or
dwarf _get macro_context by offset())

For DW MACRO end_fi | e none of the following fields are set on successful retury,dreonly set far
DW MACRO start _file

rev 2.48, Mar 14, 2016 -91-



-02 -

Thel i ne_nunber field is set with the source line number of the macro.

Thenanme_i ndex_to | ine_tab field is set with the indeinto the file nhame table of the line table
section. Br DWARF2, DNARF3, DNARF4 line tables the indevalue assumes \BARF2 line table
header rules (identical toVARF3, DNARF4 line table header rulesjzor DWARF5 the inde value
assumes W/ARFS5 line table header rule§hesrc_fil e_nane is set with the source file name. If the
index seems wrong or the line table is waitable the name returned is "<no-source-file-nawalable>");

The function return®W DLV_NO_ENTRY if the macro operation is not one of the start/end operations.

On errorDW DLV_ERRCRIs returned and the error details are returned through the peinter .

6.20.3.4 dwarf_get_macro_import()

int dwarf_get _rmacro_i nport (Dwarf_Macro_Cont ext macro_cont ext,
Dwar f _Unsi gned op_nunber,
Dwar f _Unsigned * target_offset,
Dwar f _Error * error);

Calldwar f _get _macro_i nport for operatorW MACRO i nport or DW MACRO i nport _sup.

Themacr o_cont ext field passed in identifies the macro unitalved. Theop_nunber field passed
in identifies which macro operand to look at. Valid irdevalues are zero through
macro_ops_count _out-1  (field returned by dwarf_get _rmacro_context () or

dwarf _get_macro_context by offset())

On success thetarget offset field is set to the &fet in the referenced sectionFor
DW_MACRO_import the referenced section is the same section as the macro operation referenced here.
For DW_MACRO_import_sup the referenced section is in a supplementary object.

The function return®W DLV_NO_ENTRY if the macro operation is not one of the import operations.

On errorDW DLV_ERRORs returned and the error details are returned through the peinterr .

6.21 Macro Information Operations (DWARF2, DWARF3, DWARF4)

This section refers to \WARF2,DNARF3,and DVARF4 macro information from the .dadp macinfo
section. These do not apply t\WBLRF5 macro data.

6.21.1 General Macro Operations
6.21.1.1 dwarf_find_macro_value_start()
char *dwarf_find_nacro_value_start(char * macro_string);

Given a macro string in the standard form defined in th&/ARF document ("name <space> value" or
"name(args)<spacealue") this returns a pointer to the first byte of the maatae: Itdoes not alter the
string pointed to by macro_string or goiine string: it returns a pointer into the string whose addrass w
passed in.

6.21.2 Debugger Interface Macro Operations

Macro information is accessed from the ughinfo section via the W AT _macro_info attribute (whose
value is an offset into .debug_macinfo).

No Functions yet defined.

6.21.3 Low Level Macro Information Operations

rev 2.48, Mar 14, 2016 -92-



-03-

6.21.3.1 dwarf_get_macro_details()
int dwarf_get_rmacro_detail s(Dwarf_Debug /*dbg*/,

Dwarf_Of f macr o_of f set,
Dwar f _Unsi gned maxi mum count ,
Dwar f _Si gned * entry_count,
Dwarf _Macro_Details ** details,
Dwarf_Error * err);

dwarf _get _macro_detail s() returnsDW DLV_OK and setsentry_count to the number of
det ai | s records returned through tldet ai | s pointer The data returned througtiet ai | s should

be freed by a call tdwar f _deal | oc() with the allocation typ®W DLA STRI NG If DW DLV_Kis

returned, theent ry_count will be at least 1, since a compilation unit with macro informatiohno

macros will hae & least one macro data byte of 0.

dwarf _get _macro_det ai |l s() beagins at tharacr o_of f set offset you supply and ends at the end
of a compilation unit or atmaxi mum count detail records (whicher comes irst). |If
maxi mum _count is O, it is treated as if it were the maximum possible unsigned integer.

dwarf _get _macro_detail s() attempts to sednd_fil ei ndex to the correct file in eery
det ai |l s record. If it is unable to do so (or wheee the current ife index is unknawn, it sets
dnd_fil ei ndex to -1.

dwarf _get_macro_detail s() returnsDW DLV_ERROR on error It returnsDW DLV_NO_ENTRY
if there is no more macro information at tmetcr o_of f set . If macr o_of f set is passed in as 0, a
DW DLV_NO_ENTRY return means there is no macro information.

Figure 29. Examplep2 dwarf_get_macro_details()

rev 2.48, Mar 14, 2016 -93-



-94 -

voi d exanpl ep2(Dwarf_Debug dbg, Dwarf_ O f cur_off)
{

Dwarf Error error = 0;

Dwar f _Si gned count = O;

Dwarf Macro Details *maclist = 0;

Dwarf_Signed i = 0;

Dwar f _Unsi gned max = 500000; /* sanity limt */

int errv = 0;

/* G@ven an offset froma conpilation unit,
start at that offset (from DWAT_nacroi nfo)
and get its nmacro details. */

errv = dwarf_get _nacro_detail s(dbg, cur_off, max,

&count , &macl i st, &error);
if (errv == DWDLV_OK) {
for (i =0; i < count; ++i) {
/* use maclist[i] */
}
dwar f _deal | oc(dbg, maclist, DWDLA STRI NG ;

}

/* Loop through all the conpilation units nacro info from zero.
This is not guaranteed to work because DWARF does not
guarantee every byte in the section is mneaningful:
there can be garbage between the macro info
for CUs. But this loop will sonetines work.

*/

cur_off = 0;

while((errv = dwarf_get _nmacro_detail s(dbg, cur_off, max,

&count , &macl i st, &rror))== DWDLV_K) {
for (i =0; i < count; ++i) {
/* use maclist[i] */
}
cur_off = maclist[count-1].dnd_offset + 1;
dwar f _deal | oc(dbg, maclist, DWDLA STRI NG ;

6.22 Low Level Frame Operations

These functions provide information about stack frames to be used to perform stack Trhees.
information is an abstraction of a table with s nger instruction and a column per register and a column
for the canonical frame address £GRvhich corresponds to the notion of a frame pointer), as well as a
column for the return address.

From 1993-2006 the interface we’'ll here refer to #$ARF2 made the GFbe a olumn in the matrix, bt
left DW_FRAME_UNDEFINED ML, and DN_FRAME_SAME_\AL out of the matrix (giving them
high numbers). As of the\BARF3 interfaces introduced in this document in April 2006, there are**tw
interfaces (the original set and annget). Seeral frame functions wrk transparently for either set, we will
focus on the ones that are not equally suitable no

The original DVARF2 interface set still exists (dwf_get fde_info_for_reg(),
dwarf_get_fde_info_for_cfa g€), and dwarf get fde info_for_all is()) and works adequately for
MIPS/IRIX DWARF2 and ABI/ISA sets that are figfently similar to MIPS. These functions not a good
choice for non-MIPS architectures nor wereytlregood design for MIPS eitherlt’'s better to switch

rev 2.48, Mar 14, 2016 -94 -



-05-

entirely to the n& functions mentioned in the next paragrafthis DWARF2 interface set assumes and
uses W_FRAME_CHA_COL and that is assumed when litativis configured with --enable-oldframecol

A new DWARF3 interface set of davf get fde info_for_ig3(), dwarf get fde_info_for_cfa_reg3(),
dwarf_get_fde_info_for_all_gs3(), dwarf _set frame_rule table size() adwset frame_cfa_value(),
dwarf_set_frame_samealue(), dvarf_set_frame_undefinedale(), and
dwarf_set_frame_rule_initialalue() is more flexible and will work for mgmore architectures. It is also
entirely suitable for use with \BARF2 and DVARF4. Thesetting of the 'frame & wlumn number’
defaults to DW_FRAME_CFA_COL3 and it can be set at runtime with dwarf_set_frame_cfa_value().

Mixing use of the DVARF2 interface set with use of thewn®WARF3 interface set on a single open
Dwarf_Debug instance is a mise@akDonot do it.

We will pretend, from here on unless otherwise specified, thaV_ BRAME_CFA_ COL3,
DW_FRAME_UNDEFINED_ ML, and DN_FRAME_SAME_\AL are the synthetic column numbers.
These columns may be user-chosen by calls of ardwet frame_cfa_value()
dwarf_set frame_undefined_value(), and dwarf_set_frame_same_value() vespecti

Each cell in the table contains one of the following:
1. Aregister + offset(a)(b)

2. Aregister(c)(d)

3. Amarker (DW_FRAME_UNDEFINED_VAL) meaningegister value undefined

4. Amarker (DW_FRAME_SAME_VAL) meaningegister value same asin caller

(a old DNARF2 interface) Whenthe column is W_FRAME_CFA_COL: the register number is a real
hardware r@ister not a reference to W_FRAME_CIA_COL, not DW_FRAME_UNDEFINED_ VAL,

and not V_FRAME_SAME_\AL. The CFA rule wvalue should be the stack pointer plus offset 0 when no
other value mads senseA value of DN_FRAME_SAME_\AL would be semi-logical, but since the £F

is not a real rgister not really correct. A value of DN_FRAME_UNDEFINED ML would imply the
CFA is undefned --this seems to be a useless notion, as thei€B means to finding real gisters, so
those real registers should be marked/ FRAME_UNDEFINED_MAL, and the CRA column content
(whatever regster it specifies) becomes unreferenced by anything.

(a nav April 2006 DNARF2/3 interface): The @G¥is separately accessible and not part of the talblee

'rule number’ for the Ck is a rumber outside the table. So theACiE a marker not a register number
See DW_FRAME_CHA _COL3 in libdwarf.h and derf get fde_info_for _cfa g3() and

dwarf_set frame_rule_cfa_value().

(b) When the column is not W FRAME_CIA_COL3, the tegister will and must be
DW_FRAME_CFA_COL3(COL), implying that to get thenial location for the column one must add the
offset here plus the DW_FRAME_CFA_COL3 rule value.

(c) When the column isW_FRAME_CFA_COL3, then therkgister’ number is (must be) a real hasde
register . (This paragraph does not apply to the April 2006w nenterface). If it were
DW_FRAME_UNDEFINED ML or DW_FRAME_SAME_\AL it would be a markr, not a reister
number.

(d) When the column is notl® FRAME_CFA_COL3, the register may be a hardwargister It will not
be DW_FRAME_CFA_COL3.

rev 2.48, Mar 14, 2016 -95-



-06 -

There is no 'column’ for W_FRAME_UNDEFINED_ VAL or DW_FRAME_SAME \AL. Nor for

DW_FRAME_CFA_COL3.

Figure 4 is machine dependent and represents

MIPS CPgistere assignments. The

DW_FRAME_CFA_COL define in dwarf.h is historical and really belongs in libdwarf.h, not dwarf.h.

NAME value PURPOSE
DW_FRAME_CFA_COL 0 column used for CFA
DW_FRAME_REG1 1 integer register 1
DW_FRAME_REG2 2 integer register 2

olvious names and values he
DW_FRAME_REG30 30 integer register 30
DW_FRAME_REG31 31 integer register 31
DW_FRAME_FREGO 32 floating point register 0
DW_FRAME_FREG1 33 floating point register 1
olvious names and values he
DW_FRAME_FREG30 62 floating point register 30
DW_FRAME_FREG31 63 floating point register 31
DW_FRAME_RA COL 64  column recording ra
DW_FRAME_UNDEFINED ML 1034 rayister val undefined
DW_FRAME_SAME \AL 1035 register same as in caller

Figure 30. Frame Information Rule Assignments MIPS

The following table shows SGI/MIPS specific special calues: these values mean that the cell has the

value undefined or same value respectiely, rather than containing r&gister or register+offset. It assumes
DW_FRAME_CFA_COL is a table rule, which is not readily accomplished vaneensible for some

architectures.

NAME value

PURPOSE

DW_FRAME_UNDEFINED_ML 1034

DW_FRAME_SAME_\AL 1035

DW_FRAME_CR_COL 0

meansindefined value.

Not a column or register valy
means 'same value’ as
caller had. Not a column or
register value

means register zero is
usurped by the Gkcolumn.

Figure 31. Frame Information Special Valuesyasrchitecture

The following table shows more general special caelues. Thesealues mean that the cell gister-
number refers to thefa-register or undefined-value or same-value respectrely, rather than referring to a

register in the table. The generality arises from making\D FRAME_CFA_COL3 be outside the set of

registers and making theacfule accessible from outside the rule-table.

rev 2.48, Mar 14, 2016 -96 -



-97-

NAME value PURPOSE

DW_FRAME_UNDEFINED ML 1034 meansindefined
value. Not a column or register value
DW_FRAME_SAME_\AL 1035 means 'same value’ as
caller had. Not a column or
register value
DW_FRAME_CFA_COL3 1436 means 'ch regster’
is referred to, not a real registeot
a wlumn, but the & (the ch does hae
avalue, but in the BVARF3 libdwarf interface
it does not hee a teal register number’).

6.22.1 dwarf_get_frame_section_name()

int dwarf_get frame_secti on_name(Dwarf_Debug dbg,
const char ** sec_nane,
Dwarf _Error *error)

dwarf _get _string_section_name() lets consumers access the object string section naims.

is useful for applications wanting to print the namat, &f course the object section name is not really a
part of the MVARF information. Most applications will probably not call this function. It can be called at
ary time after the Dwrf_Delug initialization is done. See also
dwarf _get frame_section_name_eh_gnu().

The functiondwar f _get _frane_secti on_nane() operates on the the .debug_frame section.

If the function succeed$,sec_nane is set to a pointer to a string with the object section name and the
function returndW DLV_COK. Do not free the string whose pointer is returnéar non-EIf objects it is
possible the string pointer returned will be NULL or will point to an empty string. It is up to the calling
application to recognize this possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_EXTR

If there is an internal error detected the function retDkvsDLV _ERROR and sets th&er r or pointer.

6.22.2 dwarf_get frame section_name_eh_gnu()

int dwarf_get frame_section_name_eh _gnu(Dwarf_ Debug dbg
const char ** sec_nane,
Dwarf _Error *error)

dwarf _get frame_section_nane_eh _gnu() lets consumers access the object string section
name. Thiss useful for applications wanting to print the name, but of course the object section name is not
really a part of the WARF information. Most applications will probably not call this functidhcan be

called at ap time after the Dwrf Delug initialization is done. See also

dwarf _get frame_section_name().

The functiondwar f _get _frane_secti on_nane_eh_ghu() operates on the the .eh_frame section.

If the function succeed$,sec_nane is set to a pointer to a string with the object section name and the
function returndDW DLV_COK. Do not free the string whose pointer is returnéay non-EIf objects it is
possible the string pointer returned will be NULL or will point to an empty string. It is up to the calling
application to recognize this possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_EXTR

If there is an internal error detected the function retDkitsDLV _ERROR and sets th&er r or pointer.

rev 2.48, Mar 14, 2016 -97 -



-08 -

6.22.3 dwarf_get fde list()

int dwarf_get fde |ist(
Dwar f _Debug dbg,
Dwarf _Cie **cie_data,
Dwarf _Si gned *cie_el ement_count,
Dwarf _Fde **fde_data,
Dwarf _Si gned *fde_el ement _count,
Dwarf _Error *error);

dwarf get fde |ist() stores a pointer to a list &var f _Ci e descriptors irf ci e_dat a, and the
count of the number of descriptors*ini e_el ement _count . There is a descriptor for each CIE in the
.delug_frame sectionSimilarly, it stores a pointer to a list dwar f _Fde descriptors irff de_dat a,
and the count of the number of descriptorsfide el enent _count . There is one descriptor per FDE
in the .debug_frame sectionlwarf _get fde |ist() returnsDW DLV_ERRCR on error It returns
DW DLV_NO _ENTRY if it cannot find frame entries. It returii3v DLV_OK on a successful return.

On successful return, structures pointed to by a descriptor should be freed using
dwarf fde cie |list _deall oc(). This dealloc approach iswes of dily 15, 2005.

Figure 32. Exampleq dwarf_get fde_list()

voi d exanpl eq( Dwar f _Debug dbg)
{
Dwarf _Signed cnt = O;
Dwarf _Cie *cie_data = 0;
Dwar f _Signed cie_count = 0;
Dwarf _Fde *fde_data = O;
Dwar f _Si gned fde_count = 0;
int fres = 0;

fres = dwarf_get fde_ |ist(dbg, &i e_dat a, &ci e_count,
&f de_dat a, & de_count, &error);
if (fres == DWDLV_K) {
dwarf fde cie |list _dealloc(dbg, cie data, cie_count,
fde_data, fde_count);

The following code is deprecated as of July 15, 2005 as it does not freeahtefeemory This approach
still works as well as itver did.

Figure 33. Examplegb dwarf_get fde_list() obsolete

rev 2.48, Mar 14, 2016 -98 -



-99 -

/* OBSOLETE EXAMPLE */
voi d exanpl egb(Dwar f _Debug dbg)

{
Dwar f _Si gned cnt = O;
Dwarf _Cie *cie data = 0;
Dwar f _Si gned ci e_count = 0;
Dwarf Fde *fde _data = 0;
Dwar f _Si gned fde_count = 0;
int fres = 0;
fres = dwarf_get _fde_list(dbg, &i e_dat a, &ci e_count,
&f de_dat a, & de_count, &error);
if (fres == DWDLV_XK) {
for (i =0; i < cie_count; ++i) {
/* use cie[i] */
dwarf _deal | oc(dbg, cie_data[i], DWDLA CIE);
}
for (i =0; i < fde_count; ++i) {
/* use fde[i] */
dwar f _deal | oc(dbg, fde_data[i], DWDLA FDE);
}
dwar f _deal | oc(dbg, cie_data, DWDLA LIST);
dwar f _deal | oc(dbg, fde_data, DWDLA LIST);
}
}

6.22.4 dwarf_get fde list_eh()

int dwarf_get fde list_eh(
Dwar f _Debug dbg,
Dwarf _Cie **cie_data,
Dwarf _Si gned *ci e_el ement_count,
Dwarf _Fde **fde_data,
Dwarf _Si gned *fde_el ement _count,
Dwarf _Error *error);

dwarf _get fde list_eh() is identical to dwarf_get fde list() except that
dwarf get fde |ist_eh() reads the GNU gcc section named .eh_frame (C++ exception handling
information).

dwarf _get fde |ist_eh() stores a pointer to a list @war f _Ci e descriptors in*ci e_dat a,
and the count of the number of descriptorg @ e_el enment _count. There is a descriptor for each
CIE in the .debug_frame sectioigimilarly, it stores a pointer to a list dwar f _Fde descriptors in
*f de_dat a, and the count of the number of descriptors*inde el enment _count. There is one
descriptor per FDE in the .debug_frame sectidnar f _get fde |i st () returnsDW DLV_ERROR

on error It returns DW DLV_NO ENTRY if it cannot find exception handling entries. It returns
DW DLV_OK on a successful return.

On successful return, structures pointed to by a descriptor should be freed using
dwarf _fde cie |list _deall oc(). This dealloc approach iswes of dily 15, 2005.

Figure 34. Exampler dwarf_get fde_list_eh()

rev 2.48, Mar 14, 2016 -99-



- 100 -

voi d exanpl er (Dwar f _Debug dbg, Dwarf _Addr rmnypcval)

{
/* Gven a pc val ue
for a function find the FDE and CIE data for
the function.
Exanpl e shows basic access to FDE/ ClE pl us
one way to access details given a PC val ue.
dwarf _get _fde_n() allows accessing all FDE/ ClE
data so one could build up an application-specific
table of information if that is nore useful. */
Dwar f _Si gned count = O;
Dwarf _Cie *cie data = 0;
Dwar f _Si gned ci e_count = 0;
Dwarf Fde *fde _data = 0;
Dwar f _Si gned fde_count = 0;
Dwarf Error error = 0;
int fres = 0;
fres = dwarf_get _fde_list_eh(dbg, &ci e_dat a, &ci e_count,
&f de_dat a, & de_count, &error);
if (fres == DWDLV_XK) {
Dwar f _Fde nyfde = O;
Dwar f _Addr [ ow pc = 0;
Dwar f _Addr hi gh_pc = 0;
fres = dwarf_get_fde_at_pc(fde_data, nypcval,
&nyf de, & ow _pc, &hi gh_pc,
&error);
if (fres == DWDLV_XK) {
Dwarf_Ci e nycie = 0;
fres = dwarf_get _cie_of _fde(nyfde, &rycie, &rror);
if (fres == DWDLV_X) {
/* Now we can access a range of information
about the fde and cie applicable. */
}
}
dwarf_fde_cie_list_deall oc(dbg, cie_data, cie_count,
fde_dat a, fde_count);
}
/* ERROR or NO ENTRY. Do sonething */
}

6.22.5 dwarf_get_cie of fdeg()

int dwarf_get cie of fde(Dwarf_Fde fde,
Dwarf _Cie *cie_returned,
Dwarf _Error *error);

dwarf get cie_of fde() stores &warf _Ci e intothe Dwarf _Ci e thatci e_r et ur ned points
at.

If one has called dwarf_get fde list and does not wish to dwarf dealloc() all thediradi FDEs
immediately one must alsowmid dwarf_dealloc-ing the CIEs for those FDEs not immediately dedlloc’
Faling to obsere this restriction will cause the FDE(s) not dealtbtd become indlid: an FDE contains

rev 2.48, Mar 14, 2016 - 100 -



-101 -

(hidden in it) a CIE pointer which will be bevalid (stale, pointing to freed memory) if the CIE is
deallocd. Theinvalid CIE pointer internal to the FDE cannot be detected agidnby libdwarf. If one

later passes an FDE with a stale internal CIE pointer to one of the routines taking an FDE as input the result
will be failure of the call (returning @W_DLV_ERROR) at best and it is possible a coredump or worse will
happen (eentually).

dwarf _get _cie_of fde() returnsDW DLV_OXKif it is successful (it will be unless fde is the NULL
pointer). ItreturnsDW DLV_ERRORif the fde is ivalid (NULL).

EachDwar f _Fde descriptor describes information about the frame for a particular subroutine or function.

int dwarf_get fde_for_dieis SGI/MIPS specific.

6.22.6 dwarf_get fde for_dig()

int dwarf_get fde for die(
Dwar f _Debug dbg,
Dwarf _Die die,
Dwarf Fde * return_fde,
Dwar f _Error *error)

When it succeedgjwar f _get fde for_die() returnsDW DLV_OK and setsreturn_fde to a

Dwar f _Fde descriptor representing frame information for thevegi di e. It looks for the
DW AT_M PS_f de attribute in the gren di e. If it finds it, is uses the value of the attribute as tlfeebf
in the .debug_frame section where the FDHit® If there is noDW AT _M PS fde it returns

DW DLV_NO _ENTRY. Ifthere is an error it returidV DLV_ERROR.

6.22.7 dwarf_get_fde range()

int dwarf_get fde_range(
Dwar f _Fde fde,
Dwar f _Addr *1| ow_pc,
Dwar f _Unsi gned *func_I engt h,
Dwarf_Ptr *fde_bytes,
Dwar f _Unsi gned *fde_byte_l ength,
Dwarf O f *cie_ offset,
Dwar f _Si gned *ci e_i ndex,
Dwarf O f *fde_offset,
Dwarf _Error *error);

On succesgjwar f _get fde_range() returnsDW DLV_OK.
The location pointed to byow_pc is set to the lv pc value for this function.

The location pointed to bfyunc_| engt h is set to the length of the function in bytékhis is essentially
the length of the text section for the function.

The location pointed to bfyde_byt es is set to the address where the FDEihe in the .dehg_frame
section.

The location pointed to by de _byte | ength is set to the length in bytes of the portion of
.debug_frame for this FDE. This is the same as the value returrthebloy get f de_range.

rev 2.48, Mar 14, 2016 -101 -



-102 -

The location pointed to byi e_of f set is set to the offset in the .debug_frame section of the CIE used by
this FDE.

The location pointed to byi e_i ndex is set to the indeof the CIE used by this FDE. The indis the
index of the CIE in the list pointed to hyi e_dat a as set by the functiodwar f _get fde_list().
However, if the functiondwar f _get _fde_for _di e() was used to obtain the gén f de, this inde
may not be correct.

The location pointed to bfyde_of f set is set to the déet of the start of this FDE in the .dgp frame
section.

dwarf _get fde_range() returnsDW DLV_ERROR on error.

6.22.8 dwarf_get_cie info()

int dwarf_get cie_info(

Dwarf _Ci e ci e,
Dwar f _Unsigned *bytes in_cie,
Dwar f _Snal | *version,

char **augnent er,

Dwar f _Unsi gned *code_al i gnnent _factor,

Dwarf _Signed *data_al i gnment _factor,
Dwar f _Hal f *return_address _register_rule,
Dwarf _Ptr *initial _instructions,

Dwarf _Unsigned *initial _instructions_|ength,
Dwar f _Error *error);

dwarf _get cie_info() is primarily for Internal-lgel Interface consumers. If successful, it returns
DW DLV_OK and setg byt es_i n_ci e to the number of bytes in the portion of the frames section for
the CIE represented by thesgih Dwar f _Ci e descriptorci e. The other fields are directly taken from the
cie and returned, via the pointers to the callereturnsDwW DLV_ERROR on error.

6.22.9 dwarf_get_cie index()

int dwarf_get _cie_index(
Dwarf_Cie cie,
Dwar f _Si gned *ci e_i ndex,
Dwarf _Error *error);

On success,dwar f _get ci e_i ndex() returns DWDLV_OK. On eror this function returns
DW DLV_ERROR.

The location pointed to byi e_i ndex is set to the indeof the CIE of this FDE. The indds the index
of the CIE in the list pointed to yi e_dat a as set by the functiodwar f _get _fde_list().

So one must he wseddwar f _get _fde list() ordwarf_get _fde |ist_eh() togeta cie list
before this is meaningful.

This function is occasionally useful, but is little used.

6.22.10 dwarf_get fde instr_bytes()

rev 2.48, Mar 14, 2016 -102 -



- 103 -

int dwarf_get fde_instr_bytes(
Dwar f _Fde fde,
Dwarf Ptr *outinstrs,
Dwar f _Unsi gned *outl en,
Dwarf _Error *error);

dwarf _get fde_instr_bytes() returnsDW DLV_CK and set$out i nstrs to a pointer to a set
of bytes which are the actual frame instructions for this fde. It alsd eetsl en to the length, in bytes,
of the frame instructions. It returrdV DLV_ERROR on error It neve returnsDW DLV _NO_ENTRY.
The intent is to allw low-level consumers lik a dvarf-dumper to print the bytes in somashion. The
memory pointed to bgut i nst r s must not be changed and there is nothing to free.

6.22.11 dwarf _get fde info for_reg()

This interface is suitable for WARF2 kit is not sufcient for DNARF3. See int
dwarf _get fde info for_reg3.

int dwarf_get fde info for_reg(
Dwar f _Fde fde,
Dwarf Hal f tabl e _col um,
Dwar f _Addr pc_requested,
Dwarf _Si gned *of fset rel evant,
Dwarf _Si gned *regi ster_num
Dwar f _Si gned *of fset,
Dwar f _Addr *row pc,
Dwarf Error *error);

dwarf get fde info for_reg() returnsDW DLV_CK and sets*of f set _rel evant to non-

zero if the offset is relent for the rov specified by pc_requested and column specified by

t abl e_col um, for the FDE spedid byf de. The intent is to return the rule for the/gi pc value and
register The location pointed to biyegi st er _numis set to the registeralue for the rule. The location
pointed to byof f set is set to the offset value for the rule. If offset is notvaie for this rule,

*of f set _rel evant is set to zero. Since more than one pc value wilthaws with identical entries,

the user may want to kmothe earliest pc value after which the rules for all the columns remained
unchanged. Recdlhat in the virtual table that the frame information represents there may be one or more
table rows with identical data (each such table ab a dfferent pc alue). Gven apc_request ed
which refers to a pc in such a group of identicalgothe location pointed to byow pc is set to the
lowest pc value within the group ofientical ravs. The wlue put in*regi ster _numary of the

DW FRAME_* table columns values specifiedlinbdwar f . h ordwar f . h.

dwarf _get fde_ info_for_regreturnsDW DLV _ERRORIf there is an error.
It is usable with eithedwar f _get fde_n() ordwarf_get fde_ at pc().

dwarf _get fde info for_reg() is tailored to MIPS, please use
dwarf _get fde_ info_for_reg3() instead for all architectures.

6.22.12 dwarf_get_fde info_for_all_regs()

rev 2.48, Mar 14, 2016 - 103 -



-104 -

int dwarf_get fde_ info_for_all_regs(
Dwar f _Fde fde,
Dwar f _Addr pc_requested,
Dwarf _Regtable *reg_table,
Dwar f _Addr *row_pc,
Dwarf _Error *error);

dwarf _get _fde_info_for_all _regs() returnsDW DLV_OK and set$r eg_t abl e for the rav
specified bypc_r equest ed for the FDE specified bfde.

The intent is to return the rules for decoding all the registeran gipc \alue. r eg_t abl e is an array of
rules, one for each register specifieddmar f. h. The rule for each gister contains three items -
dw_r egnumwhich denotes the register value for that rdig, of f set which denotes the offset value for
that rule anddw_of f set _rel evant which is set to zero if offset is not retmt for that rule. See
dwarf _get fde_info_for_reg() fora description of ow _pc.

dwarf _get fde_info_for_all _regs returnsDW DLV_ERRORIf there is an error.

i nt dwarf_get fde_info_for_all _regs is tallored to SGI/MIPS, please use
dwarf_get_fde_info_for_all_regs3() instead for all architectures.

6.22.13 dwarf fde section_offset()

int dwarf_fde_section_offset(

Dwar f _Debug / *dbg*/,

Dwar f _Fde [*in_fde*/,
Dwarf_OFf * [*fde_of f*/,
Dwarf O f * [*cie_off*/,

Dwarf Error *error);

On successlwar f _fde_secti on_of fset () returns the .darf_line section offset of the fde passed
in and also the offset of its CIE.

It returnsDW DLV_ERRORIf there is an error.
It returnsDW DLV_ERRORIf there is an error.

when such want to print the offsets of CIEs and FDEs.

6.22.14 dwarf_cie_section_offset()
int dwarf_cie_section_offset(

Dwar f _Debug / *dbg*/,
Dwarf_Ci e [*in_cie*/,
Dwarf O f * [*cie_off*/,
Dwarf _Error * [/*err*/);
Dwarf _Error *error);

On successlwar f _ci e_section_of fset () returns the .dwarf_line sectionfedt of the cie passed
in.

It returnsDW DLV _ERRORIf there is an error.

when such want to print the offsets of CIEs.

rev 2.48, Mar 14, 2016 - 104 -



- 105 -

6.22.15 dwarf_set frame rule table size()

This allows consumers to set the size of the (internal to &bjivwle table when using thee3’ interfaces
(these interfaces are strongly preferredrdhe older feg’ interfaces). Itshould be at least as large as the
number of real mgsters in the ABI which is to be read in for theatfvget fde info_for g3() or
dwarf_get_fde_info_for_all _regs3() functions to work properly.

The frame rule table size must be less than the enavklues ®V_FRAME_UNDEFINED_ VAL,
DW_FRAME_SAME \AL, DW_FRAME_CHRA _COL3 (dwarf_set_frame_rule_undefined_value()
dwarf_set frame_samealue() dvarf_set frame_cfaalue() efectively set these markers so the frame
rule table size can actually beyavalue r@ardless of the macroalues in libdwarf.h as long as the table
size does notwvarlap these markers).

Dwar f _Hal f
dwarf _set frame_rul e_tabl e_size(Dwarf_Debug dbg,
Dwarf _Hal f val ue);

dwarf _set frame_rul e_tabl e _size() sets the alue val ue as the size of libdarf-internal
rules tables ofibg.

The function returns the previous value of the rules table size setting (taken frdbgtetucture).

6.22.16 dwarf_set_frame rule_initial_value()

This allows consumers to set the initial value favsdn the frame tables. By default it is taken from
libdwarf.h and is OV _FRAME_REG_INITIAL_ \VALUE (which itself is either
DW_FRAME_SAME_MAL or DW_FRAME_UNDEFINED_ML). The MIPS/IRIX default is
DW_FRAME_SAME_\AL. Consumercode should set this appropriately and for ynachitectures (bt
probably not MIPS) B/ FRAME_UNDEFINED_M\AL is an appropriate setting\Note: an earlier spelling

of dwarf_set_frame_rule_inital alue() is still supported as an interface, but please change to usevthe ne
correctly spelled name.

Dwar f _Hal f
dwarf_set _frame_rule_initial _val ue(Dwarf_Debug dbg,
Dwar f _Hal f val ue);

dwarf _set _frame_rule_initial _val ue() setsthe alueval ue as the initial value for thidbg
when initializing rules tables.

The function returns the previous value of initial value (taken frondltlgestructure).

6.22.17 dwarf_set frame cfa valueg()

This allows consumers to set the number of thaA &fgster for rows in the frame tables. By default it is
taken from libdwarf.h and i®W FRAME _CFA COL. Consumer code should set this appropriately and for
nearly all architectureBW FRAMVE _CFA COL3 is an appropriate setting.

Dwar f _Hal f
dwarf _set franme_rul e_cfa val ue(Dwarf_Debug dbg,
Dwarf _Hal f val ue);

dwarf _set frame_rul e _cfa_val ue() sets the alueval ue as the number of the a&fregister

rule’ for thisdbg when initializing rules tables.

The function returns the previous value of the pseudo-register (taken fralinghstructure).

rev 2.48, Mar 14, 2016 - 105 -



- 106 -

6.22.18 dwarf _set frame same valug()

This allows consumers to set the number of the pseudo-register WheICHA same_alue is the
operation. Bydefault it is taken from libdwarf.h and BW FRAME_SAME VAL. Consumer code should
set this appropriatelyhough for man architecturedDW FRAME_SAME VAL is an appropriate setting.

Dwar f _Hal f
dwarf _set frame_rul e_same_val ue(Dwarf_Debug dbg,
Dwarf _Hal f val ue);

dwarf _set frame_rul e_sane_val ue() sets the &lueval ue as the number of the register that
is the pseudo-register set by the DW_CFA_same_value frame operation.

The function returns the previous value of the pseudstar (talken from thedbg structure).

6.22.19 dwarf_set_frame _undefined_value()

This allows consumers to set the number of the pseudo-register

when DN_CFA_undefined_&lue is the operation. By default it is taken from libdwarf.h and is
DW FRAME_UNDEFI NED _VAL. Consumer code should set this appropriateayough for man
architecture®wW FRAME_UNDEFI NED_VAL is an appropriate setting.

Dwar f _Hal f
dwarf _set frame_rul e_undefi ned_val ue(Dwarf_Debug dbg,
Dwarf _Hal f val ue);

dwarf _set frame_rul e_undefi ned_val ue() sets the alue val ue as the number of the
register that is the pseudo-register set by the DW_CFA_undefined_value frame operation.

The function returns the previous value of the pseudster (talen from thedbg structure).

6.22.20 dwarf_set_default_address size()

This allows consumers to set aaldf address size. When one has an object where the default address_size
does not match the frame address size where there is ng_dieflo available to get a frame-speiif
address-size, this function is usefltor example, if an EIf64 object has a .debug_frame whose real
address_size is 4 (32 bits). This a very rare situation.

Dwar f _Smal |
dwarf _set default_address_si ze(Dwarf _Debug dbg,
Dwarf _Smal | val ue);

dwarf set default_address_si ze() sets the alueval ue as the default address size for this
activation of the readerbut only if val ue is greater than zero (otherwise the default address size is not
changed).

The function returns the previous value of the default address size (taken frdbgth&ucture).

6.22.21 dwarf_get_fde info_for_reg3()

This interfice is suitable for WARF3 and VARF2. Itreturns the values for a particular reagister
(Not for the CR regster, see dvarf_get fde_info_for_cfa_g3() belav). If the application is going to

rev 2.48, Mar 14, 2016 - 106 -



- 107 -

retrieve the value for more than aviet abl e_col umm values at thigpc_r equest ed (by calling this
function multiple times) it is much morefigfient to call dvarf_get fde_info_for_all_gs3() (in spite of the
additional setup that requires of the caller).

int dwarf_get _fde_info_for_reg3(
Dwar f _Fde fde,
Dwarf _Hal f tabl e _col um,
Dwar f _Addr pc_requested,
Dwarf_Smal |l *val ue_type,
Dwar f _Si gned *of fset_rel evant,
Dwar f _Si gned *regi ster_num
Dwar f _Si gned *of fset_or_bl ock_I en,
Dwarf_ Ptr *bl ock_ptr,
Dwar f _Addr *row_pc,
Dwarf _Error *error);

dwarf _get _fde_info_for_reg3() returnsDW DLV_OK on success. It setsval ue_t ype to
one of DW_EXPR_OFFSET (0), W_EXPR_\AL_OFFSET(1), DW_EXPR_EXPRESSION(2) or
DW_EXPR_MAL_EXPRESSION(3). Ortrall, t abl e_col unm must be set to the register number of a
real rgjister Not the ch ‘register’ or DN_FRAME_SAME \ALUE or
DW_FRAME_UNDEFINED_VALUE.

if *val ue_t ype has the value DW_EXPR_OFFSET (0) then:

It sets*of f set _rel evant to non-zero if the offset is relant for the rov specified by
pc_request ed and column specified blyabl e_col um or, for the FDE specified bf/de.
In this casethe *regi st er _numwill be set to WW_FRAME_CIRA_COL3 (. This is an
offset(N) rule as specified in the VIARF3/2 documents. Adding the alue of
*of f set _or _bl ock_I| en to the value of the GFkregster gives the address of a location
holding the previous value of registeaibl e_col um.

If offset is not relgant for this rule,* of f set _r el evant is set to zero.*r egi st er _num
will be set to the number of the reafjiger holding the value of thteabl e_col um register.
This is the register(R) rule as specified WBRF3/2 documents.

The intent is to return the rule for theven pc \alue and rgister The location pointed to by

regi st er _numis set to the register value for the rule. The location pointed tf bget is

set to the offset value for the rul&ince more than one pc value willearows with identical

entries, the user mayant to knav the earliest pc value after which the rules for all the columns
remained unchanged. Recall that in the virtual table that the frame information represents there
may be one or more tablews with identical data (each such tablevrat a dfferent pc alue).

Given apc_request ed which refers to a pc in such a group of identical rows, the location
pointed to byr ow_pc is set to the lowest pc value within the group of identical rows.

If *val ue_t ype has the value DW_EXPR_VAL_OFFSET (1) then:
This will be a al ofiset(N) rule as specified in the VBARF3/2 documents so
*of fset _relevant will be non zero. The calculation is identical to the
DW_EXPR_OFFSET (0) calculation withtof f set _rel evant non-zero, bt the \alue
resulting is the actualabl e_col umm value (rather than the address where thkiey may be
found).

If *val ue_t ype has the value DW_EXPR_EXPRESSION (1) then:
*of f set _or _bl ock_I en is set to the length in bytes of a block of memory withVdAIRF

rev 2.48, Mar 14, 2016 - 107 -



- 108 -

expression in the block* bl ock_ptr is set to point at the block of memoryhe consumer
code shouldevduate the block as a\MARF-expression. The result is the address where the
previous value of the register may be found. This isNABF3/2 expression(E) rule.

If *val ue_t ype has the value DW_EXPR_VAL_EXPRESSION (1) then:
The calculation is»actly as for DW_EXPR_EXPRESSION (1) but the result of theARF-
expression ealuation is the value of thet abl e_col umm (not the address of theble). This
is a DNARF3/2 val_expression(E) rule.

dwarf _get _fde_info_for_reg returnsDW DLV_ERRORIf there is an error and if there is an error
only theer r or pointer is set, none of the other output arguments are touched.

It is usable with eithedwar f _get _fde_n() ordwarf_get fde_at_pc().

6.22.22 dwarf _get fde info for_cfa reg3()
int dwarf_get fde info for_cfa reg3(Dwarf_Fde fde,

Dwar f _Addr pc_requested,

Dwarf _Smal | * val ue_type,

Dwar f _Si gned* of fset _rel evant,
Dwar f _Si gned* regi ster_num
Dwar f _Si gned* of fset _or_bl ock_|en,
Dwarf _Ptr * bl ock_ptr ,
Dwar f _Addr * row_pc_out,

Dwarf Error * error)

This is identical todwar f _get _fde_info _for_reg3() except the returnedalues are for the @G
rule. Soregister numberr egi st er _numwill be set to a real gister not one of the pseudogisters
(which are usually W/_FRAME_CHRA _COL3, DWV_FRAME_SAME_MALUE, or
DW_FRAME_UNDEFINED_VALUE).

6.22.23 dwarf_get_fde info_for_all_regs3()

int dwarf_get _fde_info_for_all_regs3(
Dwar f _Fde fde,
Dwar f _Addr pc_requested,
Dwar f _Regt abl e3 *reg_t abl e,
Dwar f _Addr *row_pc,
Dwarf _Error *error)

dwarf_get fde_info_for_all_regs3() returnsDW DLV _CK and sets*reg_t abl e for the
row specifed by pc_r equest ed for the FDE specified by de. The intent is to return the rules for
decoding all the registers,vgh a pc \alue. r eg_t abl e is an array of rules, the array size spedifby
the caller plus a rule for the C& Therule for the cé returned in*r eg_t abl e defines the CA value

at pc_requested The rule for each register contairsveral values that enable the consumer to
determine the previousalue of the register (see the earlier documentation ofrDWRegtable3).
dwarf_get fde_info_for_reg3() and the Dwarf Retable3 documentation a® for a
description of the values for eaclwro

dwarf _get fde_info_for_all _regs3returnsDW DLV_ERRORIf there is an error.

It is up to the caller to allocate spaceforeg_t abl e and initialize it properly.

rev 2.48, Mar 14, 2016 - 108 -



- 109 -

6.22.24 dwarf _get_fde n()

i nt dwarf _get fde_ n(
Dwarf _Fde *fde_dat a,
Dwar f _Unsi gned fde_i ndex,
Dwar f _Fde *returned_fde
Dwar f _Error *error)

dwarf _get fde_n() returnsDW DLV_OK and sets et ur ned_f de to theDwar f _Fde descriptor
whose inde isf de_i ndex in the table oDwar f _Fde descriptors pointed to Hyde _dat a. The inde
starts with 0. The table pointed to by fde data is required to contain at least on# &éméryable has no
entries at all the error checks may refer to uninitialized memBgturnsDW DLV_NO _ENTRY if the
index does not exist in the table Bfivar f _Fde descriptors. ReturrBW DLV_ERROR if there is an error
This function cannot be used unless the blockowdr f _Fde descriptors has been created by a call to
dwarf get fde list().

6.22.25 dwarf_get_fde at_pc()

i nt dwarf _get fde_at pc(
Dwarf _Fde *fde_dat a,
Dwar f _Addr pc_of _interest,
Dwarf _Fde *returned_fde,
Dwar f _Addr *1 opc,
Dwar f _Addr *hi pc,
Dwarf _Error *error)

dwarf _get fde_at _pc() returns DWDLV_OK and setsreturned_fde to a Dwarf_Fde
descriptor for a function which contains the pc value specifigoicbyf _i nt er est . In addition, it sets
the locations pointed to Hyopc andhi pc to the lav address and the high addressered by this FDE,
respectiely. The table pointed to by fde_data is required to contain at least onelettig/table has no
entries at all the error checks may refer to uninitialized memiomgturnsDW DLV_ERROR on error It
returnsDW DLV_NO_ENTRY if pc_of _i nt er est is not in ay of the FDEs represented by the block of
Dwar f _Fde descriptors pointed to biyde_dat a. This function cannot be used unless the block of
Dwar f _Fde descriptors has been created by a calvtar f _get _fde_list().

6.22.26 dwarf_expand_frame instructions()

int dwarf_expand frane_instructions(
Dwarf _Cie cie,
Dwarf Ptr instruction,
Dwarf _Unsigned i | ength,
Dwarf _Frame_Op **returned_op_list,
Dwar f _Si gned * returned_op_count,
Dwarf _Error *error);

dwar f _expand_franme_i nstructions() is a High-level interface function which expands a frame
instruction byte stream into an array Bfvar f _Fr ane_Qp structures. @ indicate success, it returns
DW DLV_OK. The address where the byte stream begins is specifieddtyr uct i on, and the length of

the byte stream is specified by | engt h. The location pointed to byet urned_op_|i st is set to

point to a table ofr et urned_op_count pointers toDwar f _Frane_Op which contain the frame
instructions in the byte stream. It returnBW DLV_ERROR on error It neve returns

DW DLV_NO ENTRY. After a successful return, the array of structures should be freed using
dwar f _deal | oc() with the allocation typeDW DLA FRAME BLOCK (when thg are no longer of
interest).

Not all CIEs hae the same address-size, so it is crucial that a CIE pointer to thedra@ifadde passed in.

rev 2.48, Mar 14, 2016 - 109 -



-110 -

Figure 35. Examples dwarf_expand_frame_instructions()

voi d exanpl es(Dwarf_Cie cie,Dwarf_Ptr instruction, Dwarf_Unsigned |en))
{

Dwar f _Si gned cnt = O;

Dwar f _Frame_Qp *franeops = 0;

int res = O;

res = expand_frame_instructions(dbg,instruction,len,
&f raneops, &nt, &error);
if (res == DWDLV_OK) {
for (i =0; i <cnt; ++i) {
/* use frameops[i] */
}
dwar f _deal | oc(dbg, franeops, DWDLA FRAME BLOCK);
}
}

6.22.27 dwarf _get fde exception_info()

int dwarf_get fde exception_info(
Dwar f _Fde fde,
Dwarf _Signed * offset _into_exception_tables,
Dwarf_Error * error);

dwarf _get fde_exception_info() is an IRIX specific function which returns an exception table
signed ofset through of fset into_exception_tables. The function neer returns

DW DLV_NO ENTRY. If DW DLV_NO ENTRY is NULL the function returndDW DLV_ERROR. For
non-IRIX objects the offset returned willvedys be zero.For non-C++ objects the offset returned will
always be zero.The meaning of the offset and the content of the tables is not defined in this document.
The applicable CIE augmentation string (seevabdetermines whether the value returned has meaning.

6.23 Location Expression Evaluation

An "interpreter" which ealuates a location expression is required ig dabugger There is no intetce
defined here at this time.

One problem with defining an interface is that operations are machine dependgrdepbad on the
interpretation of register numbers and the methods of getting values from the environment the expression is
applied to.

It would be desirable to specify an interface.

6.23.1 Location List Internal-level I nterface

6.23.1.1 dwarf_get_loclist_entry()

rev 2.48, Mar 14, 2016 -110 -



-111 -

int dwarf_get loclist_entry(
Dwar f _Debug dbg,
Dwar f _Unsi gned of f set,
Dwar f _Addr *hi pc_of f set,
Dwar f _Addr *1 opc_of f set,
Dwarf_ Ptr *data,
Dwar f _Unsigned *entry_len,
Dwar f _Unsi gned *next_entry,
Dwarf _Error *error)

This function is ill suited to use with 21st centurWBRF as there is just not enough data provided in the
interface. Donot use this interface.

The function reads a location list entry startingfat set and returns through pointers (when successful)
the high pchi pc_of f set, low pc | opc_of f set, a pinter to the location description datat a, the
length of the location description dagat ry_| en, and the offset of the next location description entry
next_entry.

This function will often verk correctly (meaning with most objects compiled fM/ARF3 or DNARF3)

but will not work correctly (and can crash an application calling it) if either some location list applies to a
compilation unit with an address_size different from therall address_size of the object file being read or

if the .delug_loc section being read has random padding bytes between loclists. Neither of these
characteristics necessarily representagihb the compiler/linker toolset that produced the object file being
read. TheDWARF standard allows both characteristics.

dwarf _dwarf_get | oclist_entry() returnsDW DLV_OKif successful.DW DLV_NO_ENTRY is
returned when the offset passed in is beyond the end of the .debug_loc section (expected if you start at
offset zero and proceed through all the entri@)/ DLV_ERRCRIs returned on error.

The hi pc_of f set, low pc| opc_of f set are offsets from the beginning of the current procedure, not
genuine pc values.

Figure 36. Examples dwarf_get_loclist_entry()

rev 2.48, Mar 14, 2016 -111 -



-112 -

voi d exanpl et (Dwar f _Debug dbg, Dwarf _Unsi gned of f set)
{

/* Loopi ng through the dwarf_loc section finding loclists:

an exanple. */

int res;

Dwar f _Unsi gned next _entry = O;

Dwar f _Addr hi pc_off = 0;

Dwar f _Addr | owpc_off = 0;

Dwarf Ptr data = O;

Dwar f _Unsi gned entry_len = O;

Dwarf Error err = 0;

for(;;) {
res = dwarf_get | oclist_entry(dbg, of fset, &i pc_off,
& owpc_off, &data, &entry_len, &ext_entry, &err);
if (res == DWDLV_OK) {
/* Avalid entry. */
of fset = next_entry;
conti nue;
} else if (res ==DW DLV_NO ENTRY) {
/* Done! */
br eak;
} else {
/[* Errorl */
br eak;

6.24 Abbreviations access

These are Internaldel I nterface functions. Debuggers can ignore this.

6.24.1 dwarf_get_abbrev()

i nt dwarf_get abbrev(
Dwar f _Debug dbg,
Dwar f _Unsi gned of f set,
Dwar f _Abbr ev *returned_abbrev,
Dwar f _Unsi gned *I engt h,
Dwar f _Unsi gned *attr_count,
Dwarf _Error *error)

The function dwar f _get _abbrev() returns DWDLV_OK and sets*returned_abbrev to
Dwar f _Abbr ev descriptor for an abbwation at ofset *of f set in the abbreviations section (i.e
.debug_abbrg on success. The user is responsible for making sure that a valid abbreviation begins at
of f set in the abbreiations section. The location pointed to lbgngt h is set to the length in bytes of

the abbreviation in the abbreviations section. The location pointed t@t by count is set to the
number of attributes in the ablitation. Anabbreiation entry with a length of 1 is the 0 byte of the last
abbreiation entry of a compilation unitdwar f _get _abbr ev() returnsDW DLV_ERROR on error If

the call succeeds, the storage pointed to *hyet ur ned_abbrev should be freed, using

dwar f _deal | oc() with the allocation typ®W DLA ABBREV when no longer needed.

rev 2.48, Mar 14, 2016 -112 -



-113 -

6.24.2 dwarf_get_abbrev_tag()

int dwarf_get abbrev_tag(
Dwar f _abbrev abbrev,
Dwarf Half *return_tag,
Dwarf _Error *error);

If successfuldwar f _get abbrev_tag() returnsDW DLV_OK and set$r et ur n_t ag to thetag of
the given abbreviation. ItreturnsDW DLV_ERRORon error It neve returnsDW DLV_NO_ENTRY.

6.24.3 dwarf_get_abbrev_code()

i nt dwarf_get abbrev_code(

Dwar f _abbr ev abbr ev,
Dwar f _Unsigned *return_code,
Dwar f _Error *error);

If successful,dwarf_get abbrev_code() returnsDW DLV_CK and sets‘r et ur n_code to the
abbreviation code of the gen abreviation. It returns DW DLV_ERROR on error It neve returns
DW DLV_NO_ENTRY.

6.24.4 dwarf_get_abbrev_children_flag()

int dwarf_get abbrev_children_fl ag(
Dwar f _Abbrev abbrev,
Dwarf _Signed *returned_flag,
Dwar f _Error *error)

The function dwarf _get abbrev_children_flag() returns DWDLV _OK and sets
returned flag to DWchildren_no (if the given abbreviation indicates that a die with that
abbreviation has no children) dW chi | dr en_yes (if the given abreviation indicates that a die with
that abbreviation has a child). It retuidd@/ DLV _ERROR on error.

6.24.5 dwarf_get_abbrev_entry()

i nt dwarf_get _abbrev_entry(
Dwar f _Abbrev abbrev,
Dwar f _Si gned i ndex,
Dwar f _Hal f *attr_num
Dwar f _Si gned *form
Dwarf_ O f *of fset,
Dwarf _Error *error)

If successful,dwarf_get abbrev_entry() returnsDW DLV_CK and sets*attr_num to the
attribute code of the attribute whose imde seciied byi ndex in the given abbreviation. Theindex
starts at 0. The location pointed to bgr mis set to the form of the attrke. Thelocation pointed to by

of fset is set to the byte offset of the attribute in the abbreviations section. It returns
DW DLV_NO_ENTRY if the index specified is outside the range of attributes in this atibten. Itreturns

DW DLV_ERROR 0N error.

6.25 String Section Operations

The .debug_str section contains only string@ehuggers need wer use this interdice: it is only for
debugging problems with the string section itself.

rev 2.48, Mar 14, 2016 -113 -



-114 -

int dwarf_get _string_section_nane(Dwarf_Debug dbg,
const char ** sec_nane,
Dwarf _Error *error)

dwar f _get _string_section_nane() lets consumers access the object string section nafms.

is useful for applications wanting to print the namet, &f course the object section name is not really a
part of the WVARF information. Most applications will probably not call this function. It can be called at
ary time after the Dwrf_Delug initialization is done. See also
dwarf _get _di e_section_name_b().

The function dwarf _get _string_secti on_name() operates on the the .dep string[.dwo]
section.

If the function succeedd,sec_nane is set to a pointer to a string with the object section name and the
function returndW DLV_COK. Do not free the string whose pointer is returnéar non-EIf objects it is
possible the string pointer returned will be NULL or will point to an empty string. It is up to the calling
application to recognize this possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_EXTR
If there is an internal error detected the function retDkivsDLV _ERROR and sets th&er r or pointer.

6.25.1 dwarf_get_str()

int dwarf_get str(
Dwar f _Debug dbg,
Dwarf O f of f set,
char **string,
Dwarf _Signed *returned_str_|en,
Dwarf _Error *error)

The functiondwar f _get _str () returnsDW DLV_OK and setsr et urned_str _| en to the length
of the string, not counting the null terminagtthat begins at the fsiet specified byof f set in the
.delug_str section. The location pointed todtyr i ng is set to a pointer to this string.he next string in
the .debug_str section begins at thevjmesof f set + 1 +*returned_str _| en. A zero-length string
is NOT the end of the section. If there is no .debug_str sedidhDPLY_NO ENTRY is returned. If there
is an errorDW DLV_ERROR s returned. If we are at the end of the section (thatfifset is one past
the end of the sectioW DLV_NO _ENTRY is returned. If thef f set is some other too-large value then
DW DLV_ERRORIs returned.

6.26 Address Range Operations

These functions provide information about address rangddress ranges map ranges of pc values to the
corresponding compilation-unit die thatvecs the address range.

6.26.1 dwarf_get _aranges section_name()

int dwarf_get aranges_section_name(Dwarf_ Debug dbg,
const char ** sec_nane,
Dwar f _Error *error)

*dwar f _get aranges_secti on_nane() retrieves the object file section name of the applicable
aranges section. This is useful for applicatiommting to print the name, but of course the object section
name is not really a part of th&\\RF information. Most applications will probably not call this function.
It can be called at grtime after the Dwarf_Debug initialization is done.

If the function succeed$,sec_nane is set to a pointer to a string with the object section name and the

rev 2.48, Mar 14, 2016 -114 -



-115-

function returndW DLV_COK. Do not free the string whose pointer is returnéar non-EIf objects it is
possible the string pointer returned will be NULL or will point to an empty string. It is up to the calling
application to recognize this possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_EXTR
If there is an internal error detected the function retDkvsDLV _ERROR and sets th&er r or pointer.

6.26.2 dwarf get_aranges()

i nt dwarf_get aranges(
Dwar f _Debug dbg,
Dwar f _Arange **aranges,
Dwarf _Signed * returned_arange_count,
Dwar f _Error *error)

The functiondwar f _get _aranges() returnsDW DLV_COK and setsr et ur ned_ar ange_count

to the count of the number of address ranges in theigdabanges section (for all compilation unit).
sets* ar anges to point to a block obwar f _Ar ange descriptors, one for each address range. It returns
DW DLV_ERRORonN error It returnsDW DLV_NO_ENTRY if there is no .debug_aranges section.

Figure 37. Exampleu dwarf_get_aranges()

voi d exanpl eu( Dwar f _Debug dbg)
{
Dwarf _Signed cnt = O;
Dwar f _Arange *arang = O;
int res = 0;
Dwarf _Error error = 0;

res = dwarf _get aranges(dbg, &arang, &nt, &error);
if (res == DWDLV_OK) {
for (i =0; i <cnt; ++i) {
/* use arang[i] */
dwarf _deal | oc(dbg, arang[i], DWDLA ARANGE);

}
dwar f _deal | oc(dbg, arang, DWDLA LI ST);
}

6.26.3 dwarf_get_arange()

i nt dwarf_get _arange(
Dwar f _Arange *ar anges,
Dwar f _Unsi gned ar ange_count,
Dwar f _Addr address,
Dwar f _Arange *returned_arange,
Dwarf _Error *error);

The functiondwar f _get _ar ange() takes as input a pointer to a block Bfiar f _Ar ange pointers,
and a count of the number of descriptors in the bldtkhen searches for the descriptor thatecs the
given addr ess. Ifitfinds one, it returnBW DLV_OK and set$ r et ur ned_ar ange to the descriptor

rev 2.48, Mar 14, 2016 -115-



-116 -

It returnsDW DLV_ERROR on error It returnsDW DLV_NO_ENTRY if there is no .debug_aranges entry
covering that address.

6.26.4 dwarf_get_cu_die offset()

int dwarf_get cu_die_ offset(
Dwar f _Arange ar ange,
Dwarf O f *returned_cu_di e offset,
Dwarf _Error *error);

The functiondwarf _get cu_di e_of fset () takes aDwarf _Arange descriptor as input, and if
successful returnrBW DLV_COK and set$r et urned_cu_di e_of f set to the offset in the .deig_info
section of the compilation-unit DIE for the compilation-unit represented by tlea gildress rangelt
returnsDW DLV_ERROR on error.

6.26.5 dwarf_get_arange cu_header_offset()

i nt dwarf_get _arange_cu_header _of fset(
Dwar f _Arange ar ange,
Dwarf O f *returned _cu_header offset,
Dwarf _Error *error)

The functiondwar f _get _arange_cu_header _of f set () takes aDwar f _Ar ange descriptor as
input, and if successful returV DLV_CK and set$r et ur ned_cu_header _of f set to the ofset

in the .debug_info section of the compilation-unit header for the compilation-unit represented bgrthe gi
address range. It returb¥V DLV _ERROR on error.

This function added Rel.45, June, 2001.

This function is declared as 'optional’ in libdwarf.h on IRIX systems so the _MIPS_SYMBOL_PRESENT
predicate may be used at run time to determine if ¢hgian of libdwarf linked into an application has this
function.

6.26.6 dwarf_get_arange info()

int dwarf_get arange_i nfo(
Dwar f _Arange ar ange,
Dwar f _Addr *start,
Dwar f _Unsi gned *I engt h,
Dwarf O f *cu_die_ offset,
Dwar f _Error *error)

The functiondwar f _get _arange_i nfo() returnsDW DLV_COK and stores the starting value of the
address range in the location pointed tesbwar t , the length of the address range in the location pointed
to byl engt h, and the offset in the .debug_info section of the compilation-unit DIE for the compilation-
unit represented by the address range. It reDWwiDLV_ ERRORon error.

rev 2.48, Mar 14, 2016 -116 -



-117 -

6.27 General Low Level Operations

This function is low-lgel and intended for use only by programs such as dwarf-dumpers.

6.27.1 dwarf_get_offset_size()

int dwarf_get of fset_size(Dwarf_Debug dbg,
Dwarf_Hal f *offset_size,
Dwarf _Error *error)

The function dwarf_get offset _size() returns DWDLV_OK on success and sets the
*of f set _si ze to the size in bytes of anfeét. Incase of errqrit returnsDW DLV_ERRCR and does
not set* of f set _si ze.

The ofset size returned is thevevall address size, which can be misleading if different compilation units
have dfferent address sizedMarny ABIs hare mly a single address size peteeutable, but dfering
address sizes are becoming more common.

6.27.2 dwarf_get_address size()

int dwarf_get address_si ze(Dwarf_Debug dbg,
Dwarf Hal f *addr_si ze,
Dwar f _Error *error)

The function dwarf get address_si ze() returns DW DLV _OK on success and sets the
*addr _si ze to the size in bytes of an addres$s.case of errgit returnsDW DLV_ERROR and does not
set*addr _si ze.

The address size returned is thverall address size, which can be misleading if different compilation units
have dfferent address sizedMany ABIs hare mly a single address size peteeutable, but dfering
address sizes are becoming more common.

Usedwar f _get di e_address_si ze() instead whener possible.

6.27.3 dwarf_get_die address size()

int dwarf_get die_address_size(Dwarf_Die die,
Dwarf _Hal f *addr_si ze,
Dwarf _Error *error)

The functiondwar f _get di e_address_si ze() returns DW DLV_OK on success and sets the
*addr _si ze to the size in bytes of an addre¢s.case of errgiit returnsDW DLV_ERROR and does not
set*addr _si ze.

The address size returned is the address size of the compilation unit owrdhg the

This is the preferred way to get address size whebvhef _Di e is known.

6.28 Ranges Operations (.debug_ranges)

These functions pride information about the address ranges indicated BYABAT r anges attribute
(the ranges are recorded in the debug_ranges section) of a DIE. Each call of
dwarf _get _ranges_a() ordwarf_get_ranges() returns a an array of Dwarf_Ranges structs,
each of which represents a single ranges enfiye struct is defined i i bdwar f . h.

rev 2.48, Mar 14, 2016 -117 -



-118 -

6.28.1 dwarf_get_ranges section_name()

int dwarf_get ranges_section_nane(Dwarf _Debug dbg,
const char ** sec_nane,
Dwar f _Error *error)

*dwar f _get _ranges_section_nane() retrieves the object file section name of the applicable
ranges section. This is useful for applications wanting to print the narmef bourse the object section
name is not really a part of the\B\RF information. Most applications will probably not call this function.
It can be called at grtime after the Dwarf_Debug initialization is done.

If the function succeed$,sec_nane is set to a pointer to a string with the object section nhame and the
function returnsdDW DLV_COK. Do not free the string whose pointer is returnéar non-EIf objects it is
possible the string pointer returned will be NULL or will point to an empty string. It is up to the calling
application to recognize this possibility and deal with it appropriately.

If the section does not exist the function returns DW_DLV_NO_EXTR

If there is an internal error detected the function retDkitsDLV _ERROR and sets th&er r or pointer.

6.28.2 dwarf_get_ranges()

This is the original call and it will erk fine when all compilation units ta the same address_siZ€here
is nodi e argument to this original version of the function. Otheguanents (and deallocation) match the
use ofdwar f _get _ranges_a() (described next).

6.28.3 dwarf_get_ranges a()

int dwarf_get ranges_a(
Dwar f _Debug dbg,
Dwarf O f offset,
Dwarf _Die die,
Dwar f _Ranges **ranges,
Dwarf _Signed * returned_ranges_count,
Dwarf _Unsigned * returned_byte count,
Dwarf Error *error)

The functiondwar f _get ranges_a() returnsDW DLV_COK and set$ r et ur ned_r anges_count
to the count of the number of address ranges in the group of ranges in the .debug_ranges sdstibn at of
of f set (which ends with a pair of zeros of poinrgtze). Thisfunction is nev as of 27 Aril 2009.

The of f set amument should be the value o8V AT _r anges attribute of a Debugging Information
Entry.

The di e agument should be the value ofDmar f _Di e pointer of aDwar f _Di e with the attrilute
containing this range setfeét. Becauseach compilation unit has itsva address_size field thisgament
is necessary to to correctly read ranges. (Mxatigables hae the same address_size irery compilation
unit, ut some ABIs allw multiple address sized in arxeeutable). Ifa NULL pointer is passed in
libdwarf assumes a single address_size is appropriate for all ranges records.

The call setsranges to point to a block oDwar f _Ranges structs, one for each address range.
returns DW DLV_ERROR on error It returnsDW DLV_NO ENTRY if there is no. debug_r anges
section or ifof f set is past the end of thedebug_r anges section.

If the *r et ur ned_byt e_count pointer is passed as non-NULL the number of bytes that the returned
ranges were tan from is returned through the pointer (for example if the returned_ranges_count is 2 and

rev 2.48, Mar 14, 2016 -118 -



-119 -

the pointer-size is 4, then returned_byte count will be 8). Ifthet ur ned_byt e_count pointer is
passed as NULL the parameter is ignorddhe *r et ur ned_byt e_count is only of use to certain
dumper applications, most applications will not use it.

Figure 38. Exampler dwarf_get_ranges_a()

voi d exanpl ev(Dwar f _Debug dbg, Dwar f _Unsi gned offset, Dwarf_Di e die)
{
Dwar f _Si gned cnt = O;
Dwar f _Ranges *ranges
Dwar f _Unsi gned bytes
Dwarf Error error = 0;
int res = 0;
res = dwarf_get _ranges_a(dbg, of fset, di e,
& anges, &cnt , &yt es, &error);
if (res == DWDLV_OK) {
Dwar f _Si gned i ;
for( i =0; i <cnt; ++ ) {
Dwar f _Ranges *cur = ranges+i;
/* Use cur. */

= 0;
= 0;

}

dwar f _ranges_deal | oc(dbg, ranges, cnt);

}
}

6.28.4 dwarf_ranges dealloc()

int dwarf_ranges_deal | oc(

Dwar f _Debug dbg,

Dwar f _Ranges *ranges,

Dwarf _Signed range_count,

);
The functiondwar f _ranges_deal | oc() takes as input a pointer to a blockdfar f _Ranges array
and the number of structures in the block. It frees all the data in the array of structures.

6.29 Gdb Index operations

These functions get access to the fast lookup tables defined by gdb and gcc and storegtlin thadex
section. Thesection is of sdifcient complexity that a number of function intarés are needed-or
additional information see "https://sounae.org/gdb/onlinedocs/gdb/Index-Section-Format.html#Index-
Section-Format".

6.29.1 dwarf_gdbindex_header ()

rev 2.48, Mar 14, 2016 -119 -



-120 -

int dwarf_gdbindex_header(Dwarf_Debug dbg,
Dwarf_Gdbinde * gdbindexptr,
Dwarf_Unsigned * version,
Dwarf_Unsigned * cu_list_offset,
Dwarf_Unsigned * types_cu_list_offset,
Dwarf_Unsigned * address_area_offset,
Dwarf_Unsigned * symbol_table_offset,
Dwarf_Unsigned * constant_pool_offset,
Dwarf_Unsigned * section_size,
Dwarf_Unsigned * unused_reserved,
const char ** section_name,
Dwarf_Error *error);

The functiondwar f _gdbi ndex_header () takes as input a pointer to a @BwW_Delug structure and
returns fields through various pointers.

If the function returns @W/_DLV_NO_ENTRY there is no .gdb_indesection and none of the return-
pointer argument values are set.

If the function returns B/_DLV_ERRORer r or is set to indicate the specific errbut no other return-
pointer arguments are touched.

If successful, the function returnsWD DLV_OK and other values are set. The other values are set as
follows:

The feld *gdbi ndexpt r is set to an opaque pointer to a libdwarf_internal structure used aguameat
to other .gdbindefunctions bela.

The remainingi€lds are set to values that are mostly of interest to a pretty-printer application. See the
detailed layout specification for speacd. Thevalues returned are recorded in the &fvGdbind& opaque
structure for the other gdbindéunctions documented b&lo

The field *ver si on is set to the version of the gdb ind®ader (2)..

The field *cu_l i st _of f set is set to the offset (in the .gdb_indgection) of the cu-list.

The field *t ypes_cu_Il i st _of f set is set to the offset (in the .gdb_indgction) of the types-list.
The field *addr ess_ar ea_of f set is set to the offset (in the .gdb_indgction) of the address area.
The field *synbol _t abl e_of f set is set to the offset (in the .gdb_indgction) of the symbol table.

The feld *constant _pool _of f set is set to the offset (in the .gdb_indsection) of the constant
pool.

The field *sect i on_si ze is set to the length of the .gdb_imxdgction.
The field *unused_r eserved is set to zero.

The feld *secti on_nane is set to the EIf object file section name (.gdb_ix)ddf a non-ElIf object fle
has such a section the value set might be NULL or might point to an empty string (NUL terminated), so
code to account for NULL or empty.

The field *er r or is not set.

Here we she a use of the set of cu_list functions (using all the functions in one example makes it rather
too long).

Figure 39. Examplev dwarf_get_gdbindex_header()

rev 2.48, Mar 14, 2016 -120 -



-121 -

voi d exanpl ewm Dnar f _Debug dbg, Dwarf _Unsi gned offset, Dwarf_Di e die)
{

Dwar f _Gdbi ndex gi ndexptr = 0;

Dwar f _Unsi gned version = 0;

Dwar f _Unsigned cu_list_offset = 0;

Dwar f _Unsi gned types_cu_list_offset = 0;

Dwar f _Unsi gned address_area_offset = 0;

Dwar f _Unsi gned synbol _table_offset = 0;

Dwar f _Unsi gned const ant_pool _offset = 0;

Dwar f _Unsi gned section_size = 0;

Dwar f _Unsi gned reserved = O;

Dwarf Error error = 0;

const char * section_nanme = 0;

int res = 0;

res = dwarf _gdbi ndex_header ( dbg, &gi ndexptr,
&version, &u_list_offset, & ypes_cu_list_offset,
&address_area_of fset, &ynbol _tabl e_of f set,
&const ant _pool _of fset, &section_size,
&r eserved, &secti on_nane, &error);

if (res == DWDLV_NO ENTRY) {

return;

} else if (res == DWDLV_ERROR) {
return;

}

{

/* do sonething with the data */
Dwar f _Unsi gned | ength = O;
Dwar f _Unsi gned typeslength = 0;
Dwar f _Unsigned i = O;
res = dwarf _gdbi ndex_cul i st_array(gi ndexptr,
&l engt h, &error);
/* Exanpl e actions. */
if (res == DWDLV_OK) {
for(i =0; i <length; ++i) {
Dwar f _Unsi gned cuof f set 0;
Dwar f _Unsi gned cul ength = 0;
res = dwarf _gdbi ndex_cul i st_entry(gi ndexptr,
i, &uof f set, &cul engt h, &error);
if (res == DWDLV_OK) {
/* Do sonething with cuoffset, culength */
}

}
}

res = dwarf _gdbi ndex_types_culist_array(gi ndexptr,
&t ypesl engt h, &rror);

if (res == DWDLV_OK) {
for(i = 0; i < typeslength; ++i)

Dwar f _Unsi gned cuof fset = 0;
Dwar f _Unsi gned tuoffset = O;
Dwar f _Unsi gned cul ength = 0;

Dwar f _Unsi gned type_signature = 0;

res = dwarf _gdbi ndex_types_culist_entry(gi ndexptr,
i, &uof f set, & uof f set, & ype_si gnature, &error);

if (res == DWDLV_OK) {

rev 2.48, Mar 14, 2016 -121 -



-122 -

/* Do sonething with cuoffset etc. */

}

}
dwar f _gdbi ndex_free(gi ndexptr);

}
}

6.29.2 dwarf_gdbindex_culist_array()

int dwarf_gdbindex_culist_array(Dwarf_Gdbindgdbindexptr,
Dwarf_Unsigned  1ist_length,
Dwarf_Error *error);

The functiondwar f _gdbi ndex_cul i st _array() takes as input valid Dwarf_Gdbindpointer.

While currently only W DLV _OK is returned one should test forWDDLV_NO_ENTRY and
DW_DLV_ERROR and do something sensible if either is returned.

If successful, the function returndAD DLV_OK and returns the number of entries in the culist through
thd i st _| engt h pointer.

6.29.3 dwarf_gdbindex_culist_entry()

int dwarf_gdbindex_culist_entry(Dwarf_Gdbindgdbindexptr,
Dwarf_Unsigned entryinde
Dwarf_Unsigned * cu_offset,
Dwarf_Unsigned * cu_length,
Dwarf_Error *error);

The functiondwar f _gdbi ndex_cul i st _entry() takes as input valid Darf_Gdbinde pointer and
an inde into the culist arrayValid indexes ae O through i st _ ength -1.

If it returns DN_DLV_NO_ENTRY there is a coding errorif it returns W _DLV_ERROR there is an
error of some kind and the error is indicated by the vale returned throughrtbe pointer.

On success it returnsVD DLV_OK and returns theu_of f set (the section global offset of the CU in
.debug_info)) andu_I| engt h (the length of the CU in .debug_info) values through the pointers.

6.29.4 dwarf_gdbindex_types culist_array()

int dwarf_gdbindex_types_culist_array(Dwarf_Gdbixdgdbindexptr*/,
Dwarf_Unsigned ¥*types_list_length*/,
Dwarf_Error *[*error*/);

The functiondwar f _gdbi ndex_types_cul i st_array() takes as input valid Darf Gdbindex
pointer.

While currently only W _DLV_OK is returned one should test forWDDLV_NO_ENTRY and
DW_DLV_ERROR and do something sensible if either is returned.

If successful, the function returnsAD DLV_OK and returns the number of entries in the types culist
through théi st _| engt h

rev 2.48, Mar 14, 2016 -122 -



-123 -

6.29.5 dwarf_gdbindex_types culist_entry()

int dwarf_gdbindex_types_culist_entry(
Dwarf_Gdbinde gdbindexptr,
Dwarf_Unsigned entryinde
Dwarf_Unsigned * cu_offset,
Dwarf_Unsigned * tu_offset,
Dwarf_Unsigned * type_signature,
Dwarf_Error *error);

The functiondwar f _gdbi ndex_types_cul i st_entry() takes as input valid Darf Gdbindex
pointer and an indeinto the types culist arrayalid indexes ae 0 through ypes i st _length -1.

If it returns DNV_DLV_NO_ENTRY there is a coding errorf it returns W_DLV_ERROR there is an
error of some kind. and the error is indicated by the value returned througihrtbe pointer.

On success it returnsVD DLV_OK and returns théu_of f set (the section global offset of the CU in
.delug_types)) and u_| engt h (the length of the CU in .debug_typeslues through the pointergt
also returns the type signature (a 64bit value) throuth §hyge _si gnat ur e pointer.

6.29.6 dwarf_gdbindex_addressarea()

int dwarf_gdbindex_addressarea(Dwarf_Gdbinttgdbindexptr*/,
Dwarf_Unsigned ¥*addressarea_list_length*/,
Dwarf_Error *[*error*/);

The functiondwar f _addr essar ea() takes as input valid Darf _Gdbind& pointer and returns the
length of the address area throwglhdr essarea_| i st _| engt h.

If it returns DN_DLV_NO_ENTRY there is a coding errorif it returns W _DLV_ERROR there is an
error of some kind. and the error is indicated by the value returned througihrtbe pointer.

If successful, the function returndAD DLV_OK and returns the number of entries in the address area
through theaddr essarea_| i st _| engt h pointer.

6.29.7 dwarf_gdbindex_addressarea entry()

int dwarf_gdbindex_addressarea_entry(
Dwarf_Gdbinde gdbindexptr,
Dwarf_Unsigned entryinde
Dwarf_Unsigned * low_adddress,
Dwarf_Unsigned * high_address,
Dwarf_Unsigned * cu_index,
Dwarf_Error *error);

The functiondwar f _addr essarea_entry() takes as input valid Daurf _Gdbinde pointer and an
index into the address area (valid inde ae zero througladdr essarea |ist_length - 1.

If it returns DNV_DLV_NO_ENTRY there is a coding errorf it returns WW_DLV_ERROR there is an
error of some kind. and the error is indicated by the value returned througihrtbe pointer.

If successful, the function returndAD DLV_OK and returns Théow_addr ess hi gh_addr ess and
cu_i ndex through the pointers.

Given an gen Dwarf_Gdbindeone uses the function as follows:

rev 2.48, Mar 14, 2016 -123 -



-124 -

Figure 40. Examplewgdbindedwarf _gdbindex_addressarea()
voi d exanpl ewgdbi ndex( Dwar f _CGdbi ndex gdbi ndex)
{
Dwarf _Unsigned list_len = 0;
Dwarf _Unsigned i = 0;
int res = 0;
Dwarf_Error err = 0;

res = dwarf _gdbi ndex_addr essar ea(gdbi ndex, & ist_len, &err);
if (res !'= DWDLV_OK) {
/* Sonmet hing wong, ignore the addressarea */
}
/* Iterate through the address area. */
for( i =0; i <list_len; i++) {
Dwar f _Unsi gned | owpc = O;
Dwar f _Unsi gned hi ghpc = 0;
Dwar f _Unsi gned cu_i ndex,
res = dwarf_gdbi ndex_addr essar ea_entry(gdbi ndex, i,
&l owpc, &hi ghpc,
&cu_i ndex,
&err);
if (res !'= DWDLV_OK) {
/* Sonmet hing wong, ignore the addressarea */
return;
}
/* We have a valid address area entry, do sonething
withit. */

6.29.8 dwarf_gdbindex_symboltable array()

int dwarf_gdbindex_symboltable_array(Dwarf_Gdbixddbindexptr,
Dwarf_Unsigned symtab_list_length,
Dwarf_Error *error);

One can look at the symboltable as a-tevel table (with The outer el indexes through symbol names
and the inner leel indexes through all the compilation units that aef that symbol (each symbol having a
different number of compilation units, this is not a simple rectangular table).

The functiondwar f _gdbi ndex_synbol t abl e_array() takes as input alid Dwarf Gdbindex
pointer.

If it returns DNV_DLV_NO_ENTRY there is a coding errorif it returns WW_DLV_ERROR there is an
error of some kind. and the error is indicated by the value returned througihrtbe pointer.

If successful, the function returnsAD DLV_OK and returns Theynt ab_| i st _| engt h through the
pointer.

Given a walid Dwarf_Gdbinde& pointer, one can access the entire symbol table aswslliusing return’
here to indicate we are giving up due to a problem while keeping the example code fairly short):

rev 2.48, Mar 14, 2016 -124 -



-125 -

Figure4l. Examplex dwarf_gdbindex_symboltable_array()
voi d exanpl ex( Dwar f _Cdbi ndex gdbi ndexr)
{
Dwar f _Unsigned syntab_list_|ength = O;
Dwarf _Unsigned i = 0;
Dwarf Error err = 0O;
int res = dwarf_gdbi ndex_synbol t abl e_array( gdbi ndex,
&ynmtab _list_length,err);
if (res !'= DWDLV_OK) {
return;
}
for( i =0; i <syntab list_length; i++) {
Dwar f _Unsi gned symaneof fset = O;
Dwar f _Unsi gned cuvecoffset = O;
Dwarf _Unsigned ii = O;
const char *nane = 0;
res = dwarf _gdbi ndex_synbol t abl e_ent ry( gdbi ndex, i,
&symaneof f set, & uvecof f set,
err);
if (res !'= DWDLV_OK) {
return;
}
res = dwarf_gdbi ndex_string_by_of f set (gdbi ndex,
symarneof f set, &ane, err);
if(res = DWDLV_K) {
return;
}
res = dwarf_gdbi ndex_cuvect or _| engt h( gdbi ndex,
cuvecof f set, &uvec_l en, err);
if( res '= DWDLV_OK) {

return;
}
for(ii =0; ii < cuvec_len; ++ii ) {
Dwarf _Unsigned attributes 0;

Dwar f _Unsi gned cu_i ndex = O;
Dwar f _Unsi gned reservedl = 0;
Dwar f _Unsi gned synbol _ki nd = O;
Dwarf _Unsigned is_static = 0;

res = dwarf _gdbi ndex_cuvector i nner_attributes(
gdbi ndex, cuvecoffset,ii,
&attributes,err);
if( res '= DWDLV_OK) {
return;
}
/[* "attributes’ is a value with various internal
fields so we expand the fields. */
res = dwarf _gdbi ndex_cuvect or _i nst ance_expand_val ue( gdbi ndex,
attributes, &cu_index, & eservedl, &ynbol _kind, & s_static,
err);
if( res '= DWDLV_OK) {
return;

}
/* Do sonething with the attributes. */

rev 2.48, Mar 14, 2016 -125 -



- 126 -

6.29.9 dwarf_gdbindex_symboltable entry()

int dwarf_gdbindex_symboltable_entry(
Dwarf_Gdbinde gdbindexptr,
Dwarf_Unsigned entryinde
Dwarf_Unsigned * string_offset,
Dwarf_Unsigned * cu_vector_offset,
Dwarf_Error *error);

The functiondwar f _gdbi ndex_synbol t abl e_entry() takes as input alid Dwarf Gdbindex
pointer and an entry index(valid indealues being zero througtyntab_|i st _| ength -1).

If it returns DNV_DLV_NO_ENTRY there is a coding errorif it returns WW_DLV_ERROR there is an
error of some kind. and the error is indicated by the value returned througihrtbe pointer.

If successful, the function returns WODLV_OK and returns Thestring_of fset and
cu_vect or _of f set through the pointers. See the examplevabshich uses this function.

6.29.10 dwarf_gdbindex_cuvector_length()

int dwarf_gdbindex_cuvector_length(
Dwarf_Gdbinde gdbindex,
Dwarf_Unsigned cuesctor_offset,
Dwarf_Unsigned * innercount,
Dwarf_Error *error);

The functiondwar f _gdbi ndex_cuvect or _I engt h() takes as input valid Darf_Gdbinde& pointer
and an a cu vector offset.

If it returns DN_DLV_NO_ENTRY there is a coding errorif it returns W _DLV_ERROR there is an
error of some kind. and the error is indicated by the value returned througihrtbe pointer.

If successful, the function returnd\D DLV_OK and returns thenner _count through the pointerThe
i nner _count is the number of compilation unit vectors for this arrayesturs. Se¢he example abh@
which uses this function.

6.29.11 dwarf_gdbindex_cuvector_inner_attributes()

int dwarf_gdbindex_cuvector_inner_attributes(
Dwarf_Gdbinde gdbindex,
Dwarf_Unsigned cusctor_offset,
Dwarf_Unsigned innerinde
[* The attr_value is a field of bits. For expanded version

use dvarf_gdbindex_cuvector_expand_value() */

Dwarf_Unsigned * attr_value,
Dwarf_Error *error);

The function dwarf _gdbi ndex_cuvector inner_attributes() takes as input alid
Dwarf_Gdbinde pointer and an a cu vector offset andrener _i ndex (validi nner _i ndex values are
zero through nner _count - 1.

rev 2.48, Mar 14, 2016 - 126 -



-127 -

If it returns DN_DLV_NO_ENTRY there is a coding errorif it returns W _DLV_ERROR there is an
error of some kind. and the error is indicated by the value returned througihrtbe pointer.

If successful, the function returndAD DLV_OK and returns That t r _val ue through the pointerThe
attr_val ue is actually composed of w&al fields, see the next function which expands #iee: See
the example ah@ which uses this function.

6.29.12 dwarf_gdbindex_cuvector_instance expand_valug()

int dwarf_gdbindex_cuvector_instance_expand_value(
Dwarf_Gdbinde gdbindex,
Dwarf_Unsigned attr alue,
Dwarf_Unsigned * cu_index,
Dwarf_Unsigned * reservedl,
Dwarf_Unsigned * symbol_kind,
Dwarf_Unsigned * is_static,
Dwarf_Error *error);

The functiondwar f _gdbi ndex_cuvect or _i nstance_expand_val ue() takes as input alid
Dwarf_Gdbinde pointer and amt t r _val ue.

If it returns DNV_DLV_NO_ENTRY there is a coding errorf it returns WW_DLV_ERROR there is an
error of some kind. and the error is indicated by the value returned througihrtbe pointer.

If successful, the function returns DW_DLV_OK and returns the following values through the pointers:

The cu_i ndex field is the inde in the applicable CU list of a compilation unit. For the purpose of
indexing the CU list and the types CU list form a single array sathd ndex can be indicating either
list.

Thesynbol ki nd field is a small integer with the symbol kind( zero is reserved, one is a tyhpe, 2 is a
variable or enum value, etc).

Thereservedl field shouldhave the value zero and is the value of a bit field defined as es$dor
future use.

Thei s_stati c field is zero if the CU inded is gobal and one if the CU inded is datic.

See the example ab®which uses this function.

6.29.13 dwarf_gdbindex_string_by offset()

int dwarf_gdbindex_string_by_offset(
Dwarf_Gdbinde gdbindexptr,
Dwarf_Unsigned stringddet,
const char ** string_ptr,
Dwarf_Error * error);

The function dwar f _gdbi ndex_string_by of fset() takes as input alid Dwarf Gdbindex
pointer and at ri ngof f set If it returns DNV_DLV_NO_ENTRY there is a coding errodf it returns
DW_DLV_ERROR there is an error of some kindnd the error is indicated by the value returned through
theer r or pointer.

rev 2.48, Mar 14, 2016 -127 -



-128 -

If it succeeds, the call returns a pointer to a string from the 'constant pool’ througthrtheg _pt r. The
string pointed to must mer be free()d.

See the example ab®which uses this function.

6.30 Debug Fission (.debug_tu_index, .debug_cu_index) operations

We rame things "xu" as these sectionséhtne same format so we let "x" stand for either sectiimese
functions get access to thedex functions needed to access and print the contents of an object file which is
an aggrgae of .dwo objects. Thesaections are implemented in gcc/gdb and are proposed to be part of
DWARF5 (As of July 2014 W/ARF5 is not inished). Thedea is that much dely information can be
separated 6finto individual .dve Ef objects and then agggaed simply into a single .dwp object so the
executable need not kia the complete debug information in it at runtime yetalimod debugging.

For additional information, see "https://gcc.gnghbwiki/DebugFissionDWP",
"https://gcc.gnu.org/wiki/DealgFission”, and
"http://www.bayarea.net/"cary/dsf/Accelerated%20Access%20Diagram.png” and sometime in 2015, the
DWARFS5 standard.

There are FORM access functions related to Debug Fisstbee dwarf fornmaddr() and
dwar f _get debug_addr i ndex() anddwarf_get debug str_i ndex().

The FORM with the hash value (for a referenceatype unit ) isDW FORM r ef _si g8.

In a compilation unit of Dehug Fission object (or a .dwpafkage Flle)DW AT _dwo_i d the hash is
expected to bW FORM dat a8.

The DWARF5 standard defines the hash as an 8 bwees which we could usBwar f _Unsi gned.
Instead (and mostly for type safety) we define the valua sigicture whose type namelwar f _Si g8.

To look up a name in the hash (toind which CU(s) it exists in). use
dwar f _get debugfission _for_key()fP, defined bel ow

The second group of i nterfaces here begi nni ng with
dwarf _get xu_i ndex_header() are useful iif one wants to print a
.debug_tu_index or .debug cu_ index section.

To access DIE, mmcro, etc information the support is built into D E,
Macro, etc operations so applications usually won't need to use these
operations at all.

6.30.1 Dwarf_Debug_Fission_Per_CU

rev 2.48, Mar 14, 2016 -128 -



-129 -

#define DW_FISSION_SECT_COUNT 12
struct Dwarf_Dehg_Fission_Per_CU_s {
[* Do not free the string. It contains "cu" or "tu". */
[* If this is not set (ie, not a CU/TU iBWP Package File)
then pcu_type will be NULL. */
const char * pcu_type;
[* pcu_indec is the inde (range 1 to N )
into the tu/cu table of offsets and the table
of sizes.1to N as he zero indeis reserved
for special purposes. Not a value one
actually needs. */
Dwarf_Unsigned pcu_index;
Dwarf_Sig8 pcu_hashi* 8 byte */
/* [0] has offset and size 0.
[1]-[8] are DW_SECT_* indees and the
values are the offset and size
of the respectie £ction contribution
of a single .dw object. When pcu_size[n] is
zero the corresponding section is not present. */
Dwarf_Unsigned pcu_offset[DW_FISSION_SECT_COUNT];
Dwarf_Unsigned pcu_size[DW_FISSION_SECT_COUNT];
Dwarf_Unsigned unused1,
Dwarf_Unsigned unused?;
%
The structure is used to return data to callers with the data from eitheg .tlebnde or .debug_cu_index
that is applicable to a single compilation unit or type unit.

Callers to the applicable functions (see below) should allocate the structure and zero all the byfégin it.
structure has aefields that are presently unused. These are reddor future use since it is impossible
to alter the structure without breaking binary compatibility.

6.30.2 dwarf_die from_hash_signature()

int dwarf_die_from_hash_signature(Dwarf_Debug dbg,
Dwarf_Sig8 * hash_sig,
const char *  sig_type,
Dwarf_Die*  returned_die,
Dwarf_Error*  error);

The functiondwar f _di e_from hash_si gnat ur e() is the most direct way to go from the hash data
from aDW FORM ref _si g8 or aDW AT _dwo_i d (form DW FORM dat a8) to a DIE from a .dwp
package file or a .daobject file ( .dwo access not supported yet).

The caller passes ilbg which should bebwar f _Debug openl/initialized on a .dwp package file (or a
.dwo object file).

The caller also passeslimsh_si g, a pointer to the hash signature for which the caller wishemtbd
DIE.

The caller also passes @i g_t ype which must contain either "tu" (identifying the hash referring to a
type unit) or "cu" (identifying the hash as referring to a compilation unit).

On success the function retud@/ DLV_OK and set$ r et ur ned_di e to be a pointer to a valid DIE for

the compilation unit or type unit. If the type is "tu" the DIE returned is the spégife DIE that the hash
refers to. If the type is "cu" the DIE returned is the compilation unit DIE of the compilation unit referred
to.

rev 2.48, Mar 14, 2016 -129 -



-130 -

When appropriate the caller should free the space of the returned DIE by a call something like
dwarf_dealloc(dbg,die,DW_DLA_DIE);

If there is no DWP &ckage File section or the hash cannot be found the function returns
DW DLV_NO ENTRY and le@esr et ur ned_di e untouched. Onlydwo objects and .dwp packagiet
have the package file indesections.

If there is an error of some sort the function retiMs DLV _ERROR, learesr et ur ned_di e untouched,
and setg er r or to indicate the precise error encountered.

6.30.3 dwarf_get_debugfission_for_die()

int dwarf_get_debugfission_for_die(Dwarf_Die die,
Dwarf_Debug_Fission_Per_CU * percu_out,
Dwarf_Error * error);

The functiondwar f _get debugfi ssi on_for _di e() returns the delg fission for the compilation
unit the DIE is a part of. AnDIE in the compilation (or type) unit will get the same result.

On a call to this function ensure the pointed-to space is fully initialized.
On success the function retum@/ DLV_OK and fills in the fields of per cu_out for which it has data.

If there is no DWP &ckage File section the function returibsv DLV_NO ENTRY and leaes
*per cu_out untouched. Onlydwp package files lva the package file indesections.

If there is an error of some sort the function retuddg DLV _ERROR, leaves * per cu_out untouched,
and setg er r or to indicate the precise error encountered.

6.30.4 dwarf_get_debugfission_for_key()
int dwarf_get_debudfission_forel(Dwarf Debug dbg,

Dwarf_Sig8 * key,

const char * key type,
Dwarf_Debug_Fission_Per_CU * percu_out,
Dwarf_Error * error);

The function dwar f _get _debugfi ssi on_for_key() returns the debug fission data for the
compilation unit in a .dwp package file.

If there is no DWP Package File section the function retubdg¢ DLV _NO ENTRY and leaes
*per cu_out untouched. Onlydwp package files wva the package file indesections.

If there is an error of some sort the function retuddg DLV _ERROR, leares * per cu_out untouched,
and setg er r or to indicate the precise error encountered.

6.30.5 dwarf_get xu_index_header()

rev 2.48, Mar 14, 2016 -130 -



-131 -

int dwarf_get_xu_index_header(Dwarf_Debug dbg,
const char * section_type, /* "tu" or "cu" */
Dwarf_Xu_Index_Header *  xuhdr,

Dwarf_Unsigned * version_number,
Dwarf_Unsigned * dkets _count /1%,
Dwarf_Unsigned * units_count  /*N*/,
Dwarf_Unsigned * hash_slots_count /* M*/,
const char ** sect_name,

Dwarf_Error * err);

The functiondwar f _get xu_i ndex_header () takes as input a valid Davf_Delug pointer and an
sect i on_t ype vaue, which must one of the strings or cu.

It returns DW_DLV_NO_ENTR if the section requested is not in the object file.

It returns DW_DLV_ERROR there is an error of some kind. and thegor is indicated by thealue
returned through ther r or pointer.

If successful, the function returns DW_DLV_OK and returns the following values through the pointers:
Thexuhdr field is a pointer usable in other operations (see below).

Thever si on_nunber field is a the indeversion numberFor gcc before WARF5 the version number
is 2. For DWARFS5 the version number is 5.

Theof f sets_count field is a the number of columns in the table of sectitsetsf. Sometimelsnown
aslL.

The uni ts_count field is a the number of compilation units or type units in thexindgometimes
known as\.

Thehash_sl ot s_count field is a the number of slots in the hash table. Sometimes kndwn as

Thesect _nane field is the name of the section in the objdet fBecauseion-Elf objects may not use
section names callers must recognize that the sect_name may be set to NULL (zero) or to point to the
empty string and this is not considered an error.

An example of initializing and disposing oDaar f _Xu_| ndex_Header follows.

rev 2.48, Mar 14, 2016 -131 -



-132 -

Figure42. Example dwarf_get xu_index_header()
voi d exanpl ey(Dwarf_Debug dbg, const char *type)

{
/[* type is "tu" or "cu" */
int res = 0;
Dwarf _Xu | ndex Header xuhdr = O;
Dwar f _Unsi gned versi on_nunmber = 0;
Dwar f _Unsi gned offsets_count = 0; /*L */
Dwarf _Unsigned units_count = 0; /* M*/
Dwar f _Unsi gned hash_slots_count = 0; /* N */
Dwarf Error err = 0O;
const char * ret_type = 0;
const char * section_nanme = O;
res = dwarf_get_ xu_i ndex_header (dbg,
type,
&uhdr ,
&ver si on_number,
&of f sets_count,
&uni ts_count,
&hash_sl ots_count,
&secti on_narne,
&err);
if (res == DWDLV_NO ENTRY) {
/* No such section. */
return;
}
if (res == DWDLV_ERROR) {
/* Sonet hing wong. */
return;
}
if (res == DWDLV_ERROR) {
/* 1mpossible error. */
dwar f _xu_header _free(xuhdr);
return;
}
/* Do sonething with the xuhdr here . */
dwar f _xu_header _free(xuhdr);
}

6.30.6 dwarf_get xu_index_section_type()

int dwarf_get_xu_index_section_type(
Dwarf_Xu_Index_ Header xuhdr,
const char ** typename,
const char ** sectionname,
Dwarf_Error * error);

The function  dwarf_get xu_section_type() takes as input a alid
Dwar f _Xu_| ndex_Header . It is only useful when one already as an operhdr but one does not
know if this is a type unit or compilation unit indeection.

If it returns DN_DLV_NO_ENTRY something is wrong (should wer happen). If it returns
DW_DLV_ERROR something is wrong and ther or field is set to indicate a specific error.

If successful, the function returns DW_DLV_OK and sets the following arguments through the pointers:

rev 2.48, Mar 14, 2016 -132 -



-133 -

typenane is set to the stringt u or cu to indcate the indeis of a type unit or a compilation unit,
respectiely.

secti onnane is set to name of the object file section. Because non-Elf objects may not use section
names callers must recognize that the sect_name may be set to NULL (zero) or to point to the empty string
and this is not considered an error.

Neither string should be free()d.

6.30.7 dwarf_get xu_header freg()
void dwarf_xu_header_free(Dwarf_Xu_Index_Header xuhdr);

The functiondwar f _get xu_header free() takes as input aalid Dwar f _Xu_| ndex_Header
and frees all the special data allocated for this access @mpee called, anpointers returned by use of the
xuhdr should be considered stale and unusable.

6.30.8 dwarf_get_xu_hash_entry()

int dwarf_get_xu_hash_entry(
Dwarf_Xu_Index_Header xuhdr,
Dwarf_Unsigned inde
Dwarf_Sig8 * hash_value,
Dwarf_Unsigned *  index_to_sections,
Dwarf_Error * error);

The functiondwar f _get xu_hash_entry() takes as input aalid Dwar f _Xu_I| ndex_Header
and an index of a hash slot entry (valid hash slot iRdevalues are zero (0) through
hash_sl ots_count -1 (M-1)).

If it returns DW_DLV_NO_ENTR something is wrong

If it returns DW_DLV_ERROR something is wrong and ére or field is set to indicate a specific error.

If successful, the function returns DW_DLV_OK and sets the following arguments through the pointers:
hash_val ue is set to the 64bit hash of of the symbol name.

i ndex_t o_secti ons is set to the indeinto offset-size tables of this hash entry.

If both hash_val ue and i ndex_to_sections are zero (0) then the hash slot is unused.
i ndex_t o_secti ons is used in calls to the functialwar f _get _xu_secti on_of f set () as the
row_ i ndex.

An example of use follows.

rev 2.48, Mar 14, 2016 -133 -



-134 -

Figure43. Examplez dwarf_get xu_hash_entry()
voi d exanpl ez( Dwarf_Xu_l ndex_Header xuhdr,
Dwar f _Unsi gned hash_sl ots_count)
{
/* hash_slots_count returned by
dwarf _get xu_i ndex_header (), see above. */
static Dwarf_Si g8 zerohashval;

Dwarf Error err = 0O;
Dwar f _Unsigned h = 0;
for( h = 0; h < hash_slots_count; h++) {
Dwar f _Si g8 hashval ;
Dwar f _Unsi gned i ndex = O;
Dwar f _Unsi gned col = O0;
int res = 0;

res = dwarf_get_ xu_hash_entry(xuhdr, h,
&hashval , & ndex, &err);
if (res == DWDLV_ERROR) {
/* Qops. hash_slots_count wong. */
return;
} else if (res == DWDLV_NO ENTRY) {
/* 1mpossible */
return;
} else if (!'mencnp(&hashval, & erohashval, si zeof (Dwarf _Si g8))
&& index == 0 ) {
/* An unused hash slot */
conti nue;
}
/*Here, hashval and index (a row index into offsets and | engths)
are valid. */

6.30.9 dwarf_get xu_section_names()

int dwarf_get xu_section_names(
Dwarf_Xu_Index_ Header xuhdr,
Dwarf_Unsigned column_inde
Dwarf_Unsigned*  number
const char ** name,
Dwarf_Error * err);

The function dwarf _get xu_section_names() takes as input a alid
Dwarf _Xu_| ndex_ Header and acol unm_i ndex of a hash slot entry (valid column_indealues
are zero (0) througbf f sets_count -1 (L-1)).

If it returns DW_DLV_NO_ENTR something is wrong
If it returns DW_DLV_ERROR something is wrong and ¢hie or field is set to indicate a specific error.

If successful, the function returns DW_DLV_OK and sets the following arguments through the pointers:

rev 2.48, Mar 14, 2016 -134 -



-135 -

nunber is set to a number identifying which section this column applies to. For example, if the value is
DW SECT_| NFO (1) the column came froma debug_info.dw section. Seehe table ofDW SECT _
identifiers and asigned numbers iIlVBRF5.

nane is set to the applicable spelling of the section identifil@rexampleDW SECT | NFO.

6.30.10 dwarf get xu_section_offset()

int dwarf_get_xu_section_offset(
Dwarf_Xu_Index_ Header xuhdr,
Dwarf_Unsigned ry_index,
Dwarf_Unsigned column_inde
Dwarf_Unsigned*  sec_&det,
Dwarf_Unsigned*  sec_size,
Dwarf_Error * error);

The function dwarf_get xu_section_offset() takes as input a alid
Dwar f _Xu_| ndex_Header and arow_i ndex (seedwarf _get xu_hash_entry() above) and
a colum_i ndex. Valid row_index values are one (1) througlni ts_count (N) but one uses
dwarf _get xu_hash_entry() (above) to get rov index. Valid column_indg values are zero (0)
throughof f sets_count -1 (L-1).

If it returns DW_DLV_NO_ENTR something is wrong.
If it returns DW_DLV_ERROR something is wrong and ¢hie or field is set to indicate a specific error.
If successful, the function returns DW_DLV_OK and sets the following arguments through the pointers:

sec_offset, (base of fset) is st to the base fifet of the initial compilation-unit-header section
taken froma dwo object. The baseffset is the data from a single section of aadbject.

sec_si ze is set to the length of the original section taken from a.deject. Thisis the length in the
applicable section in the .dwpa which the base offset applies.

An example of use of dwarf _get xu_section_nanes() and
dwarf get xu_section_of fset () follows.

rev 2.48, Mar 14, 2016 -135 -



- 136 -

Figure 44. Exampleza dwarf_get xu_section_names()
voi d exanpl eza(Dwarf_Xu_I ndex_Header xuhdr,
Dwar f _Unsi gned offsets_count, Dwarf_Unsigned i ndex )

{
Dwarf Error err = 0O;
Dwar f _Unsi gned col = O;
/[* We use ’'offsets_count’ returned by
a dwarf _get xu_i ndex_header () call.
We use 'index' returned by a
dwarf _get xu_hash_entry() call. */
for (col = 0; col < offsets_count; col ++) {

Dwar f _Unsi gned off = O;

Dwar f _Unsigned | en = O;

const char * nane = O;

Dwar f _Unsi gned num = O;

int res = 0;

res = dwarf_get_xu_section_names(xuhdr,

col , &um &nane, &err) ;

if (res !'= DWDLV_OK) {

br eak;

}

res = dwarf_get xu_section_of f set (xuhdr,

i ndex, col , &f f, & en, &err);
if (res !'= DWDLV_OK) {
br eak;

}

/* Here we have the DW SECT_ name and nunber
and the base offset and length of the
section data applicable to the hash
that got us here.

Use the val ues. */
}
}

6.31 TAG ATTR etc namesas strings

These functions turn aalue into a string. So applications wanting the stringV'ODAG_compile_unit
given the value 0x11 (the value defined for thisd) can do so easily.

The general form is

i nt dwarf_get <sonet hi ng>_nane(
unsi gned val ue,
char **s_out,

)
If the val ue passed in is known, the function retuB\ DLV_OK and places a pointer to the appropriate
string into *s_out. The string is in static storage and applications mugerrfeee the string. If the
val ue is not knavn, DW DLV_NO _ENTRY is returned andis_out is not set.DW DLV_ERRORs never
returned.

Li bdwar f generates these functions at libdwarf build time by reading dwarf.h.

rev 2.48, Mar 14, 2016 - 136 -



- 137 -

All these follow this pattern rigidlyso he details of each are not repeated for each function.

The choice of 'unsigned’ for the value type argument (the code value) argument is somewhat, airiitrary
could hae teen used.

The library simply assumes the value passed in is applic&8olefor example, passing AG value code to
dwar f _get ACCESS narme() is a coding error which libdwarf will process as if iisvan accessibility
code alue. Examplesf bad and good usage are:

Figure45. Examplezb dwarf_get AG_name()
voi d exanpl ezb(voi d)

{

const char * out = O;
int res = O;

/* The following is wong, do not do it! */
res = dwarf_get ACCESS nane(DW TAG entry_poi nt, &out);
/* Nothing one does here with 'res’ or ’out’

i s meani ngful . */

/* The follow ng is meaningful.*/
res = dwarf_get TAG nanme(DW TAG entry_poi nt, &ut);
if( res == DWDLV_OK) {
/* Here 'out’ is a pointer one can use which
points to the string "DWTAG entry_point". */
} else {
/* Here 'out’ has not been touched, it is
uninitialized. Do not use it. */

6.31.1 dwarf_get ACCESS name()

Returns an accessibility code name througtstheut pointer.
6.31.2 dwarf_get AT_name()

Returns an attribute code name throughstheut pointer.
6.31.3 dwarf_get ATE _name()

Returns a base type encoding name through tloait pointer.

6.31.4 dwarf_get ADDR_name()

Returns an address type encoding name throughstheut pointer As of this writing only
DW ADDR none is defined indwar f . h.

6.31.5 dwarf_get ATCF_name()

Returns a SUN code flag encoding natheough thes _out pointer This code flag is entirely a\BARF
extension.

rev 2.48, Mar 14, 2016 - 137 -



-138 -

6.31.6 dwarf_get CHILDREN_name()

Returns a child determination name (which is seen in the abbreviations section data) threugiuthe
pointer The only value this recognizes for a 'yes’ value isAk. a flag value this is not quite correctyan
non-zero value means yesjtlgealing with this is left up to client code (normally compilers really do emit
a\alue of 1 for a flag).

6.31.7 dwarf_get_children_name()

Returns a child determination name throughgheut pointer though this ersion is really a libderf
artifact. Thestandard function isdwar f _get _CHI LDREN _nane() which appears just ake As a
flag value this is not quite correct ganon-zero alue means yes) but dealing with this is left up to client
code (normally compilers really do emit a value of 1 for a flag).

6.31.8 dwarf_get CC_name()

Returns aalling comvention case code name through sheout pointer.

6.31.9 dwarf_get CFA_name()

Returns aall frame information instruction name through sheut pointer.

6.31.10 dwarf_get DS name()

Returns a decimal sign code name througtstheut pointer.

6.31.11 dwarf_get_DSC_name()

Returns aliscriminant descriptor code name throughgheut pointer.

6.31.12 dwarf _get EH_name()

Returns a&GNU exception header code name througtstheut pointer.

6.31.13 dwarf_get END_name()

Returns an endian code name throughstheut pointer.

6.31.14 dwarf get FORM _name()

Returns an form code name throughsheut pointer.

6.31.15 dwarf_get FRAME_name()

Returns a frame code name through sh@ut pointer These are dependent on the particular ABI, so
unless thedwar f . h used to generate libdwarf matches your ABI these names arelyrtiik be ery
useful and certainly wohbe entirely appropriate.

6.31.16 dwarf get ID_name()

Returns an identifier case code name througls theut pointer.
6.31.17 dwarf_get INL_name()

Returns an inline code name throughgh@ut pointer.
6.31.18 dwarf _get LANG_name()

Returns a language code name througtstteut pointer.

6.31.19 dwarf get LLE name()

Returns a split-dwarf loclist code name throughgheut pointer.

rev 2.48, Mar 14, 2016 -138 -



- 139 -

6.31.20 dwarf get LNE_name()

Returns dine table extended opcode code name through tlo@it pointer.
6.31.21 dwarf_get LNS name()

Returns dine table standard opcode code name through tlo@it pointer.
6.31.22 dwarf get MACINFO_name()

Returns amacro information macinfo code name throughgheut pointer.
6.31.23 dwarf_get MACRO_name()

Returns &®WARF5 macro information macro code name througtstheut pointer.
6.31.24 dwarf_get OP_name()

Returns &DWARF expression operation code name througtstheut pointer.
6.31.25 dwarf_get ORD_name()

Returns ararray ordering code name through sheout pointer.

6.31.26 dwarf _get TAG_name()

Returns a&AG name through the_out pointer.

6.31.27 dwarf_get VIRTUALITY_name()

Returns avirtuality code name through tise out pointer.

6.31.28 dwarf _get VIS name()

Returns a visibility code name through theout pointer.

6.32 Section Operations

In checking DVARF in linkonce sections for correctness it has been found usefuveoddrdain section-
oriented operations when processing objéesf Normallythese operations are not needed or useful in a
fully-linked executable or shared library.

While the code is written with EIf sections in mind, it is quite possible to process non-Elf objects with code
that implements certain function pointers (seeuct Dwarf_Obj Access_i nterface_s).

So far no one with such non-elf code has come forward to open-source it.

6.32.1 dwarf_get_section_count()
int dwarf_get section_count(
Dwar f _Debug dbg)

Returns a count of the number of object sections found.

rev 2.48, Mar 14, 2016 - 139 -



- 140 -

6.32.2 dwarf_get_section_info_by name()

int dwarf_get section_info_by namg(
const char *section_nane,
Dwar f _Addr *secti on_addr,
Dwar f _Unsi gned *section_size,
Dwar f _Error *error)

The functiondwar f _get _secti on_i nfo_by name() returnsDW DLV_CK if the section gien by
section_nane was ®en by libdvarf. Onsuccess it set§secti on_addr to the virtual address
assigned to the section by the linker or compiler*aseict i on_si ze to the size of the object section.

It returns DW_DLV_ERROR on error.

6.32.3 dwarf_get_section_info_by_index()

int dwarf_get _section_info_by index(
i nt section_index,
const char **section_nane,
Dwarf _Addr *section_addr,
Dwar f _Unsi gned *section_size,
Dwarf _Error *error)

The functiondwar f _get secti on_i nfo_by_i ndex() returnsDW DLV_OK if the section gien by
secti on_i ndex was ®en by libdvarf. *sect i on_addr to the virtual address assigned to the section
by the linker or compiler antisect i on_si ze to the size of the object section.

No free or deallocate of information returned should be done by callers.

6.33 Utility Operations

These functions aid in the management of errors encountered when using functiorgdwtré library
and releasing memory allocated as a resultldfdsvarf operation.

For clients that wish to encode LEB numberotimterfaces are provided to the producer cedefernal
LEB function.

6.33.1 dwarf_errno()

Dwar f _Unsi gned dwarf _errno(
Dwarf _Error error)

The functiondwar f _errno() returns the error number corresponding to the error specified bgr .

6.33.2 dwarf_errmsg()

const char* dwarf_errnsg(
Dwarf Error error)

The functiondwar f _errnmsg() returns a pointer to a null-terminated error message string corresponding
to the error specified bgr r or . The string should not be deallocated usimgir f _deal | oc() .

The string should be considered to be a temporary string. That is, the returned pointer may become stale if
you do libdwarf calls on theDwarf Debug instance other thandwarf _errnsg() or

dwarf _errno(). So copy the errmsg string ( or print it)ub do not depend on the pointer remaining

valid past other libdwarf calls to tHanar f _Debug instance that detected an error

rev 2.48, Mar 14, 2016 - 140 -



-141 -

6.33.3 dwarf_get _harmless error_list()

int dwarf_get harmess _error_I|ist(Dwarf_Debug dbg,
unsi gned count,
const char ** errnsg_ptrs_array,
unsi gned * newerr_count);

The harmless errors are not denoted by error returns from the other libdwarf functions. Instead, this
function returns strings of grharmless errors that @ been seen in the current object. Clientgen@eed
call this, but if a client wishes to reportyasuch errors it may call.

Only a fxed number of harmless errors are recorded. It is a circular list, so if more than the current
maximum is encountered older harmless error messages are lost.

The caller passes in a pointer to an array of pointer-to-char agtheeter rnsg_ptrs_array. The
caller must provide this arrajibdwarf does not provide it.The caller need not initialize the array
elements.

The caller passes in the number of elements of the array of pointer-to-chaotimtu. Since the

If there are no unreported harmless errors the function remMWABLY _NO ENTRY and the function
arguments are ignored. Otherwise the function retbddDLV_OK and uses the arguments.

I i bdwar f assigns error strings to the errmsg_ptrs_arfidye MININUM(count-1, number of messages
recorded) pointers are assigned to the arfidhe array is terminated with a NULL pointefThat is, one
array entry is reserved for a NULL pointer). Sedunt is 5 up to 4 strings may be returned through the
array and one array entry is set to NULL.

Because the list is circular and messages mag been dropped the function also returns the actual error
count of harmless errors encountered throngher r _count (unless the argument is NULL, in which
case it is ignored).

Each call to this function resets the circular erroffds and the error count. So think of this call as
reporting harmless errors since the last call to it.

The pointers returned through r nsg_pt rs_array are only valid till the next call to libdavf. Donot
save the pointers, thebecome inalid. Copy the strings if you wish to sa them.

Calling this function neither allocatesyegpace in memory nor freesyagpace in memory.

6.33.4 dwarf_insert_harmless error()

void dwarf_insert_harmless_error(Dwarf_Debug dbg,
char * newerror);

This function is used to testwar f _get harm ess_error _|i st. It simply adds a harmless error
string. Thereis little reason client code should use this function. xiste so that the harmless error
functions can be easily tested for correctness and leaks.

6.33.5 dwarf_set harmless error_list_size()

unsi gned dwarf_set harm ess _error_|ist_size(Dwarf_Debug dbg,
unsi gned maxcount)

dwarf _set _harm ess_error _|ist_size returns the number of harmless error strings the library

rev 2.48, Mar 14, 2016 -141 -



is currently set to holdlf maxcount is non-zero the library changes the maximum it will record to be

maxcount .

It is extremely unwise to makmaxcount large becauséi bdwar f allocates space faraxcount

strings immediately.

The set of errors enumerated in Figure 4 Wwekere defined in Dwarf 1. These errors are not used by the

-142 -

I i bdwar f implementation for Dwarf 2 or later.

SYMBOLIC NAME

DESCRIPTION

DW_DLE_NE
DW_DLE_VMM

DW_DLE_MAP
DW_DLE_LEE
DW_DLE_NDS
DW_DLE_NLS
DW_DLE_ID

DW_DLE_IOF
DW_DLE_MAF
DW_DLE_IA

DW_DLE_MDE
DW_DLE_MLE
DW_DLE_FNO

DW_DLE_FNR
DW_DLE_FWA
DW_DLE_NOB
DW_DLE_MOF
DW_DLE_EOLL
DW_DLE_NOLL

DW_DLE_EOS

DW_DLE_BADOFF
DW_DLE_ATRUNC

DW_DLE_BADBITC

Noerror (0)
Version of DNARF information newer
than libdwarf
Memorymap failure
Propagtion of libelf error
Nodebug section

Noline section
Requestethformation not associated
with descriptor

I/Ofailure

Memoryallocation failure

Invalid argument
Mangleddebugging entry
Mangledine number entry
Filedescriptor does not refer
to an open file

Fileis not a regular file
File is opened with wrong access
Fileis not an object file
Mangledbbiject file header

Endof location list entries
Nolocation list section

Invaid offset

Encbf section

Abbreviations section appears
truncated
Addresssize passed to
dwarf bad

Figure 46. Dwarf Error Codes

The set of errors returned hy bdwar f functions is listed bels. The list does lengthen: the ones listed

here are not really a complete list. Some of the errors are SGI specific.

rev 2.48, Mar 14, 2016

-142 -



-143 -

SYMBOLIC NAME

DESCRIPTION

DW_DLE_DBG_ALLOC
DW_DLE_FS®T_ERFOR
DW_DLE_FS®T_MODE_ERFOR
DW_DLE_INIT_ACCESS_WRNG
DW_DLE_ELF_BEGIN_ERRR
DW_DLE_ELF_GETEHDR_ERRR
DW_DLE_ELF_GETSHDR_ERBR
DW_DLE_ELF_STRPTR_ERBR
DW_DLE_DEBUG_INFO_DUPLICAE
DW_DLE_DEBUG_INFO_NULL
DW_DLE_DEBUG_ABBREV_DUPLICAE

DW_DLE_DEBUG_ABBREV_NULL
DW_DLE_DEBUG_ARANGES_DUPLICAE

DW_DLE_DEBUG_ARANGES_NULL
DW_DLE_DEBUG_LINE_DUPLICAE
DW_DLE_DEBUG_LINE_NULL
DW_DLE_DEBUG_LOC_DUPLICAE
DW_DLE_DEBUG_LOC_NULL
DW_DLE_DEBUG_MACINFO_DUPLICAE

DW_DLE_DEBUG_MACINFO_NULL
DW_DLE_DEBUG_PUBNAMES_DUPLICAE

DW_DLE_DEBUG_PUBMMES_NULL

DW_DLE_DEBUG_STR_DUPLICAE
DW_DLE_DEBUG_STR_NULL
DW_DLE_CU_LENGTH_ERRR
DW_DLE_VERSION_STAMP_ERRR
DW_DLE_ABBREV_OFFSET_ERBR
DW_DLE_ADDRESS_SIZE_ERBR
DW_DLE_DEBUG_INFO_PTR_NULL

DW_DLE_DIE_NULL
DW_DLE_STRING_OFFSET_AD
DW_DLE_DEBUG_LINE_LENGTH_B\D
DW_DLE_LINE_PROLOG_LENGTH_BD
DW_DLE_LINE_NUM_OPERANDS_BD

DW_DLE_LINE_SET_ADDR_ERRR

Couldnot allocate Dwarf_Debug stru
Errorin fstat()-ing object
Errorin mode of object file
Incorrectaccess to dwarf_init()
Errorin elf_begin() on object
Errorin elf_getehdr() on object
Errorin elf_getshdr() on object
Errorin elf_strptr() on object
Multiple .debug_info sections
Nodata in .debug_info section
Multiple .debug_abbrev

sections

Nodata in .debug_abbreection
Multiple .debug_arange

sections

Nodata in .debug_arange section
Multiple .debug_line sections
Nodata in .debug_line section
Multiple .debug_loc sections
Nodata in .debug_loc section
Multiple .debug_macinfo

sections

Nodata in .debug_macinfo section
Multiple .debug_pubnames

sections

Nodata in .debug_pubnames

section

Multiple .debug_str sections
Nodata in .debug_str section
Lengthof compilation-unit bad
IncorrectVersion Stamp

Ofset in .debug_abbvebad
Sizeof addresses in target bad
Pointeinto .debug_info in

DIE null

Null Dwarf_Die

Offset in .debug_str bad

Lengthof .debug_line

segment bad

Lengthof .debug_line

prolog bad

Numberof operands to line

instr bad

Errorin DW_LNE_set_address
instruction

9

rev 2.48, Mar 14, 2016

Figure 47. Dwarf 2 Error Codes (continued below)

-143 -

—



- 144 -

SYMBOLIC NAME

DESCRIPTION

DW_DLE_LINE_EXT_OPCODE_BD

DW_DLE_DWARF_LINE_NULL
DW_DLE_INCL_DIR_NUM_BAD

DW_DLE_LINE_FILE_NUM_BAD
DW_DLE_ALLOC_FAIL
DW_DLE_DBG_NULL
DW_DLE_DEBUG_FRAME_LENGTH_BD
DW_DLE_FRAME_VERSION_BD
DW_DLE_CIE_RET_ADDR_REG_ERBR

DW_DLE_FDE_NULL
DW_DLE_FDE_DBG_NULL
DW_DLE_CIE_NULL
DW_DLE_CIE_DBG_NULL
DW_DLE_FRAME_TABLE_COL_B\D

DW_DLE_PC_NO_IN_FDE_RANGE
DW_DLE_CIE_INSTR_EXEC_ERBR
DW_DLE_FRAME_INSTR_EXEC_ERBR
DW_DLE_FDE_PTR_NULL
DW_DLE_RET_OP_LIST_NULL
DW_DLE_LINE_CONTEXT_NULL
DW_DLE_DBG_NO_CU_CONTEXT
DW_DLE_DIE_NO_CU_CONTEXT
DW_DLE_FIRST_DIE_NT_CU
DW_DLE_NEXT_DIE_PTR_NULL
DW_DLE_DEBUG_FRAME_DUPLICAE
DW_DLE_DEBUG_FRAME_NULL
DW_DLE_ABBREV_DECODE_ERRR
DW_DLE_DWARF_ABBREV_NULL
DW_DLE_ATTR_NULL
DW_DLE_DIE_BAD
DW_DLE_DIE_ABBREV_BAD
DW_DLE_ATTR_FORM_B\D
DW_DLE_ATTR_NO_CU_CONTEXT
DW_DLE_ATTR_FORM_SIZE_BD
DW_DLE_ATTR_DBG_NULL
DW_DLE_BAD_REF_FORM
DW_DLE_ATTR_FORM_OFFSET_BD
DW_DLE_LINE_OFFSET_BD
DW_DLE_DEBUG_STR_OFFSET 4D
DW_DLE_STRING_PTR_NULL
DW_DLE_PUBNAMES_VERSION_ERBR
DW_DLE_PUBNAMES_LENGTH_BD
DW_DLE_GLOBAL_NULL
DW_DLE_GLOBAL_CONTEXT_NULL
DW_DLE_DIR_INDEX_BAD

Errorin DW_EXTENDED_OPCODE
instruction
Null Dwarf_line argument
Errorin included directory for
given line
File number in .debug_line bad
Failed to allocate required structs
Null Dwarf_Debug argument
Errorin length of frame
Bad version stamp for frame
Badregister specified for
return address
NullDwarf_Fde argument
NoDwarf_Debug associated with FDE
Null Dwarf_Cie argument
NoDwarf_Debug associated with CIE
Bad column in frame table
specified
PQequested not in address range of FDE
Errorin executing instructions in CIE
Errorin executing instructions in FDE
NullPointer to Dwarf_Fde specified
Ndocation to store pointer to Dwarf_Frame_C
Dwarf_Line has no context
dbfas no CU context for dwarf_siblingof()
Dwrf _Die has no CU context
FirstDIE in CU not DW_TRG_compilation_unit
Erroin moving to next DIE in .debug_info
Multiple .debug_frame sections
Nodata in .debug_frame section
Errorin decoding abbreviation
Null Dwarf_Abbres specified
Null Dwarf_Attribute specified
DIE bad
No abbreviation found for code in DIE
Inappropriateattribute form for attribute
NdCU context for Dwarf_Attribute struct
Sizeof block in attribute value bad
NoDwarf_Debug for Dwarf_Attribute struct
Inappropriatorm for reference attribute
Offset reference attribute outside current CU
Offset of lines for current CU outside .debug_|
Offset into .debug_str past its end
Pointeto pointer into .debug_str NULL
\ersion stamp of pubnames incorrect
Readpubnames past end of .debug_pubname
Null Dwarf_Global specified
No context for Dwarf_Global gen
Errorin directory inde read

Figure 48. Dwarf 2 Error Codes (continued below)

rev 2.48, Mar 14, 2016

- 144 -



- 145 -

SYMBOLIC NAME

DESCRIPTION

DW_DLE_LOC_EXPR_B\D
DW_DLE_DIE_LOC_EXPR_BD

DW_DLE_OFFSET_BD

DW_DLE_MAKE_CU_CONTEXT_RIL
DW_DLE_ARANGE_OFFSET_BD

DW_DLE_SEGMENT_SIZE_BD
DW_DLE_ARANGE_LENGTH_B\D
DW_DLE_ARANGE_DECODE_ERRR

DW_DLE_ARANGES_NULL
DW_DLE_ARANGE_NULL
DW_DLE_NO_FILE_NAME
DW_DLE_NO_COMP_DIR

DW_DLE_CU_ADDRESS_SIZE_BD

DW_DLE_ELF_GETIDENT_ERRR
DW_DLE_NO_AT_MIPS_FDE

DW_DLE_NO_CIE_FOR_FDE
DW_DLE_DIE_ABBREV_LIST_NULL

DW_DLE_DEBUG_FUNCNAMES_DUPLICAE
DW_DLE_DEBUG_FUNCMMES_NULL
DW_DLE_DEBUG_FUNCNAMES_VERSION_ERBR

DW_DLE_DEBUG_FUNCNAMES_LENGTH_BD

DW_DLE_FUNC_NULL
DW_DLE_FUNC_CONTEXT_NULL
DW_DLE_DEBUG_TYPENAMES_DUPLICAE
DW_DLE_DEBUG_TYPEMMES_NULL
DW_DLE_DEBUG_TYPENAMES_VERSION_ERBR

DW_DLE_DEBUG_TYPENAMES_LENGTH_BD

DW_DLE_TYPE_NULL
DW_DLE_TYPE_CONTEXT_NULL
DW_DLE_DEBUG_VARNAMES_DUPLICAE
DW_DLE_DEBUG_VARNAMES_NULL
DW_DLE_DEBUG_VARNAMES_VERSION_ERBR

DW_DLE_DEBUG_VARNAMES_LENGTH_RD

Badoperator read for location expressig
Expectedblock value for attribute
not found
Offset for next compilation-unit in
.debug_info bad
Could not male CU mntext
Offset into .debug_info in
.debug_aranges bad
Segment size will be 0 for MIPS
processorsand shouldralys be < 8.
Lengthof arange section in
.debug_arange bad
Arangeslo not end at end
of .debug_aranges
NULL pointer to Dwarf_Arange specifie
NULL Dwarf_Arange specified
No file name for Dwarf_Line struct
NdaCompilation directory for
compilation-unit
CU header address size not
match EIf class
Errorin elf_getident() on object
DIEdoes not hee
DW_AT_MIPS_fde attribute
NEIE specified for FDE
Noabbreviation for the code
in DIE found
Multiple .debug_funcnames sections
Nodata in .debug_funcnames section
\ersion stamp in
.debug_funcnames bad
Lengtherror in reading
.debug_funcnames
NULL Dwarf_Func specified
Nacontext for Dwarf_Func struct
Multiple .debug_typenames sections
Nodata in .debug_typenames section
\ersion stamp in
.debug_typenames bad
Lengtherror in reading
.debug_typenames
NULL Dwarf_Type specified
Nacontext for Dwarf_Type gien
Multiple .debug_varnames sections
No data in .debug_varnames section
\ersion stamp in
.debug_varnames bad
Lengtherror in reading
.debug_varnames

Figure 49. Dwarf 2 Error Codes (continued below)

rev 2.48, Mar 14, 2016 - 145 -

n



- 146 -

SYMBOLIC NAME DESCRIPTION
DW_DLE_VAR_NULL NULL Dwarf_Var specified
DW_DLE_VAR_CONTEXT_NULL Nocontext for Dwarf_Var gien
DW_DLE_DEBUG_WEAKNAMES DUPLICAE Multiple .debug_weaknames sectipn
DW_DLE_DEBUG_WEAKNAMES NULL Nodata in .debug_varnames sectipn

DW_DLE_DEBUG_WEAKNAMES_VERSION_ERBR  \krsion stamp in
.debug_varnames bad

DW_DLE_DEBUG_WEAKNAMES LENGTH_BD Lengtherror in reading
.debug_weaknames

DW_DLE_WEAK_NULL NULL Dwarf_Weak specified

DW_DLE_WEAK_CONTEXT_NULL Nocontext for Dwarf_Weak géen

Figure50. Dwarf 2 Error Codes

This list of errors is not complete; additional errorsehbeen added.Some of the abh@ arors may be
unused. Errorsnay not hae the same meaning in different releas&ace most error codes are returned
from only one place (or a very small number of places) in the source it is normally very useful to simply
search thé i bdwar f source to find out where a particular error code is generated.

6.33.6 dwarf_dealloc()

voi d dwarf_deal | oc(
Dwar f _Debug dbg,
voi d* space,
Dwar f _Unsi gned type)

The functiondwar f _deal | oc frees the dynamic storage pointed tosipace, and allocated to the gén
Dwar f _Debug. The agumentt ype is an integer code that speef#f the allocation type of thegien
pointed to by thespace. Refer to section 4 for details dibdwarf memory management.

6.33.7 dwarf_encode leb128()

int dwarf_encode_leb128(Dwarf_Unsigned val,
int * nbytes,
char * space,
int splen);

The functiondwar f _encode_| eb128 encodes thealueval in the callefprovided huffer thatspace
points to. The caller-provided buffer must be at lsgdten bytes long.

The function return®W DLV_XK if the encoding succeeds$t spl en is too small to encode thalue,
DW DLV_ERRORwill be returned.

If the call succeeds, the number of bytespéice that are used in the encoding are returned through the
pointernbyt es

6.33.8 dwarf_encode _signed_|eb128()

int dwarf_encode_signed_leb128(Dwarf_Signed val,
int * nbytes,
char * space,
int splen);

rev 2.48, Mar 14, 2016 - 146 -



- 147 -

The functiondwar f _encode_si gned_I| eb128 is the same adwar f _encode_| eb128 except that
the argumentval is signed.

rev 2.48, Mar 14, 2016 - 147 -



- 148 -

rev 2.48, Mar 14, 2016 - 148 -



CONTENTS

1. INTRODUCTION  iiiiiiiei e ettt e e e e e e st e e e e e e e ettt e e e e e e e aanssaseeaeeaeeaaassnssaeaaaeeeesansssnees 1
S R ©7o] )/ ([0 | 1| AP P PP PPPPPPRPPPPP 1
1.2 PUIMPOSE ANA SCOPE.....euiiiiiiieeiiiiiitte et e e e ettt e e e e st et e e e e s e s e e e e e e s s snbbrneeeeaeeeans 1
S I I o Tod [ 4 1=T o[ B o 11 (o Y PP PP 1
R I = 1 0 T1 (o] o PP OTPUPPPRPRR 2
T O 1Y = V= PP 2
1.6 IEMS CRANGEA ...ttt e et e e e e e e e e e e e s e reeeeeaaans 3
1.7 HemMS REMMEA oo 4
1.8 REVISION HISTOIY oottt e e e e e e e e e s et r e e e e e e e nns 4

2. TYPES DEfINItIONS ... —— 5
2.1 General DESCHPLION .......ccoo i —— 5
A o= 1= | Y/ o 1= TR 5
ARG I e To [ 12 = (I 1Y/ 12U TUUUPPPPTPRRTT 6

P2 T80 R I Tor= 4T ] o TN =T o o o [ 6
2.3.2  LOCALiON DESCIIPLION ....uviiiiiieeiiiiiiiiiiee e e e ettt e e e s e e e e e e e e e e e e e aae 7
2.3.3  DAt@ BIOCK ..o 7
2.3.4 Frame Operation COdeSMBRF 2 ....oviiiiieiiiiieeeeeeeeeeeeeeeeeeeeee e 8
2.3.5 Frame RegtableMIARF 2 ... 8
2.3.6 Frame Operation CodeSMBRF 3 (and WVARF2) ........ovvviiiiviviiiiiiiiieiieenee. 9
2.3.7 Frame RegtableMIARF 3 ... 10
2.3.8 Macro Details RECOId..........covviiiiiiiiiiii 11
A O o TV U Y/ o1 S PP 11

T U I S I 1 ] o PSPPSR 14

O 4 (o ] gl o = o | 1 T P 14
4.1 Returned values in the functional iNterface..............uevviiiiiiiiiiiiieeeeeee e 16

5. MemMOry ManNAQEMENT ......ouiieiiiie et e et e e e e e e e e e e e e e e eeeennreaas 16
5.1 ReaAd-0ONIY PrOPEITIES ... .uuiiiiiiieeiiiiiiiie ittt e e e e s e e e s e s eeeaeas 16
IS (o] = (o (ST D= =1 (o Tox= 11T ] o S 17

6. FUNCLIONAI INTEITACE ...eeiiiieiiiieeie e e e e e eaaeeas 18
6.1 Initialization OPEratiONS .........ccuuuuiiiiiii i e e e e e e e e e e e e e ee e e e e e e eeeerrennnns 18

6.1.1  dwWarf iNIL() .oooeeeeeeee e 18
6.1.2 Dwarf_Handler funCtion ... 19
6.1.3  dwarf_elf _init() ...ccceeeeeeiieii e 20
6.1.4 dwarf get elf() .cvvieriiii 20
6.1.5 dwarf _set tied dBG().......ueurerrirmiiiiiiiiiiiiieeeeeeeeee e 20
6.1.6 dwarf get tied dBg() ....coevrrriiiiiii e, 21
6.1.7 dwarf_fiNISN() ...oooeiei oo 21
6.1.8 dwarf_set_StringCheck()........cuuuiiiiiiiiii e 22
6.1.9 dwarf_set_reloc_appliCation().......cceeeeeuiiiurrmriiieee i 22
6.1.10 dwarf_record_cmdline_OptioNS()........uuurrrrrrrmrrrmiiiiiriiiriiierrerererrrerrrer————— 22
6.2 SECHON SIZE OPEIALIONS.......uuuuuuuuiiiriiititireeieterrerererarrrrrrrrrerreesessraeresesrserrresreereerreerraeraees 22
6.2.1 dwarf _get_section_max_offsets D().......cccccrrieiiiiiiiii . 23



6.3

6.4

6.5

6.2.2 dwarf_get_section_max_OffSELS()...... . uereeermirirriiiiiieee e 23
PrHNEE CAlIDACKS ..ot as 23
6.3.1 dwarf_register_printf_callback.................c.oee i, 24
6.3.2 Dwarf Printf_Callback INfO_S .....cccccoiiiiiiiiii e, 24
6.3.3 dwarf_printf_callback _function_type...........cc.uuuuvieiirimiiiieiiieiiiiiieeiieeeeeeeeeeeee. 24
6.3.4 Example of printf callback use in a C++ application using libdwarf........ 24
Debugging Information Entry Dery Operations ............coooocvverieeeeenniniiinieneeesnnnnns 25
6.4.1 dwarf_get _die_Section_NAME().........uuurrrrrrmmrrurrrirrinrirerrrersrerreeereerreeereeree.. 25
6.4.2 dwarf _get die_section_ Name_b()........ccccuureerrrerieiiiieiiieiieeieeeeee e 25
6.4.3 dwarf_next_cu_header _d()....cccccoeeriiiiiriiieeiir e 26
6.4.4 dwarf_next_ cu_header _C()......cccooouummmummiiiiiiiiiiiiiiiiiiiiieeieee e e eeeeeeas 27
6.4.5 dwarf_next_cu_header _D()......ccccoouumiimiiimiiiiiiiiiiiiiiiiiee e 27
6.4.6 dwarf_next_Cu_NEader()........cccceruriiiiiiiiii e 28
6.4.7 dwarf_siblingof _b() ... ——— 28
6.4.8 dwarf _siblingof() .....oovviviiiiii 29
6.4.9  dwarf_Child() ..ooooeiieiiieee e 29
6.4.10 dwarf_offdie_D() . .cooooiiiiiiiie e 30
6.4.11 dWArT_OffAIE() ..vveeeeeeeiiiiiiiee e 31
6.4.12 dwarf_validate_die_SibBlNG().......ccooiiummmiiiiii 31
Debugging Information Entry Query OperationS...............uvvveeeeeerveereeereeereeereeereeeen. 31
6.5.1 dwarf _get die_infotypes flag().......cccccoviiiiiiiiii 32
LSRRI o 1117 U g = Vo | 32
6.5.3  dwarf_dieoffSEt() ..eoeiriiiiiiiiiiiiie 32
6.5.4 dwarf_debug_addr_index_to_addr()........cccccceeeeeiiieiiiiii 32
6.5.5 dwarf_die_CU_OMSEL() ...uvrreeeiiiiiiiiiiiiiee e e 33
6.5.6 dwarf _die_OffSELS() ..uuvrririiiiiiiiiieiiee e 33
6.5.7 dwarf_ptr_ CU _OffSEL() ...uvvvririiiiiiiiiiiiiiiiiiiiiiiieieeeee e eee e e e e e e e e e e e e e e aeee s 33
6.5.8 dwarf CU_dieoffset gBn_die() ....ooooorririiiiiiiiii e 33
6.5.9 dwarf_die_CU_offset_range()......cccoerrireiiieiie 34
6.5.10 dWarf_diENAME() . .cooiiiiiiiiiie e 35
6.5.11 dWarf_die_TEXE() ..eeeiieeeeriieiiee et 35
6.5.12 dwarf_die_abbrev_code().....ccccveriiiiiiiiiiiiiieeeeeeeeeeeeee 35
6.5.13 dwarf_die_abbrev_children_flag(}........cccceeeerr 35
6.5.14 dwarf_die_abbrev_global offSet()...........ccccerreiiiiiii i, 35
6.5.15 dwarf_get_version_of die().....cccceerrieiiee s 36
6.5.16 dAWArT_AttrliST() ....ccoviiiieiiiiiiee e 36
6.5.17 AWAIT_NASALII() ..eeeeiiiiiiiiiiee et e e 37
6.5.18 dwarf_attr() .....coooeeieiiiii 37
6.5.19 dWarf TOWPC() .ooeieeeiieeieee e 37
6.5.20 dwarf_highpeC B() ..eooiiieieie e 38
6.5.21 dwarf_highpeC() ..oooeeeeiriiei 38
6.5.22 dwarf_dietype_OffFSEI() .. . eeeeeiiiiiiiiii e 38
6.5.23 dwarf_OffSEt_IIST() ..eooiierreeiiieee e 39
6.5.24 dWaIT _DYLESIZE() ..vuvvrrriiiiiiiiiiiiiiiiiiiiiiti ittt r e — s —aaaaar——ara—a——e 39
6.5.25 dWAIT DItSIZE() .uvvvrrririiiiiiiiiiiiiieee e 40
6.5.26 dwarf _DItOFSEL() ...covveeiiiiii i 40
6.5.27 dwarf_Srclang() «oooeeeeeeeiiiii 40
6.5.28 dwarf_arrayorder() .......cc.ueeeeieeeeeiii e 40



6.6 AUMDULE QUETIES oo 40

6.6.1  dwarf_NasfOrm() .......cccccoiiuiiiiiiiii e —————— 41
6.6.2 dwarf_whatform() ... ————— 41
6.6.3 dwarf_whatform_direCt() .......ooevrririiiiii e 41
6.6.4  dwarf_WHAtar() .........cccoouiiiiiiiiiiiii et eeeeeeees 41
6.6.5  dwarf_fOrMIef() ....ooooooiiiiii e 42
6.6.6 dwarf_global_formref() ........ccoueiiiiiiiii 42
6.6.7 dwarf_cowmert to_global OffSet() .....cccccvviiiiiiiiiiiiiiieiieeeeeeeee e 42
6.6.8 dwarf _formaddr() ..........ccoiiiii i ——————— 43
6.6.9 dwarf _get_debug_Str iNdeX()......cuurieiniiiiiiiieiieie e 43
6.6.10 dwarf_formflag() ...o.ooeeeerimmiiiii 44
6.6.11 dwarf_fOrmudAta() .......ccuvvreeeeeeeee it 44
6.6.12 dwarf_fOrmsSdata() .......ccuvereiieeeiiiiiiie e 44
6.6.13 dwarf_fOrmbIOCK() ........uuuiiiiiiiiiiiiiiiiiiiiiii e 45
6.6.14 dwarf_formstring() ......oeeeeeiiiiiiiiiiii 45
6.6.15 dwarf fOrmMSIg8() ....ccvvieiiiiiii it 45
6.6.16 dwarf_fOrmMeXPrIOC() ...eeeeeeeeemmeeeeieeiiieieieiee et e e e e e e e e e e e e e e e e e e e e e e e e e aeees 45
6.6.17 dwarf_get_fOrm_ClIasS()........coourrrmmiiieeiiiiiii e 46
6.7 LOCAtiON LISt OPEIAIONS ...coiiiiiiiiiee ettt e e e e e e e e et e e e e e e e annnes 46
A o |V U o = A (o Yo 11 o] ) PP 46
6.7.2 dwarf_get 10CAESC_ENLIY C()urrrrrrrrrrrrrrrririrenrierrreereerreeereerererrereereeererrerreeeree 49
6.7.3 dwarf_get_location_op valu€ C()...ceeeriiieiriiiiiiiiiii e 50
6.7.4 dwarf_loclist_from_eXpr_C() ....ooooeeeeeee e 51
6.7.5 dwarf_loc_head_c_dealloC()........cceeeeiiieiiieeeee e 53
6.7.6  dwWarf_lOCHST_N() eeveeeieiiieeiiii e 53
I Ao |11 U (o Tod 113 { ) PSSR SRRRPRR 54
6.7.8 dwarf_loclist_from_expr() ....ccooeeeeiiiii s 55
6.7.9 dwarf_loclist_from_eXpr_b() .....cceeriieiiiiieii e 56
6.7.10 dwarf_loclist_from_eXpr_a().....ccoooeeeerieeieee e 56
6.8 Line NUMDEI OPEIAtIONS.......uuiiiiieiiiiiiiiiii e ettt e et e e e e e e s e e e e e annees 57
6.8.1 Get A Set of Lines (including skeleton line tables)...........ccccccvviiiiiiinenenn. 57
RS T o |V U T (o] T =TT o PP 57
6.8.3 dwarf_get line_section_name_from_die().........cccccvvrrrrrrrrrirrrrirerreeireeneenne. 58
6.8.4 dwarf_srclines_from_lineconteXt()........ccccceeeeiiiiieiiiiiiiiiiin e 58
6.8.5 dwarf_srclines_two Velfrom_linecontext() ........ccccooviiiiiiiiiiiiii 58
6.8.6 dwarf_srclines_dealloC_B().......uuueerumiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeee e 59
6.9 Line Context Details MARFS SIYIE) ..oooviiiiiiiiiiiiiie e 62
6.9.1 dwarf_srclines_table OffSEt()..........uuuruririririiiiiiiiiiiiiriieeieeeeeereeee e 62
6.9.2 dwarf_Srclin@s_VErSiON() ......uuuuuuuruuuimriirriirirrrirsrrrrerrerereereereeeeree. 62
6.9.3 dwarf_srclines_comp_dir().....ccuevreiiiiiieieiiir e 62
6.9.4 dwarf_srclines_files_count().........coooerioiiiiiiooe e 62
6.9.5 dwarf_srclines_files_data().........uuuueeeeummieiiiiiiiiiiiieiiiiieeeeeee e 63
6.9.6 dwarf_srclines_include_dir_count()..........ccccurmiiiiiiiiiiiiiiiiee e 63
6.9.7 dwarf_srclines_include_dir_data().........cccccceeeeiiiiiii . 63
6.9.8 dwarf_srclines_subprog_count()..........ccceeeeirii i, 63
6.9.9 dwarf_srclines_subprog_data()......cccoeeeeeerriieiiiiiiiiie e 63
6.10 Get A Set of Lines (WARF2,3,4 StYI€) .....ueeeieiiiieiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeee e 64
6.10.1 AWAIT_SICHNES() +vvrveeeeeiiiiiiiie e a e e 64



6.11 Get the set Of SOUICE FIle NAMES. ......oeniie e e e 65

6.11.1 dwarf_Srcfiles() .o 65
6.12 Get Information About a Single Line Table LiN€...........ccccvvvvviiiviieiiiiiiieeieeeeeeeeeeeeee 65
6.12.1 dwarf_linebeginstatement()...........ccuieiiiii i s 65
6.12.2 dwarf_lin€endSEQUENCE().. ... uuuurruurrereieiieeiieiiiinieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 66
6.12.3 dWAIT_IINENO() .oeiiiiiiiiiiiiii e e e e e 66
6.12.4 dwarf_line_Srcfileno() .....c.evvveeiieiiiiiii e 66
L I o VY= Vg [ 0 T=T= To Lo [ PP 67
6.12.6 dwarf_lINEOM() ..vvureeiieiiiiiiieeeeeee e 67
6.12.7 dwarf_liNOff_D() ..ooeeirieeiie e 67
6.12.8 AWAIT_IINESIC() «oeeeeiiiiiiiiie e e e e e e e 67
6.12.9 dwarf_liNEBIOCK() ...ooveiiiiiiiiiii e 68
6.12.20 dWarf_iS_B0Ar_SEI().. eeeeeeeiiueirriieiee e e ettt 68
6.12.11 dwarf_prologue_end_etC().........ceeeeeiieiiiie i 68
6.13 Global Name Space OPeratiONS.........ccvvviviiiiiiiiiiiiieieeeeeeee e 68
6.13.1 Debugger Interface OPerationsS.........coovuuuiiiiiiieeeeeeeeiin e e 69
6.13.1.1dwarf_get_gloDaIS() ... ..uuuermrerrerneiniiiiiiieiiieiieiieeeieeeeeeeeee e 69
6.13.1.2dwarf_globname() ........ccoueeiiiiiiiiiiie e 70
6.13.1.3dwarf_global_die_OffSEt()..........corrurrmrriiieiiiiiiiiiiee e 70
6.13.1.4dwarf_global_cu_offset()......ccoeveiiiiiiii 70
6.13.1.5dwarf_get cu_die_offsetvgn_cu_header_offset()...................... 70
6.13.1.6 dwarf_get_cu_die_offsetvgn_cu_header_offset().........ccccvuvunnn... 71
6.13.1.7 dwarf_global_name_offSets().........ccooriiiiiiiiiiiiee e 71
6.14 DWARF3 Type Names OPEratiOnS............uuueiiieiiiiiiiriiieieeeaaaiiieereeeeessssinineneeeeesaannes 72
6.14.1 Debugger Interface OPErations............ueeviieeiiiiiiiiiiiiee e 72
6.14.1.1dwarf_get pubtypeS().......uuurrrrrrrrmmuiirririiirriiriirriireereeererreerrerree—————— 72
6.14.1.2dwarf_pubtypename()...........uuuuuurimuiiiririiiiiiiiiireiirrrreerr————————————— 73
6.14.1.3dwarf_pubtype _type _die offset().......ccccceeeiviiiiriiiiiiiiiiii e, 73
6.14.1.4 dwarf_pubtype_cu_offSet().......ccuvrriiriiiriiii 73
6.14.1.5dwarf_pubtype_name_offSetS().........cccomrrrierriiiiiiiiiieeee e 73
6.15 User Defined Static Variable Names Operations............cccvvveeeeeeeniiiiiieeeeee e 74
6.16 Weak Name Space OPEratiONS..........cooiieiiiiii i 74
6.16.1 Debugger Interface Operations..............coooeeeiiii e 74
6.16.1.1dwarf_get WeaKS()......ccvvereriiiiii e e 74
6.16.1.2 dwarf_weakname() .......cccoooo e 75
6.16.1.3dwarf_weak _cu_OffSet()....c.ccvvririiiiiiiiiiiiii 76
6.16.1.4 dwarf_weak_name_offSetS()........c.uurrrreriiiiiiiiiiiiiee e 76
6.17 Static Function Names Operations...........cccvvvviiiiiiiiiiiieeeeee e, 76
6.17.1 Debugger Interface Operations.............ccoeeeeeiiii e 77
6.17.1.1dwarf_get fUNCS() ...coeveriiiiii i 77
6.17.1.2dwarf_funcname().....coevevviiiiiiiiiii 78
6.17.1.3dwarf_func_die_0OffSet()........ccceeermmmmmiiiiiiiiiiiiee 78
6.17.1.4dwarf_func_Cu_OffSEL().......uummrrieieiiiiiiiiiiiee e 78
6.17.1.5dwarf_func_name_offSets(}).......ccoeeiieiiiiiiiiiiici 79
6.18 User Defined Type Names OPErationS..........ccuveeeveeieeiieeiieiiieeiieeeieeeeeeeeeeeeeeeeeeseeeeees 79
6.18.1 Debugger Interface OPerationsS........ccoovvuuiiiiiiieeeeeeeeiee e 79
6.18.1.1dwarf_get tYPES() weeeereerriieiiiiiiiiiiieee e 79
6.18.1.2 dwarf_typename() ........cuuueeeeiiiiiiiiiie e 80



6.18.1.3 dwarf_type_die_OffSEt()......cccerririurrriiiieeiiiiiiie e 81

6.18.1.4dwarf_type _cu_offset().........ccoeeeiiiiiiiiiiecc e 81
6.18.1.5dwarf_type _name_oOffSets()......ccceeeiiiiiiiiiiiiiicicc 81
6.19 User Defined Static Variable Names Operations...........cccovvvviiiiiiieeeceeeviicinnee e 82
6.19.1 Debugger Interface Operations............coooveeieiiiiiiiie e 82
6.19.1.1 dWAIT_gEL VAIS() «evveeeeeeiiiiiiirieieeeeee ettt e e e e 82
6.19.1.2dWarf_VarNameE() ......oeeeriiiuerrieiee e 83
6.19.1.3dwarf_var_die_offSet()......ccccccerviiiiiiiiii 83
6.19.1.4dwarf_var_Cu_OffSEt().........uuururrrririiiiiiiiiiiiiiiiiiriieerieerrrrreerrerrree . 83
6.19.1.5dwarf_var_name_OffSetS()......cccccviiiiiiiiiiiieee e e 84
6.20 Macro Information Operations\ARF4, DNARFS)  ....oiiiiiiiiiiiiiiiiiiieeieeeieeeeeeieeeee 84
6.20.1 GEIING GCCESS. .. eeiiiieiiiiiiiiie et e e e et e e e et e e e e e e e e e e e e eeeaeeeas 84
6.20.1.1 dwarf_get_macro_CONEXE()......ceerurrurrrririeeeeeiiiiiiiieee e e 84
6.20.1.2dwarf_get_macro_context_by offset()..........ccccvvrrvrrrrieririirenrnennen. 85
6.20.1.3dwarf_dealloc_macro_context().......ccoeeeeeeeeiiiiiineaanes 85
6.20.2 Getting Macro Unit Header Data............cccccceeeiieieeiiiceiiien e 89
6.20.2.1dwarf_macro_context_head()...........oeveerreeriiiieeee e 89
6.20.2.2 dwarf_macro_operands_table()..........cccovveeeriiiiiiiiiieeee e 89
6.20.3 Getting Individual Macro Operations Datal.............cccuvvreeiieeiniiiiiiiiiieeeeeeens 90
6.20.3.1dwarf_get_ macro_op().....ccccvvvviieiiiiiiiiii e 90
6.20.3.2dwarf_get_macro_defundef()...........coooeeiiiiiiii i, 91
6.20.3.3dwarf_get_macro_startend_file(}..........ccevrrrririiiiiiiie e, 91
6.20.3.4dwarf_get_macro_import()........cceeeeereeiieiiee 92
6.21 Macro Information Operations\TARF2, DNARF3, DNARF4) ... 92
6.21.1 General Macro OPEratiONS.........oiiuurrrriiiee ettt e e e e e e s e e e s s eeeaees 92
6.21.1.1dwarf_find_macro_value_start()...........ccoeeeeeeeiiiiiiiiineens 92
6.21.2 Debugger Interface Macro Operations............cccccceevveiiieiiieeiieeeeeeeeeeeeee, 92
6.21.3 Lav Levd Macro Information Operations..........cccoooeevvieiiiiiiiinne e, 92
6.21.3.1dwarf_get_macro_detailsS(}........ccoverrrrriieiiiii 93
6.22 LoN Levd Frame OPEratiONS .........ccuvreiiieeeeeiiiiiieie e e e e e e s s e e e e e e e nnneneees 94
6.22.1 dwarf_get_frame_Section_Name()..........cocurrrrrieeeeriiiiiiiieee e e e 97
6.22.2 dwarf_get_frame_section_name_eh_gnu().........ccccevvveiiiiiiii . 97
6.22.3 dwarf_get fde lISt() ....ooooieeiiieieeie e 98
6.22.4 dwarf_get fde_list €N().....uueiiiiiiiiiieie e, 99
6.22.5 dwarf_get_cie_of fde() ..o 100
6.22.6 dwarf_get _fde_for_die()........oooeriiei i 101
6.22.7 dwarf_get_fde_range()......ccceuirirmmiiiie e 101
6.22.8 dwarf_get _Cie_INFO() ....uvvurrririiiiiiiiiiiiiiiiiiiiiieiie e eraeeeeaees 102
6.22.9 dwarf_get Cie_INAEX()...ccooeeiieiiiiiiieieci b 102
6.22.10 dwarf_get_fde _INStr_DYteS()......cceviieeeiiiiiiie e e 102
6.22.11 dwarf_get_fde_info_for_reg()........cvvummmmmiiiiiiii 103
6.22.12 dwarf_get_fde_info_for_all_regs()........ceeuereeeeraeeeaeieeieec e 103
6.22.13 dwarf_fde_SeCtion_OffSEL().......cuuiiiiiiiiiiie e 104
6.22.14 dwarf_cie_section_OffSEt().......cccoeeiiiiiiiiii 104
6.22.15dwarf_set_frame_rule_table_Size().........ccoeeiiiiiiiiiiicicccccc s 105
6.22.16 dwarf_set_frame_rule_initial_value().......cccccooeeeeiiiiiiiiiiiici e, 105
6.22.17 dwarf_set_frame_cfa_value()...........uuuuuremmmmmummmeiiiiiiiiiiiiiiiieiieeeieeeieeeeeeeeeeeee 105
6.22.18 dwarf_set_frame_same_Value()...........uuurruerrreeiimiiiiiieiiiieieeeeeeeeeeeeeeeeeeeeeeeas 106



6.22.19 dwarf_set_frame_undefined_value()...........cccevrerriiiiiiiiiiieeiieeeeeeeee 106

6.22.20 dwarf_set_default_address_SiZ€().......uuuurrreereeieiiiiiiiiiiiiiiiieeieeeeeeeeee e 106
6.22.21 dwarf_get_fde info_for reg3().......uurrrmrirmmiieriiiiiiiiieieeeeeeeeeeeeeeeee e 106
6.22.22 dwarf_get _fde_info_for_cfa reg3().......ccevrrmmririiiiiiiieiieeiin e 108
6.22.23 dwarf_get_fde_info_for_all_regS3().....cceerrremmiimiiiiiiiiiiiiiiieeeeeeeee 108
6.22.24 dwarf_get_fAde N() ..ccoooiieiieiiiee s 109
6.22.25 dwarf_get_fde_at_ PC()....uvvrrrrreeeiiiiiiiiieie e 109
6.22.26 dwarf_expand_frame_iNStruCtioNS()..........vveeeeereeeieieiiiiiieeeeeeieeeeeeeeeeeeeeeeees 109
6.22.27 dwarf_get_fde_exception_info().........cceeeeieie i 110
6.23 Location EXpression EValUALtioN.............cccouiie i e 110
6.23.1 Location List Internalde@ Interface ...........oooooiiiiiiiiiiiiiie 110
6.23.1.1 dwarf_get_I0CliSt_entry()........cuueeeeeiriiiiiiiiieeee e 110
6.24 ADDIEVIAtIONS GCCESS. .uuuuuririiiiiiiiietiiririrtiertreeteereearreeeraeeerererrrereerrrrrrrrerrrrrrrrarrraa 112
6.24.1 dwarf_get abbrev()....ccccovevvieiiiiii 112
6.24.2 dwarf_get_abbrev tag()......ccccoovviiiiiiii 113
6.24.3 dwarf_get_abbrev_code().......oooiriiiiiiiiiiii e 113
6.24.4 dwarf_get_abbrev_children_flag()........ccooeiiimiiii 113
6.24.5 dwarf_get_abbrev_entry().......cccccooiiiii e 113
6.25 String SECiON OPEIALIONS.....cciiiiiiiitiiiiit e e ettt e e e e e e e s e e e e e e s anbeeeees 113
6.25.1 dwarf_get Str() .o, 114
6.26 Address RaNQge OPEratiONS............ccuuuuuuuuururuuiinriunsirrrerrerrrrsrrrrressrre——————————————————. 114
6.26.1 dwarf_get_aranges_Section_Name().......ccccccurrriiiiereereeeeriiiin e e e eeeeeeenennnns 114
6.26.2 dWarf_get _arange@S(): ... cceoeeuuummunnnnnunneuuneunnenneenneeaaaeeaeeebeneaeeneeeeneeeeeeeeeeees 115
6.26.3 dWarf_get_arange():. .. . eeeeeriirmrririieeeee it e e 115
6.26.4 dwarf_get_Cu_di€_OffSEL().....uuuirieeiiiiiiiiiiiiee e 116
6.26.5 dwarf_get_arange_cu_header offSet()......ccccccvreriiiiiiiiiiiiiiiiiiiiiiiiiiieen, 116
6.26.6 dwarf_get_arange iNfO()........cccciuurruumiumiiiiiiiiiiiiiieieeieeerrrerererre e —————————— 116
6.27 General Loy Levd OPEerationNS .........ceiiiieeiiiiiiiiiii i e eeeeeeeiiias s e e e e s s esaennnn e e e e e s eeennnnns 117
6.27.1 dwarf_get_offSet_SIZe().....cuurrriiiiiiiiiiie 117
6.27.2 dwarf_get_address_SIiZe()........couurrrrreeiiiiiiiiii e 117
6.27.3 dwarf_get_die_address_SiZE()......cccceurriiiumriiiiieeiiiiiiiiee e 117
6.28 Ranges Operations (.debug _rangeS)..........uuururrrriirriiriiiiiiriiineierreeerrrrrree——————— 117
6.28.1 dwarf_get ranges_section_Name()........cccccceeeieeiieiiieiiiiieeeeeee 118
6.28.2 dwarf _get rangeS()....ceuerriiiiiieiiieieiiin e e 118
6.28.3 dwarf_get_ranges_a().....cceeeriiriiiiiiee e 118
6.28.4 dwarf_ranges_deallOC().........ccurrrrrieeeeiiiiiiie et 119
6.29 GdD INAR OPEIALIONS  ....eiiiiiiieiiiiitei et e e e eas 119
6.29.1 dwarf_gdbindex_header()........ccccccvviiiiiiiiiiiiiii 119
6.29.2 dwarf_gdbindeX_ Culist_array().........ueerueerreerreereeeiieereeeieeeeeeereeeeeereeeeeeeeeees 122
6.29.3 dwarf_gdbindex_Culist_entry()......ccceeeieieeiirieiiiiiie e 122
6.29.4 dwarf_gdbindex_types_CuliSt_array()............eeeeeeeeeeemeeeemmeeeeeieeeeeeeeeeeeeeeeen. 122
6.29.5 dwarf_gdbindex_types_culiSt_entry()..........ccoouvreeeeeiiiiiiiiiieeeee e 123
6.29.6 dwarf_gdbindex_addressarea()............uuveeeeeiiiiiiiiiiiiee e 123
6.29.7 dwarf_gdbindex_addressarea _entry()........ccccuueeereerreereereeeeeeeeeeeeeeereeeeeees 123
6.29.8 dwarf_gdbindex_symboltable_array().........ccccccuerreeereeireeeeeirieeeeeeeeeeeeeeeen, 124
6.29.9 dwarf_gdbindex_symboltable _entry()......ccccccooeeeriiiiiiiiiiiiii e, 126
6.29.10 dwarf_gdbindex_cuvector_length()..........cooooooooioiii s 126
6.29.11 dwarf_gdbindex_cuvector_inner_attributes()..........ccccceeeeeeeeeeeeeeeeeeeeenn. 126

Vi



6.29.12 dwarf_gdbindex_cuvector_instance_expand_value().............ccccvvvveeenn. 127

6.29.13 dwarf_gdbindex_string_by_ 0OffSet(}........uuurreereeriieiiiiiieieeeeieeeeeeeeee e 127
6.30 Debug Fission (.debug_tu_index, .debug_cu_index) operations...................... 128
6.30.1 Dwarf _Debug Fission_Per CU........ccccooiiiiiiiiiiiiiiiiin e e e e e e eeneens 128
6.30.2 dwarf_die_from_hash_signature()..........ccccccveevvieriiiiiiiiiiiiiiiiieeeeeeeeeee 129
6.30.3 dwarf_get_debudfisSion_for_di€().........ccuvmmmrrieiiiiiiiie e 130
6.30.4 dwarf_get_debudfiSSION_fORYK) ....oooviiiiiiiiiiiieei e 130
6.30.5 dwarf_get xu_index_header().......c.cccccovviiiiiiiiiiiiii 130
6.30.6 dwarf_get xu_index_section_type().......cccccorriiiiiiiiiiiiiiii 132
6.30.7 dwarf_get xu_header fre€()....cccceuiiiiiiiiiiiiiii e 133
6.30.8 dwarf_get Xu_hash_entry().....ccccceerriiiiiiiii 133
6.30.9 dwarf_get Xu_SeCtion_NAMES().......uuurrrrerrurrrreeiieeieeereieeeereeeeeeereeeeeeeeereeeeees 134
6.30.10 dwarf_get_Xu_SecCtion_OffSEL().........ccurrrrrrrieeiiiiiiiiiieee e 135
6.31TAG ATTR €tC NAMES AS SINGS......cceiiiiee e, 136
6.31.1 dwarf_get ACCESS NAME()....cceieeiieeiiiiiieiicei e annennnes 137
6.31.2 dwarf_get AT _NamE()....ccoieiuiiiiiiii et e e e e e e e e e e e e e 137
6.31.3 dwarf_get_ ATE _NAME() ...cooooiieiee e 137
6.31.4 dwarf_get_ ADDR_NAME() . .uureiieiiiiiiiiiiiee ettt 137
6.31.5 dwarf_get ATCF_NAME()......ciiururrrieeeeeiiiiiiiiiee e e e e e e 137
6.31.6 dwarf_get CHILDREN_Name().........cccceeiiiiii e 138
6.31.7 dwarf_get_children_name().....cccccvveeviiiiiiiii 138
6.31.8 dwarf_get CC NamME()..u.ceieeeeiiieiiiiiiie e e e e e e e e e e ann s 138
6.31.9 dwarf_get._ CFA NamMeE()....coooiiiiiiiiee oo 138
6.31.20 dwarf_get_DS_NamE()......uuumrrieeeiiiiiiiie e 138
6.31.11 dwarf_get_DSC_NAME()....uuurrieieeeiiiiiiiiiiiee e et 138
6.31.12dwarf_get EH NAME()....uuuuuruririiiiiiiiiiiiiiiiiieiiieiiesiesssssssssssesssssssessessseeeeeeeee 138
6.31.13 dwarf_get END_NAME()....uuuuuuuuuruuriinrininiiuninninrinnsnnsressrrssrssernssrsesrse—————. 138
6.31.14 dwarf_get FORM_NamME()....ccuuuuruiiiiiieeiieeeiiiiis e eeeeeeeevns e e e e e e e aean e 138
6.31.15dwarf_get FRAME_NamMe().......ceuvriiiiiiiiieeeeee e, 138
6.31.16 dwarf_get_ID_NamME() ....c.uvrreeieeeeiiiiiie e 138
6.31.17 dwarf_get_INL_NAME() ....ceeiiiiiiiiiieee ettt 138
6.31.18 dwarf_get LANG_Name().....cccoeeeiieeiiiiiee e, 138
6.31.19dwarf get LLE Name() .......coooeiiiiii oo 138
6.31.20 dwarf_get LNE NAME()....ccuuuuieiiieeiiieeiiiiiie e e eeee et e e e e e e eeeennann e e e e eaenees 139
6.31.21 dwarf_get_LNS_NaME()......uumriiieeeiiiiiiiiiiee et 139
6.31.22 dwarf_get._ MACINFO_NAME() .....uuurriieieeiiiiiiiiieeee et 139
6.31.23 dwarf_get._ MACRO_NAME() .. ttiieeiiiiiiiiiiieeeee et 139
6.31.24 dwarf_get OP_NamE().....ccooieeiiieiiii e aeee e 139
6.31.25dwarf_get ORD_NAME().....uuuuuuuurruriinriniiiiieiieinrirreierressrrrsrereresraererre————————. 139
6.31.26 dwarf_get AG _NAME() ..oveeerriiiiiiieeieieeiiiis e e e e e et e e e e e e e e e e e e eene 139
6.31.27 dwarf_get VIRTUALITY_Name() ....ccoevriiieriieeieeeeeeeeeeeeeeeeeeeeeeeee e 139
6.31.28 dwarf_get_VIS_NaAME().....ccooiiuriiiiieeeie it 139
6.32 SECHION OPEIALIONS .......iiiiieiieee e ettt e e et e e e e e r e e e e e e e st r e e e e e s e s annneeeeeeas 139
6.32.1 dwarf_get _Section_COUNT()........ccoeeriiiiiii e 139
6.32.2 dwarf_get_section_info_by Name().......cccvevrerrieeiiiiiieiiiiiieeeeeeeeeee e 140
6.32.3 dwarf_get_section_info_by indeX()........ccovrmeiiiiiiii e, 140
6.33 Utility OPerationNS ......ccooiiiiiiiieiee e 140
6.33.1 AWAIT_EITNO() 1ooieeetiieieeee ettt e e e e e e e 140

Vii



6.33.2 AWAIT_EITMSG() +oouevverreeeeeeeiiiiii e e e e e e s e e e e e e e anees 140

6.33.3 dwarf_get_harmless_error_list().........ccceeiiiei i 141
6.33.4 dwarf_insert_harmless_error()........cccooeeiieiiiiiieeiece e 141
6.33.5 dwarf_set_harmless_error_list_SIZe(}.....ccceeeriieeiiiieiiiiiii e, 141
6.33.6 dwarf_dealloC() ....coevvreieieeiiee 146
6.33.7 dwarf_encode_[ED128().........cccuuririieeeiiiii e 146
6.33.8 dwarf_encode_signed_[eD128()........cccceriiiiiiiiiiiiiieiiee e 146

viii



Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.
Figure 13.
Figure 14.
Figure 15.
Figure 16.
Figure 17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.

LIST OF FIGURES

SCAIAT TYPES ..ttt 6
Error INAIiCAtiONS .....coooeeeeeeeeeeee e 16
Examplel dwarf_attrliSt() .........ooouvrriiiieeiiiiiieeeceee e 17
Allocation/Deallocation 1dentifiers............ueeiieeiriiiiiiiiiie e 18
Example2 dwarf_set_died_dbg()..........uevvrirriimiiiiiiiiiiiiiiieieeiieeeieereeereeeeeeeee. 21
Example3 dwarf_set tied_dbg() obsolete..........ccccoooverriiiiiiiin e, 21
Example4 dwarf_Siblingof()..........uuuuumuimiiiiiiiiiiiiiiiiiiiiieiiieiieeeeeeeee e 29
Example5 dwarf_child() ........cvveeeiieiiie e 29
Example6 dwarf_offdie_D().........cccuurmiiiiiii 30
Example7 dwarf_CU_dieoffsetv@i_die() .....ccccoccvvviiiiiiiiiiiii, 34
Example8 dwarf_attrlist() free...........cccoooeiii i, 36
Exampleoffset_list dwarf_offset _list() free........cvceeiiiiiiiiiiiiiiii e, 39

[ =T a ] o] (== W V1= U (o ol 1S3 (PP 55
Exampleb dwarf_loclist_from_exXpr()........ccccuerreeeeiiiiiiiiiiieeee e 55
Examplec dwarf_srclines_B()......coooiiiiiiiiiiieii e 59
Exampled dwarf SICN@S().....uuuuuuiiiiiiiiiiiiieiiiieiieeeeeeeeeeeeee e e e e ee e 64
Exampled dwarf _Srcfiles().......cooooeiiiiiiee e 65
Exampled dwarf_get_globalS().........ccoovreeiiiiiiiiee e 69
Exampled dwarf_get_pubtypes()........ccccooouummummmmimmiiiiiiiiiiiiiiiiniiieeieeeeeeeeeeeee. 72
Exampleh dwarf_get_ WeakS()........ccuuurriiieeiiiiiiiiei e 74
Examplei dwarf_get_weaks() obsolete...........cccvviiiiiiiiiiiiiie 75
Examplej dwarf_get funcs().......oooooeeiiii i 77
Examplek dwarf_get _funcs() obsolete..................ccc . 77
Examplel dwarf_get typesS().......ccurriiiiiiiiiii e e 79
Examplel dwarf_get_types() obsolete...........ooovvviiiiiiiiii 80
Examplen dwarf_get_Vars()........coououureriieeeeiiiiieeeeee e 82
Exampleo dwarf_get_vars() ObSOlete............ovvviiiiiiiiiiiiiie e 83
Examplep5 dwarf_dealloc_macro_context()..........cccccvvvvveieiiiieeiieiineeeee. 85
Examplep2 dwarf_get_macro_detailS().........ccocevrumrrmmrrmrrmmriiiniiininiinnnnnnnn, 93



Figure 30.
Figure 31.
Figure 32.
Figure 33.
Figure 34.
Figure 35.
Figure 36.
Figure 37.
Figure 38.
Figure 39.
Figure 40.
Figure 41.
Figure 42.
Figure 43.
Figure 44.
Figure 45.
Figure 46.
Figure 47.
Figure 48.
Figure 49.
Figure 50.

Frame Information Rule Assignments MIPS............ccccccceiiiiiiiiiiiieeeeeee 96
Frame Information Special Valueyg architecture .............ccoeoeeeieiiiiciicnnns 96
Exampleq dwarf_get fde lISt()......uuuuerreiiieiiiiiiiieieeeieeeeeeeeeeeeeeeeeeeeee e 98
Examplegb dwarf _get fde list() obsolete......cccoooeeviiiiiiiiciiiien, 98
Exampler dwarf_get_fde_list_eh()........coooeeiieiiiiir s 99
Examples dwarf_expand_frame_inStructions().........ccccccevvuvvrireeeeernnnne 110
Examples dwarf_get_10CliSt_entry()........cceeeeeriiiiiimiieieeeiiiiiieeeee e 111
Exampleu dwarf_get_aranges()......ccccccvveviieiiiiiiiiiiiiiie e 115
Exampledwarf_get ranges_a() ....cooooeeeeeeeiiieiic e 119
Example dwarf_get gdbindex_header().......ccccccceevvivviiiiiii e, 120
Examplewgdbindawarf _gdbindex_addressarea()...........cccccvvveevvernnennnns 124
Exampbedwarf_gdbindex_symboltable_array().........ccccccoviiiiimreieenennnnnns 125
Exampledwarf_get_xu_index_header().........ccccceeeiiiiiiiiiinieeeeiiiiieeeenn 132
Examplez dwarf_get xu_hash_entry().............cceeee i, 134
Exampleza dwarf_get Xu_Section_NamesS()..........uuuerrrerrrereeeeeeeeeeeeeeeeens. 136
Examplezb dwarf_ getAG _Name() ....cccooooeeeriieiiiiiii e, 137
[T g = g o] g @0 o [P 142
Dwarf 2 Error Codes (continued Delow)...........cooooiiiiiiiiiiiiiiiiiiees 143
Dwarf 2 Error Codes (continued Delow)...........coooouiiiiiiiiiiiiiiiiiiiie s 144
Dwarf 2 Error Codes (continued Below)............uevveeeeeeiieiiiiiiieiiieeieeeeeeeee, 145
DWarf 2 ErTOr COUES. ...cciiiiiiiiitiiiiieee ettt e e e e e e e e e aaes 146



A Consumer Library Interfaceto DWARF

David Anderson

ABSTRACT

This document describes an interface to a library of functions to aca®ARP delugging
information entries and WARF line number information (and other WARF2/3/4/5
information). It does not mak recommendations as to wathe functions described in this
document should be implemented nor does it suggest possible optimizations.

The document is oriented to readin§VRRF version 2 and laterThere are certain sections
which are SGI-specific (those are clearly identified in the document).

rev 2.48, Mar 14, 2016

0. UNIX s a registered trademark of UNIX System Laboratories, Inc. in the United States and other countries.

Xi



